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Abstract

The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian

phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data

mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are

considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of

Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals

than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded

well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results.

Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change

in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results

showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the

major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of

Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relation-

ship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for

Laurasiatheria, representing a step towards ending the long-standing “hard” polytomy and 2) argues that intron within

genome data is a promising data resource for resolving rapid radiation events across the tree of life.

Key words: phylogenomics, phylogeny, intron, noncoding, data subsampling, Laurasiatheria.

Introduction

Reconstructing relationships of clades that experienced rapid

radiation in deep geological time has proved to be particularly

difficult (Meredith et al. 2011; McCormack et al. 2012; Song

et al. 2012; Zhou et al. 2012; Morgan et al. 2013; Romiguier

et al. 2013; Jarvis et al. 2014; Prumetal. 2015; Irisarri andMeyer

2016; Tarver et al. 2016). During rapid radiation, speciation

events occur within a relatively short time interval, few phyloge-

netic signals accumulate, and these signals are often obscured

by subsequent substitutions long after the speciation event. In

this context, recent research has often used genome-scale data

sets, aiming to provide more signals to resolve the phylogenetic

relationships resulting from rapid radiation (Amemiya et al.

2013; Jarvis et al. 2014; Irisarri and Meyer 2016).

Previous phylogenomic studies have predominantly used

coding sequences (CDS) because identifying orthologous

sequences of coding regions is relatively easy, and the con-

servativeness of CDS also makes alignment across divergent

species relatively straightforward (Thomson et al. 2010).

However, the conservativeness of CDS also means they carry

fewer phylogenetic signals that can resolve rapid radiation

events compared with other fast-evolving genomic regions.

Additionally, CDS are functionally constrained and are thus

potentially subject to convergent evolution. Recently, Jarvis

et al. (2014) used genome-scale data, including protein-

coding sequences, intron sequences, and ultraconserved ele-

ments, to reconstruct the Neoaves phylogeny, a well-known

ancient radiation. They found that noncoding sequences
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contributed most phylogenetic signals to the resultant tree,

whereas CDS yielded relationships reflecting convergent life

history traits. Compared with CDS, noncoding sequences are

less prone to convergent evolution and carry more variable

characters, making them informative even at shallow time-

scales (Chojnowski et al. 2008; Yu et al. 2011; Foley et al.

2015). However, the high variability of noncoding sequences

also poses a challenge in determining orthology and accu-

rately aligning sequences. Every type of data has advantages

and disadvantages, and a deep comparison of the phyloge-

netic utility of coding and noncoding sequences will provide

helpful information for future phylogenomic practices in re-

solving the relationships of rapidly radiating clades.

Laurasiatheria is one of the most diverse superorders of

placental mammals, and its evolution represents a typical an-

cient rapid radiation. The phylogenetic relationships among

the six orders of Laurasiatheria are currently a hotly debated

topic (Nikolaev et al. 2007; Prasad et al. 2008; Meredith et al.

2011; Zhou et al. 2012; dos Reis et al. 2012; McCormack

et al. 2012; Nery et al. 2012; Song et al. 2012; O’Leary

et al. 2013; Romiguier et al. 2013; Tsagkogeorga et al.

2013). After years of intensive studies, there are only two

placements with some certainty: Eulipotyphla is sister to all

other laurasiatherians, and Pholidota is the sister group of

Carnivora. Phylogenetic placements of the other four orders

Carnivora, Perissodactyla, Cetartiodactyla, and Chiroptera re-

main a subject of heated debate, and many hypotheses exist.

For example, some authors argue that Chiroptera is sister to

other Laurasiatheria, with the exclusion of Eulipotyphla

(Murphy et al. 2001; Song et al. 2012; Tsagkogeorga et al.

2013), but there is also evidence that Cetartiodactyla should

be placed in this position (dos Reis et al. 2012; McCormack

et al. 2012). Some authors have argued that Perissodactyla

and Cetartiodactyla is a clade (Meredith et al. 2011; Zhou

et al. 2011; O’Leary et al. 2013), whereas other researchers

have speculated that Perissodactyla is instead close to

Carnivora (Nery et al. 2012; Romiguier et al. 2013). Ruling

out any of these hypotheses has been difficult because the

divergence among major laurasiatherian lineages occurred

over a short time of 1–4 Myr (Hallström and Janke 2010).

Therefore, reconstructing the true phylogenetic relationships

of Laurasiatheria provides an ideal case study to explore the

phylogenetic performance of both coding and noncoding

sequences in resolving an ancient rapid radiation.

Here, by data-mining 22 available published placental

mammalian genomes, we compiled two genome-scale data

sets of coding and noncoding regions to reconstruct the

Laurasiatheria phylogeny: a CDS data set of 10,259 loci

(20,994,285 bp), and an intron data set of 3,638 genes

(19,055,073 bp). Our analyses showed that the intron data

produced well-resolved interordinal phylogeny for

Laurasiatheria but the CDS data yielded weakly supported

results, partially because the intron data contains more ho-

mogeneous and stronger phylogenetic signals than the CDS

data. With comparative analyses of data subsampling and a

change in outgroup, we found that noncoding sequences can

provide more robust phylogeny than CDS in resolving the

Laurasiatheria phylogeny. Our study highlights the potential

phylogenetic utility of noncoding sequences in resolving an-

cient rapid radiation events in future phylogenomic practices.

