

BIOENGINEERING AND BIOTECHNOLOGY
ORIGINAL RESEARCH ARTICLE

published: 16 January 2015
doi: 10.3389/fbioe.2014.00081

Learning delayed influences of biological systems
Tony Ribeiro1*, Morgan Magnin2,3, Katsumi Inoue1,2 and Chiaki Sakama4

1 The Graduate University for Advanced Studies (Sokendai), Tokyo, Japan
2 National Institute of Informatics, Tokyo, Japan
3 Institut de Recherche en Communications et Cybernétique de Nantes (IRCCyN), Nantes, France
4 Department of Computer and Communication Sciences, Wakayama University, Wakayama, Japan

Edited by:
David A. Rosenblueth, Universidad
Nacional Autonoma de Mexico,
Mexico

Reviewed by:
Jérôme Feret, Institut National de
Recherche en Informatique et
Automatique (INRIA), France
Ricardo Gonçalves, Universidade
Nova de Lisboa, Portugal

*Correspondence:
Tony Ribeiro, National Institute of
Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo 101-8430, Japan
e-mail: tony_ribeiro@nii.ac.jp

Boolean networks are widely used model to represent gene interactions and global dynam-
ical behavior of gene regulatory networks. To understand the memory effect involved in
some interactions between biological components, it is necessary to include delayed influ-
ences in the model. In this paper, we present a logical method to learn such models from
sequences of gene expression data. This method analyzes each sequence one by one to
iteratively construct a Boolean network that captures the dynamics of these observations.
To illustrate the merits of this approach, we apply it to learning real data from bioinformatic
literature. Using data from the yeast cell cycle, we give experimental results and show
the scalability of the method. We show empirically that using this method we can handle
millions of observations and successfully capture delayed influences of Boolean networks.

Keywords: Boolean network, gene regulatory networks, delayed influences, time delay, logic programming,
machine learning, state transitions

1. INTRODUCTION
1.1. IMMEDIATE VERSUS DELAYED INFLUENCES
Thanks to the development of recent high-throughput measure-
ment technologies such as DNA microarrays, biologists succeed
in obtaining a large amount of gene expression profiles. It then
becomes crucial to be able to connect the data and build a predic-
tive model of the gene network. The analysis of biological networks
often requires agreeing on an appropriate mathematical or com-
putational model to represent the biological system. Because of
the complexity of the system, models usually assume that the
modification of one node results in an immediate activation (or
inhibition) of its targeted nodes. But this hypothesis is generally
unfair: some influences may take some time to operate, thus modi-
fying the behavior of the model. These delayed influences can play
a major role in various biological systems of crucial importance,
like the mammalian circadian clock [as illustrated by Comet et al.
(2012)] or the DNA damage repair [as shown by Abou-Jaoudé
et al. (2009)]. We especially need to capture the memory of the
system, i.e., keep track of the previous steps.

1.2. MODELING DELAYED INFLUENCES INTO BOOLEAN NETWORKS
Delayed influences have been integrated in each of the most well-
known formalisms to model gene regulatory networks. Thanks
to their structure, which allows to model both sequentiality and
parallelism, Petri nets were able to model complex regulation
mechanisms (Chaouiya, 2007). Recent works even considered not
only discrete but continuous delays (Siebert and Bockmayr, 2006;
Comet et al., 2010) in some hybrid automata paradigms. How-
ever, such approaches, because of their complexity, fail to deal with
large systems and biological data about quantitative time delays are
generally scarce. That is why we chose to focus, in this paper, on
Boolean networks, which have proven to be a simple, yet powerful,
framework to model and analyze the dynamics of gene regulatory

networks. The classical dynamics of Boolean networks is based on
the central assumption that a homogeneous transmission delay is
involved among all components of the network. This means the
modification of one node results in an immediate activation (or
inhibition) of its targeted nodes [as studied, e.g., by Akutsu et al.
(2003)] for the sake of simplicity. This is quite unrealistic in the
sense that, in a real biochemical system, the evolution happens at
various time scales.

The urge to incorporate delays into the model is perfectly illus-
trated by the feedforward loop scheme. The feedforward loop is
a network pattern that appears in many cycling processes, e.g.,
Escherichia coli and Yeast Saccharomyces cerevisiae [as considered
by Koh et al. (2009)]. Biologists like Mangan and Alon (2003)
assume these loops play a major role in the acceleration of the
response time of transcriptional networks. It consists of the fol-
lowing elements (see Figure 1): 3 genes, let us say a, b, and c, with
a regulating b, b regulating c, and a direct regulation from a to c.
Depending on the nature of the regulations (activations or inhibi-
tions; Figure 1 arbitrarily considers an inhibition from a to c) and
their delays, the concurrence between the direct regulation from a
onto c and the indirect one through b can lead to a drastic differ-
ent behavior. To analyze feedforward loops, the information about
the respective delays of the regulations at stake are crucial. A small
change in the delays understanding may lead to a complete differ-
ent behavior. The thin analysis of the dynamical behavior of such
pattern requires to enrich classical discrete models with delays.

To address this issue, different approaches have been designed.
The most well-known one is due to Silvescu and Honavar
(2001). To understand precisely the dynamics of some biological
processes (like cell development) while considering the mem-
ory of the system, the authors take their inspiration from the
works about Markov models. They introduced an extension of
Boolean Networks from a Markov(1) to Markov(k) model, where

www.frontiersin.org January 2015 | Volume 2 | Article 81 | 1

http://www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/editorialboard
http://www.frontiersin.org/Bioengineering_and_Biotechnology/about
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/abstract
http://www.frontiersin.org/people/u/175797
http://www.frontiersin.org/people/u/175811
http://www.frontiersin.org/people/u/125952
http://community.frontiersin.org/people/u/200800
mailto:tony_ribeiro@nii.ac.jp
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

a

b c

FIGURE 1 | Example of a feedforward loop.

k is the number of time steps during which a gene can influence
another gene. This extension is called temporal Boolean networks,
abridged as TBN (n, m, k), with n the number of genes and the
expression of each gene at time t+ 1 being controlled by a Boolean
function of the expression levels of at most m genes at times in {t,
t− 1, . . ., t− (k+ 1)}. They even extend the formalism to multi-
valued discrete networks, calling it temporal discrete networks,
TDN (n, m, k, D), where each gene can be expressed at levels 0, 1,
. . ., D− 1. Their main results, however, focus on TBN (n, m, k):
they design a decision tree learning algorithm that infers a tem-
poral Boolean network from time series data. They also give some
bounds on the size of the necessary data to infer temporal Boolean
networks. They illustrate their results through artificially gener-
ated networks, claiming that the main limit of their method is the
lack of real data on large datasets.

