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Abstract

Studying population isolates with large, complex pedigrees has many advantages for discovering genetic susceptibility loci;
however, statistical analyses can be computationally challenging. Allelic association tests need to be corrected for
relatedness among study participants, and linkage analyses require subdividing and simplifying the pedigree structures. We
have extended GenomeSIMLA to simulate SNP data in complex pedigree structures based on an Amish pedigree to
generate the same structure and distribution of sampled individuals. We evaluated type 1 error rates when no disease SNP
was simulated and power when disease SNPs with recessive, additive, and dominant modes of inheritance and odds ratios
of 1.1, 1.5, 2.0, and 5.0 were simulated. We generated subpedigrees with a maximum bit-size of 24 using PedCut and
performed two-point and multipoint linkage using Merlin. We also ran MQLS on the subpedigrees and unified pedigree. We
saw no inflation of type 1 error when running MQLS on either the whole pedigrees or the sub-pedigrees, and we saw low
type 1 error for two-point and multipoint linkage. Power was reduced when running MQLS on the subpedigrees versus the
whole pedigree, and power was low for two-point and multipoint linkage analyses of the subpedigrees. These data suggest
that MQLS has appropriate type 1 error rates in our Amish pedigree structure, and while type 1 error does not seem to be
affected when dividing the pedigree prior to linkage analysis, power to detect linkage is diminished when the pedigree is
divided.
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Introduction

Complex pedigrees from isolated populations have gained

popularity for genetic studies due to their pedigree size, genetic

homogeneity, and environmental homogeneity [1–3]. Despite

these advantages, pedigree size and genetic homogeneity compli-

cate analyses and can make results difficult to interpret.

Association analyses must correct for the genetic relatedness of

individuals (kinship) within families. Simple family-based associa-

tion analyses for binary traits, such as TDT [4], PDT [5,6], and

FBAT [7] do not accommodate large consanguineous pedigrees.

To accommodate large and complex pedigree structures, other

methods have been developed including the CC-QLS (case control

quasi-likelihood score) [8] and MQLS (modified quasi-likelihood

score) [9] that use the kinship coefficients of all pairs of pedigree

members to accurately define and correct for all relationships

when testing for association. These tests also allow genetic linkage

to contribute to the statistics. The MQLS is an extension and

improvement of the CC-QLS and is able to use phenotype data of

samples without genotypes and can also differentiate between and

incorporate unaffected controls and controls of unknown pheno-

type in the analysis. Thornton and McPeek evaluated type 1 error

and power in relatively simple simulated pedigrees, showing that

type 1 error was not inflated and that power was relatively good

[9]. The most complex pedigree they sampled contained 154

individuals spanning five generations. Our Amish pedigree

contains 4,998 members (798 genotyped) spanning 13 generations

[3]. To our knowledge, simulations from a pedigree structure

typical of a large founder population, such as the Amish, have not

been performed. Therefore, we still have limited understanding of

how these tests perform on a larger founder pedigree.

Pedigree size and complexity also present problems when

running linkage analyses because even the best available linkage

programs, such as Allegro [10,11], Vitesse [12], Superlink [13–

15], and Merlin [16], can only handle pedigrees under a certain

size and complexity threshold. Programs based on the Elston-

Stewart algorithm (Vitesse [12], Superlink [13–15]) are limited in

both the pedigree complexity and number of markers, whilst

programs based on the Lander-Green algorithm (Allegro [10,11]

and Merlin [16]) can handle a whole chromosome of markers but

require simpler pedigrees. Therefore, it is necessary to split the

pedigree into smaller sub-pedigrees when performing linkage

analysis on a data set exceeding these limitations. One method for

doing this is PedCut [17], which generates sub-pedigrees with the

maximal number of subjects of interest within a specified bit-size

(two times the number of non-founders minus the number of

founders [18]) limit conducive to two-point and multipoint linkage
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analyses. Dividing the pedigree alters the overall flow of alleles

detected by the linkage analysis, and could alter results [19,20].

GenomeSIMLA [21] is a forward-time population-based

simulation package for generating large-scale SNP data in both

case-control and family-based designs and has been adapted to

efficiently produce SNP data in any pedigree structure given

a pedigree template. We used this extended version of Genome-

SIMLA to evaluate the power and false-positive rates for

association and linkage analyses for an Amish pedigree structure.