Materials and Methods

Data Collection and Orthology Assignment

CDS Data Set

Orthologous coding DNA sequences (CDS) were retrieved

from the OrthoMaM database (Douzery et al. 2014) for 21

placental mammalian species comprising two Eulipotyphla,

two Chiroptera, one Perissodactyla, four Carnivora, five

Cetartiodactyla, and seven outgroups (two Xenarthra, three

Afrotheria, and two Euarchontoglires). Because only one spe-

cies from Perissodactyla is available in the OrthoMaM data-

base (horse; Equus caballus), we additionally downloaded all

predicted mRNA transcripts sequences of the southern white

rhinoceros (Perissodactyla: Ceratotherium simum simum)

from NCBI. We performed a reciprocal best-hit (RBH) BLAST

analysis between transcripts of rhinoceros and all CDS

sequences of Homo sapiens to identify the rhinoceros ortho-

logs (cut-off: E value�10-5, identity�70%, coverage�60%).

To avoid introducing paralogs, we used a strict RBH criterion:

the score of the second BLAST hit was required to be less than

50% of the best hit for the sequence to be retained for further

analysis. The reading frame of obtained sequences was

checked with a custom Python script, and the sequences of

rhinoceros were incorporated into the supermatrix. In total,

22 species were included in the final CDS data set (supple-

mentary table S1, Supplementary Material online).

Intron Data Set

We identified orthologous introns based on the orthology of

their flanking exons on both sides. To do this, predicted exon

sequences and genomic sequences were retrieved from the

Ensembl database using the Biomart tool for 21 placental

mammals (http://www.ensembl.org). For each species, exon

sequences were sorted in ascending order by their genomic

location and were named using their gene name plus their

genomic location information. Exon orthology was also

assessed using an RBH BLAST procedure (cut-off: E val-

ue�10-5, identity�70%, and coverage�60%). We defined

orthology as present if bidirectional BLAST best hits were

found between the query species and the reference species

Homo sapiens. Moreover, a candidate orthologous exon was

retained only if it satisfied the following criteria: 1) the ratio of

the BLAST score of the first best-hit to the BLAST score of the

second hit was >1.5; and 2) the difference ratio of exon

length between Homo sapiens and the query species was
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<0.6. Filtered orthologous exons and syntenic adjacent

orthologous exons from the same gene (according to their

exon names) constituted an exon pair. The exon pair and the

intron between the two exons were considered an exon–

intron–exon unit. The full-length sequence of an exon–

intron–exon unit was extracted from the genome sequences

based on the genomic location information of the two exons.

Because the rhinoceros genome lacks exon annotation, we

mapped all obtained exon–intron–exon units of Homo sapi-

ens onto the rhinoceros genome scaffolds using BLASTN and

extracted the corresponding sequences of the rhinoceros. To

exclude introns with high length variability (difficult to align),

we calculated the intron length difference between the other

21 mammals and Homo sapiens and filtered out exon–intron–

exon units whose intron length difference ratio> 50%. In

addition, we also filtered out exon–intron–exon units whose

intron length> 10,000 bp. All of the above steps were per-

formed with custom Python scripts (available at https://github.

com/chenmy33/IntronGetting).

Alignment and Alignment Refining

For the CDS data set, sequences of 21 mammals (except

southern white rhinoceros) from the OrthoMaM database

had already been aligned, and poorly aligned regions had

been removed. Therefore, we only needed to add the sequen-

ces from rhinoceros into the existing alignments using MAFFT

L-INSI with the option “–add –keeplength.” The “–keep-

length” option maintains the length of existing alignments,

therefore preserving the original codon reading frames (Katoh

& Standley 2013).

For the intron data set, each exon–intron–exon unit con-

tained two parts: a highly divergent intron and its two con-

served flanking exons. Fast-evolving introns are difficult to

align, but the flanking exons acted as two anchoring regions

when aligning intron sequences and thus improved the accu-

racy of alignments to some extent. Multiple sequence align-

ment was conducted using the program SATé (Liu et al. 2012)

with the “—auto” option, because iterative methods such as

SATé can reduce error in aligning highly divergent sequences

(Lemmon and Lemmon 2013). The resulting alignments were

further refined using Gblocks 0.91 b (Castresana 2000), with

half gaps allowed (�b5¼ h). For each alignment of an exon–

intron–exon unit, the flanking exon sequences were trimmed

so that the final alignment contained only intron sequences. If

several introns were from the same host gene, they were

merged and treated as a single gene. To further exclude pos-

sible errors in orthology assignment and alignment, we con-

structed an ML tree under a GTRþGAMMA model using

RAxML v8.2.2 (Stamatakis 2014) for each intron alignment.

If a tree contained extremely long branches that accounted

for>50% of the total tree length, the corresponding sequen-

ces were removed from the alignment.

Finally, to focus our data on our question of interest, for

both the CDS and intron data sets, only gene alignments that

contained at least one sequence for each related order

(Chiroptera, Perissodactyla, Carnivora, Cetartiodactyla) were

retained. To reduce random (or sampling) error in building

gene trees, gene alignments shorter than 600 bp were also

discarded. The entire data process resulted in a final set of

10,259 CDS alignments and a final set of 3,638 intron align-

ments for the next step of analysis.