Other authors addressed the idea of modeling delayed and indi-
rect influences. We can cite the work of Chueh and Lu (2012), who
extended the Boolean network formalism with delays. To model
that the induction of a Boolean function may not activate imme-
diately the targeted gene, they replace the classical deterministic
relation between the Boolean function and the targeted gene by
two relationships: (i) the prerequisite function: it represents the
fact that the on-status of the target gene at time t+ 1 requires that
the Boolean function at time t is on. (ii) The similarity function:
the Boolean function and the target gene are said to be similar if
the status of the Boolean function and the status of the target gene
are in the same expression. In other words, this means that the clas-
sical Boolean operators are encoded in the prerequisite function,
while the similarity function allows to model precedence (under
the form of delays) between concurrent updates.

Another approach to model indirect influences is given in
the 6th chapter of the dissertation by Ghanbarnejad (2011). The
author recalls that the time passing between production of a reg-
ulating molecule and its binding to a target site depends both on
the molecule and its target site. That is why he decides to study the
dynamics in such a way that:

xi (t) = fi (x1 (t − τi1) , x2 (t − τi2) , . . . , xN (t − τiN))

with xi the value of gene i, t the current time step, τij the delay
for the interaction between a source node j and a target node i.
For the purpose of his research, the author draws the delay τij as
a random integer from a flat distribution on {1, 2τ̄ − 1} for each
pair of nodes i and j, the average delay τ̄ being a tunable parameter.
That is introduced as Boolean networks with distributed delays.

The semantics here is synchronous, thus very similar to what we
aim at.

As these works derive of the seminal formalism proposed by
Silvescu and Honavar (2001), we will consider TBN (n, m, k) in
this paper and discuss a new learning algorithm.

1.3. LEARNING BOOLEAN NETWORKS WITH DELAYED INFLUENCES
Various approaches have been recently designed to tackle the
reverse engineering of gene regulatory networks from expression
data. This has led to the emergence of the so-called executable
biology, whose goal is to provide formal methods to automati-
cally synthesize models from experiments (Koksal et al., 2013).
Most of them are only static. But there has been a growing inter-
est for inference algorithms that incorporate temporal aspects.
Koh et al. (2009) recently studied the relevance of these various
algorithms. Liu et al. (2004) proposed to infer time-delayed gene
regulatory networks through Bayesian networks. Lopes and Bon-
tempi (2013) showed that the inference algorithms that include
temporal features perform better than static ones. The main issue
is then to be able to infer the appropriate temporal delays between
the influences at stake. As this is a hard problem, Zhang (2008)
claimed that the key issue when analyzing time series data consists
in segmenting time series data in different successive phases. Their
contribution then focuses on solving this segmentation problem
and shows the merits of their approaches on various case studies.

All these approaches consider gene expression data as input
and infer the associated regulations. One common problem of
discrete approaches taking expression data as input lies in the
determination of a relevant threshold to define the inactive and
active states of gene expression. To position this hypothesis in
the context of existing approaches to process raw biological data,
let us cite the works of some authors, like Soinov et al. (2003),
who proposed an alternative methodology that considers not a
concentration level, but the way the concentration is changed in
the presence/absence of one regulator. The other major modeling
problem depends on the quality of the expression data. In other
words, noisy data may lead to errors in the inference process. For
example, when a gene is expressed at a low level, a low signal-
to-noise ratio would result in an inaccurate measurement of the
behavior of the gene.

The pre-processing of the data is really critical to the relevance
of the inferred relations between components. In this paper, we
assume our input data has already been pre-processed and resulted
in a reliable set of state-transitions information.

Aside from these intrinsic modeling issues, the existing learning
approaches share some computational limitations:

• Because of the complexity of the problem, the size of the inferred
model is limited: the inferred gene regulatory network has to be
composed of less than 15 components and the memory effect
cannot take into account more than k= 15 steps.
• Many approaches fail when the network involves cyclic

interactions.

1.4. OUR CONTRIBUTION
In this paper, we focus on the logical approach to learn gene reg-
ulatory networks with delays from an existing knowledge that is

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 2 | Article 81 | 2

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

expressed through a set of state transitions. As mentioned in the
previous subsection, we assume there has been a pre-processing of
the time series data.

In previous works, we exhibited the links between logic pro-
grams and Boolean networks on the one hand (Inoue, 2011; Inoue
and Sakama, 2012), designed an algorithm that is able to learn
Markov(1) state transition systems on the other hand (Inoue et al.,
2014). While existing works did not allow to capture the delayed
influences between components, this paper designs an algorithm
that takes multiple sequences of state transitions as input and
builds a logic program that capture the delayed dynamics of a
Markov(k) system.

This can be seen as an extension of previous results in the
following sense: in Inoue (2011) and Inoue and Sakama (2012),
Markov(1) state transition systems are represented with logic
programs, in which the state of the world is represented by a Her-
brand interpretation and the dynamics that rule the environment
changes are represented by a logic program P. The rules in P spec-
ify the next state of the world as a Herbrand interpretation through
the immediate consequence operator (also called the TP operator)
[as introduced by Van Emden and Kowalski (1976) and Apt et al.
(1988)]. With such a background, Inoue et al. (2014) have recently
proposed a framework to learn logic programs from traces of inter-
pretation transitions (LFIT). We extended this body of research:
while the previous algorithm dealt only with 1-step transitions
(i.e., we assume the state of the system at time t depends only
of its state at time t− 1), we propose here an approach that is
able to consider k-step transitions (sequence of at most k state
transitions). This means that we are now able to capture delayed
influences in the inductive logic programing methodology.

1.5. OUTLINE OF THE PAPER
The paper is organized as follows: Section 2 reviews the logical
background of this work, and summarizes the main ideas behind
the existing LF1T algorithm in order to make its extension to
Markov(k) models (i.e., with delayed influences) in Section 3 be
more understandable. In Section 4, we apply our methodology to
some case studies and highlight its scalability. Finally, we discuss
these results and further works in Section 5.