Using data simulations, we evaluated the false-positive rates

generated by two-point and multipoint linkage using Merlin

following the use of PedCut. We also assessed the effect of splitting

pedigrees on type 1 error rates is to run MQLS on the sub-

pedigrees to compare the results to an MQLS analysis of the

unified pedigree. By generating simulated data based on the true

pedigree structure of our cohort, we can more accurately estimate

power and false positive rates specific to our data set, and the same

techniques could be applied for other complex pedigrees.

Methods

Simulations
We extended the software package GenomeSIMLA to generate

complex pedigree structures based on a template pedigree. Once

a population of chromosomes has been created, a collection of

founders is drawn and are mated based on the pedigree structure

to produce all generations of the pedigree. Affection status is

assigned by applying a penetrance function with the option of only

assigning known phenotype and genotype data to the same

individuals with known phenotype and genotype data in the

template pedigree, maintaining a more realistic distribution of

genotyped affected and unaffected individuals in the pedigree. We

simulated a null disease model into 1000 pedigree replicates, each

with 124 autosomal SNPs with a spacing of 0.062 centimorgans

and no linkage disequilibrium between them, using our recently

published 4998-member Amish pedigree with almost identical

affection status (798 genotyped, 106 affected) [3]. The Anabaptist

Genealogy Database provided the pedigree structure [22]. The

minor allele frequency (MAF) was set to 0.2, to approximate the

mean MAF in the recent GWAS study of our Amish pedigree [3].

For studies of power, we modified the null simulation, forcing

one of the 124 SNPs to have either a dominant, recessive, or

additive effect with odds ratios of 1.1, 1.5, 2.0, or 5.0 for this locus,

resulting in 12 total disease models. The minor allele frequency for

the ‘disease’ SNP was held constant at 0.2, consistent with the

GWAS hypothesis of at least one common variant increasing risk

of a common disease. One thousand replicates were simulated for

each disease model.

Analyses
We ran MQLS (software version 1.2) to test for association and

used option ‘1’ to include all individuals, cases, controls, and

individuals with unknown phenotype in the analyses. More recent

versions (starting at version 1.5) of MQLS include a more robust

variance estimator [23], which was not implemented in these

analyses but would not likely make a significant difference in our

results. We tallied the number of p-values below values of interest

in each of the replicates. For the type 1 error study any p-value

below the threshold was included in the count, and for the power

studies any p-value below the threshold at the ‘disease’ SNP was

counted. The average number of p-values was then calculated

across each set of 1000 replicates.

To generate sub-pedigrees within a bit-size limit of 24, we ran

PedCut [17] in each of the simulated pedigrees using affected

individuals and unaffected siblings of the affected individuals as

subjects of interest. We ran two-point and multipoint parametric

and nonparametric linkage analyses on the PedCut pedigrees

using Merlin [16]. Multipoint linkage was run on all 124 markers.

Parametric HLOD scores were computed assuming affecteds-only

autosomal dominant and recessive models of 0 penetrance for no

disease allele and 0.0001 for 1 or 2 copies of the disease allele

under the dominant model, and penetrances of 0 for 0 or 1 disease

allele and 0.0001 for 2 disease alleles under the recessive model. A

disease allele frequency of 1% was used to mimic our recently

published genome-wide study and to approximate the expected

disease allele frequency in the general Amish population. We note

a typographical error in that paper which misreported the disease

allele frequency to be 10% [3]. Semi-parametric LOD scores

(LOD*) were computed using the NP-all and NP-pairs statistics.

For the two-point type 1 error results, we tallied the number of

Table 1. Average percentage of times (power) per model disease SNPs was under p-value thresholds when running MQLS on
whole simulated pedigrees.