Gene Tree Statistics

Gene trees for each CDS and intron alignment were con-

structed using RAxML v8.2.2 with the GTRþGAMMA model.

We performed 100 bootstrap replicates and searched for the

best-scoring ML tree in a single run for each gene tree in

RAxML (-f a option). We then used a custom Python script

to analyze all gene trees and classified them into 15 possible

hypotheses regarding the phylogenetic positions of

Cetartiodactyla, Perissodactyla, Carnivora, and Chiroptera,

without taking branch support values into account. Gene

trees that did not support any of the 15 alternative hypotheses

were categorized as “nonmatching” (Chen et al. 2015). We

calculated the proportion of gene trees classified into the

“nonmatching” category or 15 alternative hypotheses.

To investigate the degree of incongruence among gene

trees, we calculated the pairwise Robinson–Foulds distances

(Robinson & Foulds 1981) between gene trees using Gori‘s

(2016) python script. The average RF distance for a gene tree

relative to all other gene trees was calculated using a custom

Python script. The average RF distance of genes and pairwise

RF distances were used to plot the histogram and tree space

was visualized using multidimensional scaling (MDS) in R (Hillis

et al. 2005).

Data Subsampling with Various Gene Filtering Methods

Many factors influence the accuracy of phylogenetic infer-

ence, such as the GC content of genes, evolutionary rates

of genes, phylogenetic resolution of genes, missing data,

and the choice of outgroup. To explore the influence of afore-

mentioned factors on the resulting phylogenies for both the

CDS and intron data sets, we generated a series of data sub-

sets from the original data.

GC Content of Genes

We calculated the average GC content at the third codon

position (GC3%) for each gene in the CDS data set and av-

erage GC content (GC%) for each gene in the intron data set.

The original 10,259-CDS data set was divided into three sub-

sets with different thresholds of GC3%: 7,697 genes

(“GC_CDS1” data set: GC3%< 73.1%), 5,130 genes

(“GC_CDS2” data set: GC3%< 60.4%), and 2,850 genes

(“GC_CDS3” data set: GC3%< 48%). The original 3,638-
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intron data set was divided into three subsets with different

thresholds of GC%: 3,445 genes (“GC_Intron1” data set:

GC%< 56%), 3,125 genes (“GC_Intron2” data set:

GC%< 50%), and 2,728 genes (“GC_Intron3” data set:

GC%< 44.6%).

Evolutionary Rate of Genes

We used average pairwise identity as an approximation of the

evolutionary rate of a gene. For the CDS data set, two subsets

of genes were selected: one contained 50% of genes with a

slow evolutionary rate (5,127 genes: “Rate_CDS1” data set)

and the other contained 50% of genes with a fast evolution-

ary rate (5,132 genes: “Rate_CDS2” data set). Similarly, for

the intron data set, two subsets of genes were selected: one

contained 50% of genes with a slow evolutionary rate (1,817

genes: “Rate_Intron1” data set) and the other contained

50% of genes with a fast evolutionary rate (1,821 genes:

“Rate_Intron2” data set).

Resolution of Genes

The average bootstrap support of the ML tree is the resolution

of a gene. For the CDS data set, we generated three subsets,

selecting genes with average bootstrap support values�70%

(5,698 genes: “Resolution_CDS1” data set), 80% (2,702

genes: “Resolution_CDS2” data set) and 90% (450 genes:

“Resolution_CDS3” data set). For the intron data set, we

generated three subsets, selecting genes with average boot-

strap support values �70% (3,279 genes:

“Resolution_Intron1” data set), 80% (2,537 genes:

“Resolution_Intron2” data set), and 90% (1,068 genes:

“Resolution_Intron3” data set).

Missing Data

For the CDS data set, we generated three subsets that

allowed for a maximum of 30% missing data per gene

(9,870 genes: “Completeness_CDS1” data set), 20% missing

data (8,808 genes: “Completeness_CDS2” data set), and

10% missing data (6,029 genes: “Completeness_CDS3”

data set). For the intron data set, three gene subsets were

selected based on different levels of missing data: 50% (2,521

genes: “Completeness_Intron1” data set), 40% (1,313

genes: “Completeness_Intron2” data set), and 30% (404

genes: “Completeness_Intron3” data set).

Outgroup

For the original CDS and intron data sets, we used seven

species from Afrotheria, Xenarthra, and Euarchontoglires as

the outgroup to Laurasiatheria. To investigate the influence of

the choice of outgroup on phylogenetic reconstruction, we

generated three taxon-reduced data sets with the same set of

genes but different composition of outgroup species:

“Xþ E_out_CDS” and “Xþ E_out _Intron” (using only

Xenarthra and Euarchontoglires as outgroup),

“Aþ E_out_CDS” and “Aþ E_out_Intron” (using only

Afrotheria and Euarchontoglires as outgroup), and

“AþX_out_CDS” and “AþX_out_Intron” (using only

Afrotheria and Xenarthra as outgroup).