2. BACKGROUND
2.1. BOOLEAN NETWORK
A Boolean network is a simple discrete representation widely used
in bioinformatics (Kauffman, 1969; Lähdesmäki et al., 2003; Klamt

et al., 2006). A Boolean network (Kauffman, 1969) is a pair (N,
F) with N = {n1, . . ., nk}, a finite set of nodes (or variables),
and F = {f1, . . ., fk}, a corresponding set of Boolean functions
fi : Bn

→ B, with B= {0, 1}. nt(t) represents the value of ni at
time step t, and equals either 1 (expressed) or 0 (not expressed).
A vector (or state) s(t) = (n1(t), ..., nk(t) is the expression of the
nodes of N at time step t. There are 2k possible distinct states for
each time step. The state of a node ni at the next time step t+ 1 is
determined by ni(t+1) = fi(ni1(t), . . . , nip (t)) with ni1 , . . . , nip
the nodes directly influencing ni, called regulation nodes of ni. A
Boolean network can be represented by its interaction graph (see
Figure 2 left), but its precise regulation relations can only be repre-
sented by the Boolean function (see Example 1). For each Boolean
network, there is the state transition diagram (see Figure 2 right),
which represents the transitions between ni(t) and ni(t+ 1). In
the case of a gene regulatory network, nodes represent genes and
Boolean functions represent their relations.

Example 1: Figure 2 shows the interaction graph and the state
transitions diagram of a Boolean network B1 composed of the
three following variables: {a, b, c}. The Boolean functions of B1

are fa, fb, and fc, which are, respectively, the following Boolean
functions of a, b, and c :

fa = ¬a ∧ (b ∨ c) , fb = a ∧ c , fc = ¬a

Let us consider that the Boolean network B1, whose graph is
depicted in Figure 2, is a gene regulatory network so that a, b, and
c are genes. According to the interaction graph of B1: a is not only
an activator of b and an inhibitor of c but also its own inhibitor.
The gene b is an activator of a, and the gene c is activator of both
a and b. According to the Boolean functions of B1 in Example 1,
to activate a, either b or c has to be present but if a is present, it
will prevent its own expression at the next step (fa). The activation
of b requires both a and c to be expressed at the same time step;
if one of them is not expressed at time step t then b will not be
expressed at t+ 1 (fb). The presence of a is enough to prevent the
expression of c, so that if a is expressed at time step t then c will
not be expressed at t+ 1 (fc).

It is straightforward to generate the state transition dia-
gram from the Boolean functions. Learning from interpretation
transition (LFIT) tackles the inverse problem: infer the Boolean
function from state transitions. In a Boolean network, the value
of nodes can be updated synchronously or asynchronously. In a
synchronous Boolean network, all nodes are updated at the same

a

b c

abc

ab

ac bc

a

b

cε

FIGURE 2 | A Boolean network B1 (left) and its state transition diagram (right).

www.frontiersin.org January 2015 | Volume 2 | Article 81 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

time. The successive sequence of states during an execution, called
trajectory of a Boolean network, is deterministic in a synchronous
Boolean network. In an asynchronous Boolean network, a node may
not be updated at a time, so that its state transitions can be non-
deterministic. In this paper, we deal only with synchronous ones.

2.2. LOGIC PROGRAMING
In this subsection, we recall some preliminaries of logic program-
ing. We consider a propositional language L that is built from a
finite set of propositional constants p, q, r, . . . and the logical con-
nectives ¬, ∧ and←. A propositional constant p is also called an
atom and ¬p is negation of p. p and ¬p are called literals.

In this paper, we consider a logic program (simply called a
program) as a set of rules of the form

p← p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn (1)

where p and pi’s are atoms (n≥m≥ 1). For any rule R of the
form (1), the atom p is called the head of R and is denoted
as h(R), and the conjunction to the right of ← is called the
body of R. We represent the set of literals in the body of R of
the form (1) as b(R) = {p1, . . . , pm ,¬pm+1, . . . ,¬pn}, and the
atoms appearing in the body of R positively and negatively as
b+(R)= {p1, . . ., pm} and b-(R)= {pm+1, . . ., pn}, respectively. A
rule R of the form (1) is interpreted as follows: h(R) is true if
all elements of b+(R) are true and none of the elements of b−(R)
is true. When b+(R)= b−(R)=∅, the rule is called a fact rule.
The rule (1) is a Horn clause iff m= n.

Definition 1 (Herbrand base): the Herbrand Base of a program
P, denoted by B, is the set of all atoms in the language of P.

Definition 2 (Interpretation): let B be the Herbrand Base
of a logic program P. An interpretation is a subset of B. If an
interpretation is the empty set, it is denoted by ε.

Definition 3 (Model): an interpretation I is a model of a pro-
gram P if b+(R)⊆I and b−(R) ∩ I = ∅ imply h(R)∈ I for every
rule R in P.

For a logic program P and an interpretation I, the immedi-
ate consequence operator (or TP operator) (Apt et al., 1988) is the
mapping TP : 2B → 2B:

TP (I) =
{

h (R) |R ∈ P , b+ (R) ⊆ I , b− (R) ∩ I = ∅
}

. (2)

In the rest of this paper, we represent the state transitions of a logic
program P as a set of pairs of interpretations (I, TP(I)).

Definition 4 (Consistency): let R be a rule and (I, J) be a
state transition. R is consistent with (I, J) iff b+(R)⊆ I and
b−(R)∩ I=∅ imply h(R)∈J. Let E be a set of state transitions,
R is consistent with E if R is consistent with all state transitions
of E. A logic program P is consistent with E if all rules of P are
consistent with E.

Definition 5 (Subsumption): let R1 and R2 be two rules. If
h(R1)= h(R2) and b(R1)⊆ b(R2) then R1 subsumes R2. Let P be
a logic program and R be a rule. If there exists a rule R′∈P that
subsumes R then P subsumes R.

We say that a rule R1 is more general than another rule R2 if R1

subsumes R2.
Example 2: let R1 and R2 be the two following

rules: R1= (a←b), R2= (a←a∧b), R1 subsumes R2 because

(b(R1)= {b})⊂ (b(R2)= {a, b}). When R1 appears in a logic pro-
gram P, R2 is useless for P, because whenever R2 can be applied,
R1 can be applied.