Disease Model, Odds Ratio %#0.05 %#5E-3 %#5E-4 %#5E-5 %#5E-6 %#5E-7 %#5E-8

recessive, OR 1.1 6 0 0 0 0 0 0

recessive, OR 1.5 12 4 1 0 0 0 0

recessive, OR 2.0 26 9 3 1 0 0 0

recessive, OR 5.0 87 75 61 48 38 29 21

dominant, OR 1.1 8 2 0 0 0 0 0

dominant, OR 1.5 50 23 9 3 1 1 0

dominant, OR 2.0 92 72 47 28 13 7 4

dominant, OR 5.0 100 100 100 100 100 99 98

additive, OR 1.1 11 3 0 0 0 0 0

additive, OR 1.5 67 36 19 8 3 1 1

additive, OR 2.0 96 87 69 50 33 20 12

additive, OR 5.0 100 100 100 100 100 100 100

Power $80% in bold.
doi:10.1371/journal.pone.0062615.t001

Power & Type 1 Error in Large Pedigree Analyses
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SNPs out of the 124 simulated SNPs with HLOD/LOD scores

above certain thresholds. We averaged these tallies across the 1000

replicates and divided by 124. For two-point power analyses we

tallied the number of times the disease SNP crossed the HLOD/

LOD threshold in each set of 1000 replicates. For type 1 error and

power evaluations of multipoint linkage analysis, we tabulated the

maximum parametric HLOD and nonparametric LOD of each

replicate and calculated the percentage of the peak HLOD/LOD

scores that crossed thresholds. We allowed the maximum HLOD/

LOD to be at any of the 124 SNPs since we simulated each

replicate to be similar to a region in our previous multipoint study

(3) and we do not expect the peak to always be precisely at the

disease SNP every time.

We also ran MQLS on the sub-pedigrees to compare those

results to running MQLS on the unmanipulated large simulated

pedigrees. Prior to running MQLS, we re-calculated kinship

coefficients using the sub-pedigree structures rather than the entire

pedigree structure to model some of the effect of losing the entire

pedigree structure that might occur when using association to

follow-up linkage analysis in these sub-pedigrees. We determined

type 1 error rates and power as before.

All computations were performed using either the Center for

Human Genetics Research (CHGR) computational cluster or the

Advanced Computing Center for Research and Education

(ACCRE) cluster at Vanderbilt University. Scripts and pedigree

structures are available upon request.

Results

MQLS
In 1000 runs of MQLS, each with the entire 4998-member

pedigree and 124 null SNPs, we see average type 1 error rates of

5.06%, 1.02%, 0.56%, and 0.13% associated with p-values less

than 0.05, 0.01, 0.005, and 0.001, respectively. Therefore, we do

not see an inflated type 1 error rate when running MQLS in our

pedigree structure.

Evaluating power, we find, as expected, that we have the least

power to detect association when the underlying disease model is

recessive and the most power to detect association when the

underlying disease model is additive. For dominant and additive

models we have .90% power to detect association at p#0.05

when the simulated odds ratio is at least 2.0, but power drops

significantly at an odds ratio of 1.5. With a very strong effect of

OR=5, we have very high power to detect association even as low

as a p-value of 5.0E-8 (such as would be needed for Bonferroni-

corrected GWAS). Under the recessive models power was only

.80% using a p-value threshold of 0.05 for an odds ratio of 5.0

(Table 1).

MQLS-PedCut
Using the same sets of pedigrees, but dividing them into

subpedigrees using PedCut, the type 1 error rates when running

MQLS hardly changed from the MQLS analysis using whole

pedigrees. The type 1 error rates were 5.16%, 1.06%, 0.51%, and

0.11% for the same p-value thresholds.

On the other hand, evaluating power when subdividing the

pedigree before running MQLS we do see a loss of power. Power

is only .80% for dominant and additive models at an odds ratio

of 5.0 (Table 2).

Two-point Linkage
Averaging across 1000 replicates of two-point parametric

linkage analysis using sub-pedigrees with a bit-size #24, we see

low type 1 error rates, which were nearly the same when running

dominant and recessive models. The type 1 error rate using

a critical value of HLOD of 3 under the dominant model was only

0.01% and under the recessive model was only 0.02%. Non-

parametric analyses had no type 1 error at LOD threshold of 2

and 3 (table 3).

According to our simulations, we had .80% power to detect

a two-point HLOD $1.0 with a simulated additive model with

OR=5.0 when a dominant model is assumed during linkage

analysis. All other circumstances had ,80% power; however, with

the simulated dominant model with OR=5, Merlin was able to

detect the disease SNP almost 80% of the time at or above an

HLOD of 1 when a dominant model was assumed. Even when

a recessive model was assumed two-point linkage analysis was not

powerful for any of the simulated recessive scenarios. Parametric

analyses were more powerful than nonparametric analyses

(table 4).