Phylogenetic Analyses

For the original 10,259-CDS data set, the original 3,638-in-

tron data set, and their data subsets, phylogenetic trees were

reconstructed using both maximum likelihood (RAxML;

Stamatakis 2014) and coalescent-based species-tree inference

(ASTRAL; Mirarab and Warnow 2015). Because our data sets

included thousands of genes, using gene partitioning scheme

was not applicable. Moreover, in our pilot analyses, we found

that different partitioning schemes had almost no effect on

the final phylogenetic results. Therefore, all CDS data sets

were partitioned by three codon positions and all intron

data sets were not partitioned. The best-fitted models for

every data partition were selected with PartitionFinder

(Lanfear et al. 2012). In nearly all cases, GTRþGAMMAþI

model was the best-fitted model for the first codon partitions

and the second codon partitions of the CDS data sets and for

the intron data sets, whereas GTRþGAMMA model best

fitted the third codon partitions of the CDS data sets (supple-

mentary table S2, Supplementary Material online). Because

the usage of P-Invar in combination with Gamma can lead

to a ping-pong effect which makes alpha and PInvar cannot

be optimized independently from each other (RAxML man-

ual), the authors of RAxML always suggest users to use

GTRþGAMMA model instead of GTRþGAMMAþ I model.

In fact, in our pilot analyses, using the GTRþGAMMAþ I

model produced nearly identical topologies and branch sup-

port as using the GTRþGAMMA model. Therefore, the

GTRþGAMMA model was used for all data partitions in

both the CDS and intron data sets in our phylogenetic

analyses.

ML analyses were performed with RAxML v8.2.2

(Stamatakis 2014) on a two-way high-performance compu-

tation station (two E5-2680 CPU, 2.8 GHz, 256 G RAM) using

32 threads. Branch support was estimated with 200 rapid

bootstrapping replicates (option -f a). A species tree for

each data set was reconstructed using the gene-tree-based

coalescent approach implemented in the program ASTRAL

v4.7.6 (Mirarab and Warnow 2015). Briefly, for each data

set, 200 ML bootstrap trees and the final best-scoring ML

tree were estimated for every gene in the data set, using

RAxML under the GTRþGAMMA model. These best-

scoring ML trees and bootstrapping trees were used as input

files for ASTRAL with the option: “–i –b” to calculate the final

species tree and branch support.
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Results

Data Characteristics

The CDS data set comprised 10,259 genes (89.4% complete

for the 22 taxa) and 20,994,285 bp; the intron data set con-

tained 3,638 genes (56.8% complete for the 22 taxa) and a

total of 19,055,073 bp of sequence data (table 1). The lengths

of CDS genes ranged from 600 to 26,394 bp

(median¼ 1,572 bp) and the length of intron genes ranged

from 600 to 62,464 bp (median¼ 3,451 bp) (fig. 1A). The in-

tron data set had lower mean GC content and lower GC-

content variation than the CDS data set, both among genes

and among species (fig. 1B). Because GC-content is positively

correlated with the rate of recombination, the low-GC intron

data set thus should be less prone to GC-biased gene conver-

sion than the CDS data set. The intron loci had higher average

pairwise distance than the CDS loci, consistent with the expec-

tation thatnoncoding sequencesevolvemore rapidly thanCDS

(fig. 1C). The average bootstrap support values for gene trees

ranged from 11% to 99% (median¼ 72%) for the CDS data

set and 32% to 100% (median¼ 85%) for the intron data set,

indicating that the intron data set had stronger phylogenetic

signals than the CDS data set (fig. 1D). A summary of data

characteristics for each gene including alignment length, taxa

occupancy, pairwise distances, GC content, percentage of

missing data, and the average bootstrap support values of

gene tree is given in the supplementary table (supplementary

table S3A and B, Supplementary Material online). To evaluate

gene tree heterogeneity, Robinson–Foulds distances among

genes were calculated for both data sets. Multidimensional

scaling plots of the RF distances among genes (fig. 1E and F)

showed that the 3,638 intron gene trees were more similar to

each other compared with the 10,259 CDS gene trees. The

mean among-gene-tree RF distance of the intron data set was

5.028, whereas the mean among-gene-tree RF distance of the

CDS data set was 12.69, suggesting that the intron data had

more congruent phylogenetic signals than the CDS data

(fig. 1G).

The CDS Data Set Was Unable to Robustly Resolve the
Interordinal Relationships of Laurasiatheria

The maximum likelihood (ML) tree inferred from 10,259

genes of the CDS data set recovered the monophyly of

Laurasiatheria and the monophyly of all orders represented

by multiple species with 100% bootstrap support (fig. 2). In

agreement with most previous studies, the ML tree recovered

Eulipotyphla as the first-diverging lineage within Laurasiatheria

(BS¼ 100%). However, this phylogeny provided weak resolu-

tion for the interrelationships of Chiroptera, Perissodactyla,

Carnivora, and Cetartiodactyla. Chiroptera appeared as the

sister group of all remaining Laurasiatheria to the exclusion of

Eulipotyphla with low support (BS¼ 48%), and Perissodactyla

was placed as sister to a clade containing Carnivora and

Cetartiodactyla (BS¼ 48%). The species tree analysis

(ASTRAL) of the CDS data set produced different relationships

among Laurasiatherian orders; Perissodactyla and

Cetartiodactyla formed a clade, but again, with weak boot-

strap support (BS¼ 43%; fig. 2). In summary, whether using

concatenation or coalescence-based phylogenetic inference,

the phylogenetic signals within the CDS data set were not suf-

ficient to fully resolve the interordinal relationships of

Laurasiatheria.