2.3. LEARNING FROM INTERPRETATION TRANSITIONS
LF1T (Inoue et al., 2014) is an any time algorithm that takes a
set of one-step state transitions E as input. These one-step state
transitions can be considered as positive examples. From these
transitions, the algorithm learns a logic program P that repre-
sents the dynamics of E. To perform this learning process, we can
iteratively consider one-step transitions. When the state transition
diagram in Figure 2 is given as input to LF1T, it can learn the
Boolean network B1.

In LF1T, the set of all atoms B is assumed to be finite. In the
input E, a state transition is represented by a pair of interpretations
(subset of B). The output of LF1T is a logic program that realizes
all state transitions of E.

Learning from 1-step transitions (LF1T)
Input: E⊆2B × 2B: (positive) examples/observations.
Output: A logic program P such that J=TP(I) holds for any (I,
J)∈E.

To build a logic program with LF1T, we use a bottom-up
method that generates hypotheses by specialization from the most
general rules that are fact rules, until the logic program is con-
sistent with all input state transitions. Learning by specialization
ensures to output the most general valid hypothesis (Ribeiro and
Inoue, 2014). Here, the notion of prime implicant is used to define
minimality of logic programs. We consider that the logic program
learned by LF1T is minimal if the body of each rule constitutes a
prime implicant to infer the head.

Definition 6 (Prime implicant condition): let R be a rule and E
be a set of state transitions such that R is consistent with E. b(R)
is a prime implicant condition of h(R) for E if there is no rule R′

such that b(R′)⊂ b(R) and R′ is consistent with E. Let P be a logic
program such that P∪{R}≡P : all models of P∪{R} are models of
P and vice versa. b(R) is a prime implicant condition of h(R) for
P if there is no rule R′ such that P∪{R′}≡P and b(R′)⊂b(R).

For the sake of simplicity, according to Definition 3, we will
call R a minimal rule of E (resp. P) if b(R) is a prime implicant
condition of h(R) for E (resp. P). For any atom p, the most general
minimal rule is the rule with an empty body (p←) that states that
the variable is always true in the next state, i.e., a fact.

Example 3: Let R1, R2, and R3 be three rules and E be the
set of state transitions of Figure 2 as follows: R1= a←a∧b∧c,
R2= a←a∧b, R3= a←b. The only rule more general than R3 is
R′= a, but R′ is not consistent with (a, ε)∈ E so that R3 is a min-
imal rule for E. Since R3 subsumes both R1 and R2, they are not
minimal rules of E. Let P be the logic program {a← b, b← a ∧ c,
c←¬a}. R3 is a minimal rule of P because P realizes E and R3 is
minimal for E.

In Inductive Logic Programing, refinement operators usually
add a set of literals to the body of a rule to make it more spe-
cific (Muggleton and De Raedt, 1994). It is a way to revise the
current knowledge to make it consistent with new information.

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 2 | Article 81 | 4

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

Similarly, in this algorithm, when a rule is not consistent with the
observations, we refine it by adding literals into its body.

Definition 7 (Minimal specialization): let R1 and R2 be two
rules such that h(R1)= h(R2) and R1 subsumes R2. The minimal
specialization ms(R1, R2) of R1 over R2 is

ms(R1, R2) = {h(R1)← b(R1) ∧ ¬li |li ∈ b(R2) \ b(R1)}

Minimal specialization can be used on a rule R to avoid the
subsumption of another rule with a minimal reduction of the gen-
erality of R. By extension, minimal specialization can be used on
the rules of a logic program P to avoid the subsumption of a rule
with a minimal reduction of the generality of P. Let P be a logic
program, R be a rule and S be the set of all rules of P that subsume
R. The minimal specialization ms(P, R) of P by R is as follows:

ms(P , R) = (P \ S) ∪ (
⋃

RP∈S

ms(RP , R))

LF1T starts with an initial logic program P = {p ←| p ∈ B}.
Then LF1T iteratively analyzes each transition (I, J)∈ E. For
each variable A that does not appear in J, LF1T infers an anti-
rule RI

A :

RI
A = A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)
¬Cj

A rule of P that subsumes such an anti-rule is not consistent
with the transitions of E and must be revised. The idea is to use
minimal specialization to make P consistent with the new tran-
sitions (I, J) by avoiding the subsumption of all anti-rules RI

A
inferred from (I, J). After minimal specialization, P becomes con-
sistent with the new transition while remaining consistent with
all previously analyzed transitions. When all transitions of E have
been analyzed, LF1T outputs the rules of the system that realize E.

3. LEARNING MARKOV(K) SYSTEMS
In order to learn Markov(k) when k > 1, we need to extend the
LF1T. To achieve this goal, we introduce the LFkT algorithm.
While only its essence was presented in Ribeiro et al. (2014), we
formalize, in this section, the corresponding ideas and, in the next
section, illustrate its merits on biological case studies taken from
the literature.

3.1. FORMALIZATION
Definition 8 (Timed Herbrand base): let P be a logic program.
Let B be the Herbrand base of P and k be a natural number. The
timed Herbrand base of P (with period k) denoted by Bk , is as
follows:

Bk =

k⋃
i=1

{vt−i |v ∈ B}

where t is a constant term, which represents the current time step.
According to Definition 1, given a propositional atom v, vj is a

new propositional atom for each j= t− i (0≤ i≤ k). A Markov(k)
system can then be interpreted as a logic program as follows.

Definition 9 (Markov(k) system): let P be a logic program, B
be the Herbrand base of P and Bk be the timed Herbrand base
of P with period k. A Markov(k) system S with respect to P is a
logic program where for all rules R ∈ S, h(R)∈B and all atoms
appearing in b(R) belong to Bk .

In a Markov(k) system S, the atoms that appear in the body
of the rules represent the value of the atoms that appear in the
head, but at previous time steps. In a context of modeling gene
regulatory networks, these latter atoms represent the concentra-
tion of the interacting genes. This concentration is abstracted as a
Boolean value modeling the fact that it is lower or greater than a
threshold.