Table 2. Average percentage of times (power) per model disease SNPs was under p-value thresholds when running MQLS on
subdivided simulated pedigrees.

Disease Model, Odds Ratio %#.05 %#5E-3 %#5E-4 %#5E-5 %#5E-6 %#5E-7 %#5E-8

recessive, OR 1.1 6 0.5 0 0 0 0 0

recessive, OR 1.5 8 1 0.4 0.1 0 0 0

recessive, OR 2.0 15 3 0.6 0.1 0 0 0

recessive, OR 5.0 74 51 34 19 10 5 2

dominant, OR 1.1 8 0.3 0 0 0 0 0

dominant, OR 1.5 24 5 1 0.2 0 0 0

dominant, OR 2.0 55 21 7 2 0.6 0.1 0

dominant, OR 5.0 99 90 72 49 27 13 6

additive, OR 1.1 6 0.6 0 0 0 0 0

additive, OR 1.5 33 9 2 0.1 0 0 0

additive, OR 2.0 70 37 16 5 2 0.8 0

additive, OR 5.0 100 98 92 80 65 43 24

All numbers are percentages. Power $80% in bold.
doi:10.1371/journal.pone.0062615.t002

Power & Type 1 Error in Large Pedigree Analyses
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Multipoint Linkage
When running multipoint analysis on the same sets of sub-

pedigrees we see both higher type 1 error and higher power for

most circumstances except for a simulated dominant model with

OR=5. For multipoint analyses we see higher type 1 error and

power for nonparametric analyses than for parametric analyses

(tables 5 and 6). For both two-point and multipoint linkage, the

highest power for detecting linkage was seen with a simulated

additive model with OR=5.0 (tables 4 and 6).

Discussion

Pedigrees from population isolates provide rich datasets for

genetic analyses; however, the size and complexity of the pedigrees

contribute to ambiguity when running analyses and interpreting

results. We have used this approach to discover novel susceptibility

loci for complex diseases, such as Alzheimer disease and

Parkinson’s disease, by studying the Amish communities of Ohio

and Indiana [1,3,24–26]. In a recent genome-wide study using this

population [3], 798 successfully genotyped individuals connected

into one 13-generation, 4998-member pedigree with consanguin-

eous loops. Using this same pedigree structure, we simulated 1000

pedigree replicates.

Simulations of pedigrees as large and as complex as an Amish

pedigree and other population isolates to assess the type 1 error

rate and power of MQLS have not been previously published, so

we sought to fill this void. We did not see an inflated type 1 error

rate in our simulated pedigrees. Therefore, MQLS is an

appropriate method for analyzing pedigrees as large and as

complex as the Amish. MQLS has sufficient power to detect

a strong effect of OR=5 when the mode of inheritance is

recessive, dominant, and additive and a more moderate effect of

OR=2 when the mode of inheritance model is dominant or

additive. While these are large effect sizes compared to those

typical of complex diseases, in a homogeneous founder population

a larger effect size is more likely.

Linkage analyses for a pedigree of this size and complexity

require pedigree splitting, but the effect of using PedCut to

subdivide the pedigrees on the type 1 error and power of linkage

analysis is not known. Using a bit-size limit of 24 for sub-pedigree

size (to allow analysis in Merlin), we saw a low type 1 error rate

associated with an HLOD of 3.0 for both two-point and

multipoint linkage (lower for two-point). An HLOD of ,3 has

traditionally been a ‘significant’ HLOD score, and the low type 1

error rate in this instance all allows us to confidently use this

threshold when evaluating linkage results from the Amish sub-

Table 3. Percentage of SNPs (type 1 error) above HLOD
thresholds using PedCut followed by two-point parametric
linkage analyses assuming dominant and recessive models
and nonparametric linkage analysis using the ‘all’ and ‘pairs’
statistics.

HLOD/LOD .1 HLOD/LOD .2 HLOD/LOD .3

dominant 2.21% 0.18% 0.01%

recessive 2.02% 0.20% 0.02%

NPL all 0.15% 0 0

NPL pairs 0.05% 0 0

doi:10.1371/journal.pone.0062615.t003

Table 4. Percentage of times (power) disease SNP crossed parametric HLOD or nonparametric LOD thresholds using PedCut
followed by Merlin two-point parametric and nonparametric linkage analyses.