The Intron Data Set Yielded Well-Resolved and Congruent
Phylogenetic Relationships

Unlike the CDS data set, both ML and species tree analyses of

the intron data set produced identical and fully resolved phy-

logenies for Laurasiatheria (fig. 3). All internodes within this

phylogeny received 100% bootstrap support in both analyses.

Eulipotyphla was again robustly recovered as the sister group

of all other Laurasiatherian mammals. However, the interre-

lationships of Chiroptera, Perissodactyla, Carnivora, and

Cetartiodactyla inferred from the intron data set were some-

what different from that inferred from the CDS data set. The

intron phylogeny confirmed the result for CDS that Carnivora

is sister to Cetartiodactyla with strong support (BS¼ 100%).

In the intron tree, Perissodactyla is strongly supported as sister

group of Chiroptera (BS¼ 100%).

The Intron Data Set Produced Stable Results under
Different Data Resampling Conditions

Resampling of loci within the data set has been widely used as

an effective strategy to investigate the consistency and stabil-

ity of phylogenetic inference in genome-scale data sets

(reviewed in Edwards 2016; also see Narechania et al.

2012; Salichos and Rokas 2013; Chen et al. 2015).

Therefore, we generated multiple data subsets from the orig-

inal intron data set according to the GC content of genes,

evolutionary rate of genes, different choices of outgroups,

missing data of genes, and phylogenetic informativeness of

genes to investigate whether the phylogeny inferred from the

intron data set was an artifact due to systematic errors, such

as compositional bias, long-branch attraction (LBA), and out-

group selection, or due to random errors, such as data com-

pleteness and the phylogenetic informativeness of genes. For

the sake of comparison, similar data subsets were also gen-

erated for the CDS data set according to the same criteria (see

Materials and Methods for details). Information for these data

subsets is given in table 1.

All data subsets were analyzed using both concatenation

and species tree methods. The resulting phylogenies from

these data subsets can be found in the Supplementary

Material (supplementary figs. S1–S10, Supplementary

Material online). Overall, we observed seven unique topolo-

gies from these analyses (topologies were colored and labeled

F to L; fig. 4A) and summarized the results in figure 4.
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To our surprise, we found that the CDS data set was highly

sensitive to data resampling and tree-building methods.

Different subsets of the CDS data set produced highly sup-

ported but incongruent results. For example, using the

concatenated ML inference, all the three CDS data subsets

with lower GC content (GC_CDS1, GC_CDS2, and

GC_CDS3) highly supported (BS> 90%) topology J (fig.

4B). Topology J was once again highly supported when using

slowly evolving genes (data subset Rate_CDS2; fig. 4B).

However, when using genes with high phylogenetic informa-

tiveness (data subset Resolution_CDS3), topology K was ro-

bustly recovered (fig. 4B); when using genes with more data

completeness, another result, topology G, was highly sup-

ported (data subset Completeness_CDS3; fig. 4B).

Remarkably, we did not recover the same highly supported

topology when using the same data subset in the species tree

(ASTRAL) analysis (fig. 4C). The species tree analyses highly

supported topologies G and H, but the corresponding data

subsets were completely different (fig. 4C).

In contrast to data subsampling analyses of the CDS data

set, we found that phylogenies inferred from the subsets of the

Intron data set were highly congruent (fig. 4D and E). The data

subsets of the Intron data set overwhelmingly supported topol-

ogy F (in 23 out of 25 cases; fig. 4D and E), in agreement with

the result of the original intron data set. Similarly, when we

used three different outgroup combinations, we found that

the Introndata set consistently supported topologyFwithmax-

imal support, whereas the CDS data set produced unstable

results (fig. 5). These results suggest that the highly supported

phylogeny inferred from the Intron data set was unlikely to be

caused by systematic or random errors and might reflect the

true evolutionary history of Laurasiatherian mammals.

The Major Phylogenetic Signal within the CDS and Intron
Data Sets Was Congruent

To further explore the phylogenetic signal within the CDS and

Intron data sets, we surveyed gene tree frequency for both
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Fig. 1.—Characteristics of CDS and intron data sets (blue¼CDS, red¼ intron). Boxplots show (A) variation in gene length, (B) GC content of each gene

(among genes) and each species (among species), (C) relative evolutionary rates of loci (measured by the average pairwise distance for each gene), and (D)

average bootstrap support values across all estimated gene trees. (E) Visualization of ML tree space using multidimensional scaling plot of 10,259ML gene-

trees from the CDS data set; each dot represents a tree inferred from one gene. Distances between dots represent Robinson–Foulds distances between gene

trees. (F) Multidimensional scaling plot of 3,638 ML gene-trees from the intron data set. (G) Histogram of the average RF distance for a gene relative to all

other genes, summarized from the CDS data set and the intron data set.
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data sets. Because the basal position of Eulipotyphla was

rather robust in previous studies and this study, there are a

total number of 15 alternative hypotheses for the relative

positions of the remaining four orders: Chiroptera,

Perissodactyla, Carnivora, and Cetartiodactyla (H1 to H15;

fig. 6 and supplementary table S4, Supplementary Material

online). After examining the ML tree for each gene, we found

that many genes did not support any of the 15 hypotheses

because they were unable to recover the expected position of

Eulipotyphla or unable to recover the monophyly of

Chiroptera, Perissodactyla, Carnivora, or Cetartiodactyla.