Example 4: Let R1 and R2 be two rules, R1 = a← bt−1∧bt−2,
R2 = b ← at−2 ∧ ¬bt−2. The logic program S= {R1, R2} is a
Markov(2) system, i.e., the state of the system depends on the two
previous states. The value of a is true at time step t only if b was
true at t− 1 and t− 2. The value of b is true at time step t only if a
was true at t− 2 and b was false at t− 2. The atoms that appear in
the head of the rules of S is {a, b}. B1 represents these atoms from
time step t− 1: B1= {at−1, bt−1} and B2 represents these atoms
from time step t− 2: B2= {at−1, bt−1, at−2, bt−2}.

In the following definitions, we refer toN as the set of all natural
numbers.

Definition 10 (Trace of execution): let B be the atoms that
appear in the head of the rules of a Markov(k) system S. A trace
of execution T is a finite sequence of states of S: T= (S0, . . ., Sn),
n≥ 1, ∀i∈N, i≤ n, Si ∈ 2B. For all j ∈N, we define:

prev
(
i, j , T

)
=

∅ if i = 0 or j = 0,(
Si−j−1, . . . , Si−1

)
if j + 1 ≤ i

(S0, . . . , Si−1) otherwise.

We also define prev(i, T)= prev(i, n, T) and next (i′, T) = Si′+1,
i′ ∈ N, i′ < n.

We denote by |T | the size of the trace that is the number of
elements of the sequence. A sub-trace of size m of a trace of execu-
tion T is a sub-sequence of consecutive states of T of size m, where
m ∈N, 1 < m≤ |T |. In the following, we will also denote T= (S0,
. . ., Sn) as T= S0→. . .→Sn.

Definition 11 (Consistent traces): let T= (S0, . . ., Sn) and
T ′ = (S′0, . . . , S′m) be two traces of execution. T and T ′ are k-
consistent, with k ∈N, iff ∀i, j ∈N, i < n, j < m, Si= Sj and next (i,
T)6=next (j, T ′) imply prev(i, k, T)6=prev(j, k, T ′). T and T ′ are
said consistent iff they are max(n, m) consistent.

As shown in Figure 3, a Markov(k) system may seem non-
deterministic when it is represented by a state transition diagram
(right part of the figure). That is because such state transition
diagram only represents 1-step transitions. In this example, the
transition from the state b is not Markov(1): the next state can be
either a, b or ∈. But it can be Markov(2), because all traces of size
2 of Figure 3 are consistent.

Definition 12 (k-step interpretation transitions): let P be a logic
program, B be the Herbrand base of P and Bk be the timed Her-
brand base of P with period k. Let S be a Markov(k ′) system w.r.t P,
k ′≥ k. A k-step interpretation transition is a pair of interpretations
(I, J) where J ⊆Bk and J ⊆B.

www.frontiersin.org January 2015 | Volume 2 | Article 81 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

a b b

ab b a

b b a

ε b ε

b ε ε

ab ε ε

a ε b

ε ε ε

a b ab ε

FIGURE 3 | Eight traces of executions of the system of Example 4 (left) and the corresponding state transitions diagram (right).

Example 5: The trace ab→b→a can be interpreted in the
following three ways:

• (at−2bt−2bt−1, a): the 2-step interpretation transition that
corresponds to the full trace ab→b→a.
• (at−1bt−1, b): the 1-step interpretation transition correspond-

ing to the sub-trace ab→b.
• (bt−1, a): the 1-step interpretation transition that corresponds

to the sub-trace b→a.

Definition 13 (Extended consistency): let R be a rule and (I, J)
be a k-step interpretation transition. R is consistent with (I, J) iff
b+(R)⊆I and b−(R)∩I=∅ imply h(R)∈J. Let T be a sequence of
state transitions, R is consistent with T if it is consistent with every
k-step interpretation transitions of T. Let O be a set of sequences
of state transitions, R is consistent with O if R is consistent with
all T ′∈O.

3.2. ALGORITHM
Here, we briefly summarize the essence of LFkT. Because of the
lack of space, the details of the algorithm, its pseudo-code, and
the proofs of correctness are given as Supplementary Material. We
refer to the pseudo-code of the appendix as follows: (algo.N l.x-y)
for Algorithm N, line x to y. LFkT is an algorithm that can learn
the dynamics of a Markov(k) system from its traces of executions.
LFkT takes a set of traces of executions O as input, where each
trace is a sequence of state transitions. If all traces are consistent,
the algorithm outputs a logic program P that realizes all transi-
tions of O. The learned influences can be at most k-step relations,
where k is the size of the longest trace of O. The main idea is to
extract n-step interpretation transitions, 1≤ n≤ k, from the traces
of executions of the system. Transforming the traces into pairs of
interpretations allows us to use minimal specialization (Ribeiro
and Inoue, 2014) to iteratively learn the dynamics of the system.

LFkT:
• Input: A set of traces of execution E of a Markov(k) system S.
• Step 1: Initialize k logic programs with facts rules.
• Step 2: Convert the input traces of executions into interpretation

transitions.
• Step 3: Revise iteratively the logic programs by all interpretation

transitions using minimal specialization.

• Step 4: Merge all logic programs into one.
• Output: The rules of S, which generated E.

The idea of the algorithm is to start with the most general rules
(algo.1 l.6-10) and use specialization to make them consistent with
the input observations (algo.2). The algorithm analyzes each inter-
pretation transition one by one and revises the learned rules when
they are not consistent (algo.1 l.13-23). In the following, we will
call an n-step rule any rule from the logic program learned from
n-step transitions.

After analyzing all interpretation transitions, the programs
that have been learned are merged into a unique logic program
(algo.1 l.24-29). This operation ensures that the rules outputted
are consistent with all observations. It can be checked by com-
paring each rule with other logic programs. If an n-step rule R
is more general than an n′-step rules R′, n′< n, then R is not
consistent with the observations from which R′ has been learned.
To avoid this case, we can remove n-step rules that have no vari-
able of the form vt − n. Indeed, if such rules are consistent with
the observations, then they should also have been learned from
(n− 1)-step rules. Finally, LFkT outputs a logic program that
realizes all consistent traces of execution of O.