HLOD/LOD $1.0 HLOD/LOD $2.0 HLOD/LOD $3.0

Model, Odds Ratio Dom Rec All Pairs Dom Rec All Pairs Dom Rec All Pairs

dominant, OR 1.1 2.4 2.3 0 0 0.1 0 0 0 0 0 0 0

dominant, OR 1.5 3.6 3.6 0.7 0.3 0.6 0.7 0 0 0 0 0 0

dominant, OR 2.0 8.3 9.1 2.3 0.7 1.7 1.2 0 0 0.5 0.4 0 0

dominant, OR 5.0 77.7 71 50 33.6 51.1 43.3 4.7 0.7 28.2 22.8 0 0

recessive, OR 1.1 2.6 2.6 0.4 0.1 0.4 0.4 0 0 0 0.1 0 0

recessive, OR 1.5 2.9 2.3 0.3 0.1 0.2 0.1 0 0 0 0 0 0

recessive, OR 2.0 2.4 2.3 0.2 0.1 0.2 0.2 0 0 0 0 0 0

recessive, OR 5.0 13.3 13.9 9 6.5 3.7 4.1 0.4 0.1 0.5 1.4 0 0

additive, OR 1.1 2.5 2.2 0.3 0.1 0.1 0.2 0 0 0 0 0 0

additive, OR 1.5 4.3 3.7 1 0.6 0.4 0.8 0 0 0.2 0.1 0 0

additive, OR 2.0 12.3 10.4 3 1.5 2.6 2.3 0.1 0 0.6 0.3 0 0

additive, OR 5.0 85.5 79.1 64.9 48.9 67.8 53.6 12.2 3.4 44 32 0.7 0

1000 replicates of each disease model were performed. All numbers are percentages. Power .80% in bold.
doi:10.1371/journal.pone.0062615.t004

Table 5. Percentage of SNPs (type 1 error) above parametric
HLOD and nonparametric LOD thresholds using PedCut
followed by multipoint parametric linkage analyses assuming
dominant and recessive models and nonparametric linkage
analysis using the ‘all’ and ‘pairs’ statistics.

HLOD/LOD $1 HLOD/LOD $2 HLOD/LOD $3

dominant 23.9% 7.5% 2.5%

recessive 19.7% 6.8% 2.5%

NPL all 44.2% 16.5% 4.6%

NPL pairs 44.7% 16% 3.7%

doi:10.1371/journal.pone.0062615.t005
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pedigrees. These approaches, however, were not powerful when

we analyzed simulated 1-locus disease models in pedigrees with

this number of variously related individuals.

Unfortunately, we cannot analyze the entire 4,998 member

pedigree for linkage to compare the type 1 error and power to

analyses of sub-pedigrees for linkage. We can, however, compare

the type 1 error of association analysis using MQLS on the entire

pedigree versus using MQLS on the sub-pedigrees. Splitting the

simulated pedigrees did not affect the type 1 error when running

MQLS. This result does not guarantee that splitting a pedigree will

not lead to any spurious positive results, since other studies suggest

otherwise (14). We do see a loss of power due to splitting the

pedigrees because many pedigree connections are disrupted. In

a previous simulation study McArdle et al saw that type 1 error

increased but power was not affected when ignoring family

structure while performing association analysis. Their conclusion

was based on testing relatively simple pedigrees compared to

singletons, which was a common approach at that time [27]. Our

results compare results from the entire, highly complex pedigree to

those from smaller but still large pedigrees.

Through these simulations we see that MQLS has acceptable

type 1 error rates even when using an extremely complex pedigree

structure. Type 1 error rates are also acceptable when splitting

pedigrees prior to linkage analysis, consistent with a related study

(13). Unfortunately, but not surprisingly, significant power is lost

when pedigrees are divided. Development of new methods or

extensions of current methods to use more pedigree information to

perform multipoint linkage analyses or implementation of

alternative methods such as identifying identical by descent

(IBD) shared segments [26] would greatly improve our ability to

query the rich genetic information of founder populations.
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