These genes were recently named “nonmatching” genes.

They cannot provide a meaningful answer to the question

and are thus thought to have little contribution (Chen et al.

2015). We found that �72% of genes within the CDS data

set were “nonmatching” genes but <41% of intron genes

were recognized as “nonmatching” genes (fig. 6). This result

was in line with the observation that the Intron data set was

more phylogenetically informative in resolving the

Laurasiatheria phylogeny than the CDS data set.

We then examined the gene trees of the 2,852

“matching” CDS genes (27.9% of the CDS data) and

2,175 “matching” intron genes (59.8% of the Intron data).

These genes could be considered to have contributed major

phylogenetic signals to the Laurasiatherian question. For the

intron genes, we found that hypothesis H1 received the high-

est gene-support frequency (9.66%) and the second-place

hypothesis H2 received a support frequency of only 7.95%

(fig. 6). The relative support-frequency difference between

these two hypotheses is large (up to 21.5%). This observation

was in line with the fact that the H1 hypothesis (our final

result) was robustly supported by the intron data. However,

for the CDS genes, the top-three supported hypotheses and

their gene-supported frequencies are H1 (8.42%), H13

(8.14%), and H4 (7.58%) (fig. 6). The relative support-

frequency differences among these hypotheses ranged from

3.44% to 11.1%. Therefore, it is much more difficult to dis-

tinguish among these three hypotheses in the analyses of CDS

data. In fact, the concatenation and species-tree analyses of

CDS data eventually supported hypothesis H4 (the third best)

and hypothesis H13 (the second best), respectively, albeit with

low support. The possible cause may be that the CDS data

contained a large number of “nonmatching” genes, which

diluted the genuine phylogenetic signal for the target
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Fig. 2.—Phylogenetic relationships of Laurasiatheria inferred from the CDS data set (10,259 genes; 20,994,285 sites). Phylogeny was inferred by

concatenation ML and species tree analysis using the ASTRAL program. The ML phylogeny is shown on the left, and the ASTRAL species tree is shown on the

right (outgroup not shown). Values next to branches are bootstrap values. Branches without support values all received a bootstrap value of 100%.
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question. Nevertheless, it should be noted that the top sup-

ported hypotheses for both the CDS data and the intron data

are the same (the H1 hypothesis). This result showed that the

major phylogenetic signals of both the CDS and Intron data

sets are actually congruent.

Discussion

Laurasiatheria Phylogeny

One of the most controversial problems in mammal phyloge-

netics is the phylogenetic relationships among the six orders

of Laurasiatheria; past studies have produced variable results

(reviewed by Hu et al. 2013). Recent phylogenomic studies

proposed that Chiroptera is sister to a clade containing

Carnivora and Perissodactyla (McCormack et al. 2012), to a

clade comprising Carnivora, Cetartiodactyla, and

Perissodactyla (Hallström et al. 2011; Song et al. 2012;

Zhou et al. 2012; Tsagkogeorga et al. 2013; Hallström et al.

2011), or to Cetartiodactyla (Nery et al. 2012; Romiguier et al.

2013). With respect to the phylogenetic placement of

Perissodactyla, several competing hypotheses exist, such as

Zooamata (PerissodactylaþCarnivora) (Nery et al. 2012;

Song et al. 2012; Romiguier et al. 2013) or Euungulata

(PerissodactylaþCetartiodactyla) (Hou et al. 2009; Zhou

et al. 2012; Tsagkogeorga et al. 2013). These controversies

are reflected in our analyses of CDS data as highly supported,

but conflicting results are often observed when analyzing dif-

ferent data subsets (figs. 4 and 5). Our gene tree statistics

show that the CDS data set contains few genes with strong

phylogenetic signal bearing on the divergence of laurasiather-

ian mammal orders (fig. 6). This provides an explanation of

why it is difficult to resolve the Laurasiatheria phylogeny with

CDS, even when using thousands of genes.

Our study represented the first attempt to resolve

Laurasiatheria relationships with genome-scale intronic

sequences. Our analyses showed that intron loci are more

homogeneous in gene trees than coding loci (fig. 1) and con-

tain more genes with strong phylogenetic signals bearing on

the divergence of laurasiatherian mammal orders (fig. 6). In

contrast to unstable phylogenies inferred from CDS, our in-

tron data set provided overwhelming evidence for a clade that

unites the phenotypically divergent Chiroptera and

Perissodactyla and an evolutionary affinity between

Cetartiodactyla and Carnivora (bootstrap¼ 100%; fig. 3).