4. EVALUATION AND BIOLOGICAL CASE STUDY
In the previous subsections, we have illustrated step by step how
the LFkT algorithm is able to learn Markov(k) systems. To illus-
trate the merits of our work, we now apply this approach to the
analysis of the yeast cell cycle dataset from Spellman et al. (1998)
and Cho et al. (1998), which have been previously analyzed in
Li et al. (2006). In this paper, Li et al. tackle the inference of
gene regulatory networks from temporal gene expression data.
The originality of their work lies in the fact they consider delayed
correlations between genes. The methodology can capture gene
regulations that are delayed of k time units. The limits of the
approach is that the authors only consider pairwise overlaps of
expression levels shifted in time relative to each other. Another
limit of the approach is that it is not able to make a distinction
between a causal gene–gene regulation and the scenarios where
two genes, A and B, are being co-regulated by a third gene C: do
we have A that regulates B that regulates C, or is it a co-operation
between A and B that regulates C?

Here, starting from a set of different traces coming from the
yeast cell cycle system, we have performed various experiments

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 2 | Article 81 | 6

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

FIGURE 4 | LFkT run time varying the input size (number of traces).

where we have tuned the number of traces that have been con-
sidered on the one hand, the value of k (i.e., the number of
time steps representing the memory of the system) on the other
hand.

Figure 4 shows the evolution of run time of learning with LFkT
on the five Boolean networks of the yeast cell cycle proposed by
Li et al. (2006). These fives programs are, respectively, Markov(1)
to Markov(5). In these experiments, for each Boolean network,
the number of variables is 16 and the length of traces in input
is five states. The five Boolean networks have been implemented
as a logic program using Answer Set Programing (Brewka et al.,
2011). The source code of these programs is given as Supplemen-
tary Material. Traces of executions of these programs have been
computed using the answer set solver clasp (Gebser et al., 2012).
All experiments are run with a C++ implementation of LFkT on
a processor Intel Xeon (X5650, 2.67GHz) with 12 GB of RAM.
The main purpose of these experiments is to assess the efficiency
of our approach, i.e., how many traces LFkT can handle for a
given k. Complete output of LFkT for these experiments is accessi-
ble as textfile at http://tony.research.free.fr/paper/Frontier/output.
zip.

In the first table of Figure 4, the evolution of run time from 10
to 1,000,000 traces (which is arbitrary chosen as upper bound of
the scalability of the experiments) shows that, in practice, learn-
ing with LFkT is linear in the number of traces when the number
of variables is fixed. Results show that the algorithm can han-
dle more than one million of traces in less than 10 h. Since each
trace is a sequence of five state transitions, when learning the
Markov(5) system, each trace can be decomposed into 15 inter-
pretation transitions (one 5-step, two 4-step, three 3-step, four
2-step, and five 1-step). Learning the Markov(5) program from
one million traces of executions of size five requires the pro-
cessing of 15 million of interpretation transitions. Learning the
Markov(4) to Markov(1) programs requires to process, respec-
tively, 14 million, 12 million, 9 million, and 5 million of inter-
pretation transitions. Intuitively one could expect that learning
the Markov(2) system to take significantly more time than learn-
ing the Markov(1) system. But each program is different, i.e., the
Markov(2) program is not an extension of the Markov(1) pro-
gram with 2-step rules. That is why run time is not always larger

for a larger k: learning time also depends on the rules that are
learned. In this experiment, the best run time is obtained with
the Markov(3) program. We cannot say that the rules of this pro-
gram are simpler than the others, but they are simpler to learn
for the algorithm. In the second table, we observe that the num-
ber of rules learned for the Markov(3) program is significantly
smaller than for the others. It means that the algorithm needs to
compare less rules for each traces analysis, which can explain the
speed up.

In this benchmark, in order to be faithful to the biological
experiments presented by Li et al. (2006), we considered k= 5
as a maximum. But our algorithm succeeds in processing larger
memory effects. On some random dummy examples (accessible
at the above mentioned URL), we were able to learn Markov(7)
systems with the following performances: we can learn 10 traces
in 2.8 s, 100 traces in 27 s, 1,000 traces in 249 s, 10,000 traces
in 3,621 s, 100,000 traces in 39,973 s, and 1,000,000 traces in
441,270 s. Even if the computation time increases, it should be
kept in mind that our method is designed to allow successive
refinements of a model about its memory effect. These results
show that such an approach is tractable even with a large number
of input traces.

5. CONCLUSION AND FUTURE WORK
5.1. SUMMARY OF THE CONTRIBUTION
To understand the memory effect involved in some interactions
between biological components, it is necessary to include delayed
influences in the model. In this paper, we proposed a logical
method to learn such models from state transition systems. We
designed an approach to learn Boolean networks with delayed
influences. We have given a step by step explanation of this
methodology, and illustrated its merits on a biological benchmark
coming from a real-life case study.

5.2. FURTHER WORKS
Further works aim at adapting the approach developed in the
paper to the kind of data produced by biologists. This requires
connecting through various biological databases in order to
extract real time series data, and subsequently explore and use
them to learn gene regulatory networks. On account of the
noise inherent to biological data, the ability to either perform
an efficient discretization of the data or to include the notion
of noise inside the modeling framework is fundamental. We
will thus have to discuss the discretization procedure and the
robustness of our modeling against noisy data and compare
it to existing approaches, like the Bayesian ones (Barker et al.,
2011).

Regarding the model, we consider extending the methodol-
ogy to asynchronous semantics. Garg et al. (2008) addressed
the differences and complementarity of synchronous and asyn-
chronous semantics to model regulatory networks and identify
attractors. The authors focus on attractors, which are central
to gene regulation. Previous studies about attractors with syn-
chronous semantics [by Melkman et al. (2010) and Akutsu et al.
(2011)] and asynchronous semantics [by Bernot et al. (2004) and
Fauré et al. (2006)] showed that different updating rules result in
different attractors. The benefits of the synchronous model are

www.frontiersin.org January 2015 | Volume 2 | Article 81 | 7

http://tony.research.free.fr/paper/Frontier/output.zip
http://tony.research.free.fr/paper/Frontier/output.zip
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

to be computationally tractable, while classical state space explo-
ration algorithms fail on asynchronous ones. Yet, the synchronous
modeling relies on one quite heavy assumption: all genes can make
a transition simultaneously and need an equivalent amount of
time to change their expression level. Even if this is not realistic
from a biological point of view, it is usually sufficient as the exact
kinetics and order of transformations are generally unknown. The
asynchronous semantics, however, helps to capture more realis-
tic behaviors. That is why we plan to extend our approach to
asynchronous semantics.

Finally, we will also address multi-valued networks that may be
useful to capture behaviors that cannot be summarized through a
pure Boolean framework.

AUTHOR CONTRIBUTIONS
Tony Ribeiro: formalization of the problem; design, implemen-
tation, description, and pseudo-code of the algorithm; design,
implementation, run, and discussion of experiments. Morgan
Magnin: state of the art, introduction, biological background, case
study, and conclusion. Katsumi Inoue: supervision of the work;
formalization of the logic programing and learning from interpre-
tation transition approach background. Chiaki Sakama: formal-
ization of the logic programing and learning from interpretation
transition approach background.

ACKNOWLEDGMENTS
This work is supported in part by the 2014-2015 JSPS Challenging
Exploratory Research, “Learning Cellular Automata Represented
as Logic Programs.” Morgan Magnin has further been supported
by JSPS Fellowship grant.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/
abstract

REFERENCES
Abou-Jaoudé, W., Ouattara, D. A., and Kaufman, M. (2009). From structure to

dynamics: frequency tuning in the p53-mdm2 network: I. logical approach.
J. Theor. Biol. 258, 561–577. doi:10.1016/j.jtbi.2009.02.005

Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. (2003). Identification of
genetic networks by strategic gene disruptions and gene overexpressions under
a Boolean model. Theor. Comp. Sci. 298, 235–251. doi:10.1016/S0304-3975(02)
00425-5

Akutsu, T., Melkman, A. A., Tamura, T., and Yamamoto, M. (2011). Determining
a singleton attractor of a Boolean network with nested canalyzing functions.
J. Comput. Biol. 18, 1275–1290. doi:10.1089/cmb.2010.0281

Apt, K. R., Blair, H. A., and Walker, A. (1988). “Foundations of deductive databases
and logic programming,” in Towards a Theory of Declarative Knowledge. ed. J.
Minker (San Francisco, CA: Morgan Kaufmann Publishers Inc.), 89–148.

Barker, N. A., Myers, C. J., and Kuwahara, H. (2011). Learning genetic regulatory
network connectivity from time series data. IEEE/ACM Trans. Comput. Biol.
Bioinform. 8, 152–165. doi:10.1109/TCBB.2009.48

Bernot, G., Comet, J.-P., Richard, A., and Guespin, J. (2004). Application of
formal methods to biological regulatory networks: extending Thomas’ asyn-
chronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347.
doi:10.1016/j.jtbi.2004.04.003

Brewka, G., Eiter, T., and Truszczynski, M. (2011). Answer set programming at a
glance. Commun. ACM 54, 92–103. doi:10.1145/2043174.2043195

Chaouiya, C. (2007). Petri net modelling of biological networks. Brief. Bioinform. 8,
210–219. doi:10.1093/bib/bbm029

Cho, R. J., Campbell, M. J., Winzeler, E. A., Steinmetz, L., Conway, A., Wodicka, L.,
et al. (1998). A genome-wide transcriptional analysis of the mitotic cell cycle.
Mol. Cell 2, 65–73. doi:10.1016/S1097-2765(00)80114-8

Chueh, T.-H., and Lu, H. H.-S. (2012). Inference of biological pathway from
gene expression profiles by time delay Boolean networks. PLoS ONE 7:e42095.
doi:10.1371/journal.pone.0042095

Comet, J.-P., Bernot, G., Das, A., Diener, F., Massot, C., and Cessieux, A. (2012).
Simplified models for the mammalian circadian clock. Procedia Comput. Sci. 11,
127–138. doi:10.1016/j.procs.2012.09.014

Comet, J.-P., Fromentin, J., Bernot, G., and Roux, O. (2010). “A formal model for
gene regulatory networks with time delays,” in Computational Systems-Biology
and Bioinformatics. eds C. Jonathan, O. Yew-Soon, and C. Sung-Bae (Springer),
1–13.

Fauré, A., Naldi, A., Chaouiya, C., and Thieffry, D. (2006). Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle. Bioinformat-
ics 22, e124–e131. doi:10.1093/bioinformatics/btl210

Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., and De Micheli, G. (2008). Synchro-
nous versus asynchronous modeling of gene regulatory networks. Bioinformatics
24, 1917–1925. doi:10.1093/bioinformatics/btn336

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. (2012). “Answer set solving
in practice,” in Synthesis Lectures on Artificial Intelligence and Machine Learning,
Vol. 6. eds R. Kaminski, B. Kaufmann (Morgan and Claypool Publishers), 1–238.

Ghanbarnejad, F. (2011). Perturbations in Boolean Networks.
Inoue, K. (2011). “Logic programming for Boolean networks,” in Proceedings of the

Twenty-Second International Joint Conference on Artificial Intelligence, IJCAI’11
(Barcelona: AAAI Press), 924–930.

Inoue, K., Ribeiro, T., and Sakama, C. (2014). Learning from interpretation transi-
tion. Mach. Learn. 94, 51–79. doi:10.1007/s10994-013-5353-8

Inoue, K., and Sakama, C. (2012). “Oscillating behavior of logic programs,” in Cor-
rect Reasoning. eds E. Esra, L. Joohyung, L. Yuliya, and P. David (Springer),
345–362.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly constructed
genetic nets. J. Theor. Biol. 22, 437–467. doi:10.1016/0022-5193(69)90015-0

Klamt, S., Saez-Rodriguez, J., Lindquist, J. A., Simeoni, L., and Gilles, E. D. (2006).
A methodology for the structural and functional analysis of signaling and regu-
latory networks. BMC Bioinformatics 7:56. doi:10.1186/1471-2105-7-56

Koh, C., Wu, F.-X., Selvaraj, G., and Kusalik, A. J. (2009). Using a state-space
model and location analysis to infer time-delayed regulatory networks. EURASIP
J. Bioinform. Syst. Biol. 2009, 14. doi:10.1155/2009/484601

Koksal, A. S., Pu, Y., Srivastava, S., Bodik, R., Fisher, J., and Piterman, N. (2013). Syn-
thesis of biological models from mutation experiments. ACM SIGPLAN Notices
48, 469–482.