Actually, the topology is not entirely novel. A clade comprising

Chiroptera and Perissodactyla was recovered by some of pre-

vious studies (McCormack et al. 2012; Zhang et al. 2013;

Tarver et al. 2016). It is noteworthy that two of them have

0.06
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Fig. 3.—Phylogenetic relationships of Laurasiatheria inferred from the Intron data set (3,638 genes; 19,055,073 sites). Phylogeny was inferred by

concatenation ML and species tree analysis using the ASTRAL program. Both analyses produced identical phylogenies for the interordinal relationships of

Laurasiatherian mammals. All branches have a bootstrap value of 100% in both analyses. Branch lengths are from the ML analysis.
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used noncoding data (683 ultraconserved element loci in

McCormack et al. 2012 and 239 noncoding RNA miRNAs

in Tarver et al. 2016). Although we have obtained a strongly

supported topology, it does not necessarily indicate that the

phylogenetic inference is correct. The phylogenetic analysis of

genome-scale data sets requires particular attention to poten-

tial systematic biases, such as LBA and compositional bias. In

particular, an LBA artifact may potentially occur since noncod-

ing sequences generally have fast evolutionary rates. If LBA

does influence the phylogenetic inference of the Intron data

set, we should obtain different topologies or observe a signif-

icant decrease in branch support when removing fast-

evolving loci. In fact, both topology and branch support

remained stable when we separately analyzed the top half

of the intron loci (ranked by evolutionary rate) and the bottom

half of intron loci (fig. 4D). This demonstrated that LBA should

not be responsible for the inferred grouping of Chiroptera

and Perissodactyla. In addition, compositional bias did not

significantly influence phylogenomic inference with our intron

data set because using data subsets with different levels of

GC content had almost no effect on the resulting topology

and branch support (fig. 4D). Therefore, the strongly sup-

ported tree recovered from our intron data set cannot be

explained by any kind of identifiable systematic bias (LBA

and compositional bias) and should constitute the best current

hypothesis for the Laurasiatheria phylogeny.

Our results prompt a reinterpretation of morphological

data in laurasiatherian phylogeny. In particular, the close prox-

imity between Perissodactyla and Chiroptera but not

Cetartiodactyla suggests that extremely quick morphological

evolution and extensive morphological homoplasy occurred in

the early history of laurasiatherian mammals. Nevertheless, by

focusing on genome-scale data, our data sets contained many

more loci than species. The taxon sampling for Laurasiatheria

in this study is still insufficient; only two species are sampled

from each of the two key orders (Chiroptera and

Perissodactyla), and data from the order Pholidota is lacking.

Poor taxon sampling can interfere phylogenetic inference

(Philippe et al. 2011). Therefore, the current hypothesis for

Laurasiatheria phylogeny still needs further validation when

more genome data for Perissodactyla and Pholidota are

available.

Introns Are Promising Genomic Resource to Study Difficult
Radiation Problems

With the advance of sequencing technology, whole genome

data can be gathered very rapidly. In recent years, genome

data have frequently been used to address difficult phyloge-

netic problems because massive amounts of data often mean

stronger phylogenetic resolving power. It is worth noting that

the vast majority of phylogenomic studies based on genome

data use coding regions as their data resource. CDS have

several features suitable for phylogenetic analyses, such as

an appropriate level of variation, easy alignment across a large

phylogenetic span, and relatively straightforward identifica-

tion of orthologs.

Compared with CDS, noncoding regions of genomes have

received little attention in recent phylogenomic studies. This

may be because noncoding sequences are highly variable,

which makes it difficult to identify their orthologs across di-

vergent taxonomic groups and accurately align them.

Although not easy to use, noncoding regions of genomes

have several positive features that make them more suitable
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for studying rapid evolutionary events: 1) they generally have

fast evolutionary rates and can thus accumulate more muta-

tions in a short time, which is necessary to efficiently resolve

closely spaced diversification events; 2) they have a low level

of functional constraint, which makes them much less vulner-

able to convergent evolution; and 3) they generally have low

GC content, which leads to a low frequency of

recombination.

Recently, Reddy et al. (https://doi.org/10.1093/sysbio/

syx041) compared noncoding versus CDS to resolve the phy-

logenetic relationships among Neoaves birds. Similar to our

findings, they found that data type (coding or noncoding) was

the main factor influencing the topological incongruence ob-

served between different data sets. They pointed out that

most data-type effects actually reflect poor model fit to the

data: patterns of sequence evolution for noncoding regions

are less complex than for coding regions so that standard

substitution models (i.e., GTRþ IþC and its submodels) are

likely to fit noncoding regions better than coding regions. Our

results of data characteristics showed that CDS have much

higher gene-tree heterogeneity than noncoding sequences

(fig. 1E–G). This phenomenon cannot be solely explained by

biological factors such as incomplete lineage sorting (ILS) and

should partly attribute to poor model fit to the CDS data.