Lähdesmäki, H., Shmulevich, I., and Yli-Harja, O. (2003). On learning gene regu-
latory networks under the Boolean network model. Mach. Learn. 52, 147–167.
doi:10.1023/A:1023905711304

Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., et al. (2006). Discovery of time-
delayed gene regulatory networks based on temporal gene expression profiling.
BMC Bioinformatics 7:13. doi:10.1186/1471-2105-7-13

Liu, T.-F., Sung, W.-K., and Mittal, A. (2004). “Learning multi-time delay gene net-
work using Bayesian network framework,” in 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004) (Boca Raton: IEEE), 640–645.

Lopes, M., and Bontempi, G. (2013). Experimental assessment of static and dynamic
algorithms for gene regulation inference from time series expression data. Front.
Genet. 4:303. doi:10.3389/fgene.2013.00303

Mangan, S., and Alon, U. (2003). Structure and function of the feed-forward loop
network motif. Proc. Natl. Acad. Sci. U.S.A. 100, 11980–11985. doi:10.1073/pnas.
2133841100

Melkman, A. A., Tamura, T., and Akutsu, T. (2010). Determining a singleton attrac-
tor of an and/or Boolean network in o (n1. 587) time. Inf. Process. Lett. 110,
565–569. doi:10.1016/j.ipl.2010.05.001

Muggleton, S., and De Raedt, L. (1994). Inductive logic programming: Theory and
methods. J. Log. Program. 19, 629–679. doi:10.1016/0743-1066(94)90035-3

Ribeiro, T., and Inoue, K. (2014). “Learning prime implicant conditions from inter-
pretation transition,” in The 24th International Conference on Inductive Logic
Programming. Available at: http://tony.research.free.fr/paper/ILP2014long

Ribeiro,T.,Magnin,M.,and Inoue,K. (2014).“Learning delayed influence of dynam-
ical systems from interpretation transition,” in The 24th International Conference
on Inductive Logic Programming. Available at: http://tony.research.free.fr/paper/
ILP2014short

Frontiers in Bioengineering and Biotechnology | Bioinformatics and Computational Biology January 2015 | Volume 2 | Article 81 | 8

http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/abstract
http://www.frontiersin.org/Journal/10.3389/fbioe.2014.00081/abstract
http://dx.doi.org/10.1016/j.jtbi.2009.02.005
http://dx.doi.org/10.1016/S0304-3975(02)00425-5
http://dx.doi.org/10.1016/S0304-3975(02)00425-5
http://dx.doi.org/10.1089/cmb.2010.0281
http://dx.doi.org/10.1109/TCBB.2009.48
http://dx.doi.org/10.1016/j.jtbi.2004.04.003
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1093/bib/bbm029
http://dx.doi.org/10.1016/S1097-2765(00)80114-8
http://dx.doi.org/10.1371/journal.pone.0042095
http://dx.doi.org/10.1016/j.procs.2012.09.014
http://dx.doi.org/10.1093/bioinformatics/btl210
http://dx.doi.org/10.1093/bioinformatics/btn336
http://dx.doi.org/10.1007/s10994-013-5353-8
http://dx.doi.org/10.1016/0022-5193(69)90015-0
http://dx.doi.org/10.1186/1471-2105-7-56
http://dx.doi.org/10.1155/2009/484601
http://dx.doi.org/10.1023/A:1023905711304
http://dx.doi.org/10.1186/1471-2105-7-13
http://dx.doi.org/10.3389/fgene.2013.00303
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1016/j.ipl.2010.05.001
http://dx.doi.org/10.1016/0743-1066(94)90035-3
http://tony.research.free.fr/paper/ILP2014long
http://tony.research.free.fr/paper/ILP2014short
http://tony.research.free.fr/paper/ILP2014short
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

Ribeiro et al. Learning delayed influences of biological systems

Siebert, H., and Bockmayr, A. (2006). “Incorporating time delays into the logi-
cal analysis of gene regulatory networks,” in Computational Methods in Systems
Biology. ed. P. Corrado (Springer), 169–183.

Silvescu, A., and Honavar, V. (2001). Temporal Boolean network models of genetic
networks and their inference from gene expression time series. Complex Syst. 13,
61–78. doi:10.1186/1752-0509-5-61

Soinov, L. A., Krestyaninova, M. A., and Brazma, A. (2003). Towards reconstruction
of gene networks from expression data by supervised learning. Genome Biol. 4,
6. doi:10.1186/gb-2003-4-10-341

Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B.,
et al. (1998). Comprehensive identification of cell cycle-regulated genes of the
yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9,
3273–3297. doi:10.1091/mbc.9.12.3273

Van Emden, M. H., and Kowalski, R. A. (1976). The semantics of predicate
logic as a programming language. J. Altern. Complement. Med. 23, 733–742.
doi:10.1145/321978.321991

Zhang, Z.-Y. (2008). Time Series Segmentation for Gene Regulatory Process with Time-
Window-Extension Technique. 198–203.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 30 July 2014; accepted: 13 December 2014; published online: 16 January 2015.
Citation: Ribeiro T, Magnin M, Inoue K and Sakama C (2015) Learning
delayed influences of biological systems. Front. Bioeng. Biotechnol. 2:81. doi:
10.3389/fbioe.2014.00081
This article was submitted to Bioinformatics and Computational Biology, a section of
the journal Frontiers in Bioengineering and Biotechnology.
Copyright © 2015 Ribeiro, Magnin, Inoue and Sakama. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, pro-
vided the original author(s) or licensor are credited and that the original publi-
cation in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org January 2015 | Volume 2 | Article 81 | 9

http://dx.doi.org/10.1186/1752-0509-5-61
http://dx.doi.org/10.1186/gb-2003-4-10-341
http://dx.doi.org/10.1091/mbc.9.12.3273
http://dx.doi.org/10.1145/321978.321991
http://dx.doi.org/10.3389/fbioe.2014.00081
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive
http://creativecommons.org/licenses/by/4.0/

	Learning delayed influences of biological systems
	Introduction
	Immediate versus delayed influences
	Modeling delayed influences into Boolean networks
	Learning boolean networks with delayed influences
	Our contribution
	Outline of the paper

	Background
	Boolean network
	Logic programing
	Learning from interpretation transitions

	Learning Markov(k) Systems
	Formalization
	Algorithm

	Evaluation and biological case study
	Conclusion and future work
	Summary of the contribution
	Further works

	Author contributions
	Acknowledgments
	Supplementary material
	References