Tarver et al. (2016) have recently illustrated that using the

CAT-GTRþG site-heterogeneous mixture model (Lartillot

et al. 2013) was more advantageous than the standard

GTRþGþI model in analyzing heterogeneous mammalian

phylogenomic data. However, the CAT-GTRþG model is

too computationally intensive for our huge CDS and intron

data sets. Therefore, for both the CDS and intron data, we

tentatively built two smaller data sets that contain two million

sites randomly sampled from both their fastest evolving genes

and slowest genes. All the four CAT model analyses produced

complete resolved phylogenies with all posterior probabilities

equal to one (supplementary fig. S11, Supplementary

Material online). However, the incongruences between the

two rate subsamples of the CDS data still existed while the

two rate subsamples of the intron data produced identical

topology to that from the whole intron data set. This result

validated the robustness of the intron phylogeny but further

showed that the Laurasiatheria CDS data is so complex that

even the most sophisticated CAT model is unable to ade-

quately model its evolutionary process. If the models currently

in use do offer a better fit to noncoding sequences than to

CDS, it is thus more reasonable to use noncoding sequences

with standard analytical methods (i.e., those using

GTRþ IþC and its submodels) to address difficult evolution-

ary questions.

Among the many types of noncoding sequences, introns

may be the most suitable for phylogenetic analyses.

Structurally, introns are surrounded by conserved exons on

both sides. The orthology of an intron can thus be determined

based on the orthology of its two flanking exons, as in this

study. The two flanking exon sequences of an intron can also

provide anchoring sites, which help to more accurately align

the variable intron sequences. Moreover, in recent years, a

number of new aligning methods have been developed to

efficiently align a large number of highly divergent sequences,

such as SATé (Liu et al. 2009, 2012) and PASTA (Nguyen et al.

2015). These further overcome the difficulty of aligning highly

variable intron sequences.

In fact, intron data sets with tens of genes have been suc-

cessfully used to improve the resolution of intractable rapid

radiation events (Chojnowski et al. 2008; Yu et al. 2011; Foley

et al. 2015; Dool et al. 2016), but few studies have tried to

mine intron sequences from genome data for phylogenomic

inference (Jarvis et al. 2014). Our study, for the first time, used

a genome-scale intron data set to study the Laurasiatheria

phylogeny, a relatively ancient rapid radiation event. Our anal-

yses showed that intron data contain substantial and homo-

geneous phylogenetic signals that are able to robustly resolve

the deep relationships of Laurasiatherian mammals, whereas

CDS data contain highly heterogeneous signals. This finding is

encouraging because it reveals that intron sequences within

whole genome data have great potential to resolve difficult

phylogenetic problems. Currently, there are still many rapid

radiation events that cannot be fully resolved by CDS; we

propose that genome-scale intron analyses should be per-

formed to provide new perspectives on this longstanding

controversy.

Conclusions

In this study, we reconstructed the interordinal relationships

of Laurasiatherian mammals with two genome-scale data sets

of CDS and noncoding intron sequences. Our phylogenetic

analyses based on the intron data recovered a robust phylog-

eny: Chiroptera and Perissodactyla formed a well-supported

clade that is sister to the clade comprising Cetartiodactyla and

Carnivora. Although this phylogeny was not recovered by the

CDS data, we found that the major phylogenetic signal of the

CDS data is actually congruent with the intron data. By com-

paring the phylogenetic signal strength and phylogenetic in-

ference robustness, we found that noncoding intron

sequences outperform CDS in resolving the Laurasiatheria

phylogeny. Our study showed that building genome-scale in-

tron data sets may be an efficient way to resolve challenging

short internal nodes in phylogenetic trees.

Note Added in Proof

Although this paper was in review following revision, the pan-

golin genome (Tan et al. 2016) was released and cleared its

12-month embargo period. This gives us an opportunity to

incorporate the pangolin data into our analyses. We therefore

reran the concatenated RAxML and coalescent-based ARSTAL

analyses for the complete CDS and intron data sets with the

Chen et al. GBE

2010 Genome Biol. Evol. 9(8):1998–2012 doi:10.1093/gbe/evx147 Advance Access publication August 2, 2017

Deleted Text: (
Deleted Text: (
Deleted Text: (
https://doi.org/10.1093/sysbio/syx041
https://doi.org/10.1093/sysbio/syx041
Deleted Text: -
Deleted Text: coding sequences
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: coding sequences
Deleted Text: -
Deleted Text: 2 
Deleted Text: -
Deleted Text: coding sequences
Deleted Text: -
Deleted Text: Dool et<?A3B2 show $146#?>al. 2016, 
Deleted Text: ,
Deleted Text: Yu et<?A3B2 show $146#?>al. 2011, <xref ref-type=
Deleted Text: coding sequence
Deleted Text: coding sequences
Deleted Text: coding sequences
Deleted Text: coding sequences
Deleted Text: While 
Deleted Text: twelve


newly added pangolin data. However, due to the limited time,

we did not redo the data subsampling analyses. The new CDS

and intron analyses confirmed the sisterhood between

Pholidota and Carnivora with maximal branch support (sup-

plementary fig. S12, Supplementary Material online). Both

analyses of the new intron data set still strongly supported

the previous intron phylogeny (supplementary fig. S12B,

Supplementary Material online) but the new CDS data sets

again produced incongruent results in the concatenated and

coalescent-based analyses (supplementary fig. S12A,

Supplementary Material online). The results of this reanalysis

had no material effect on the conclusions of this study.

Data Availability

All data sets, analysis results, and supplementary material are

available on FigShare Repository (https://figshare.com/s/

a8cea06c05465c939e15).

Supplementary Material

Supplementary figures are available at Genome Biology and

Evolution online.
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