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Hubert Mönnikes,2 and Peter Kobelt1, 3

1 Division Hepatology, Gastroenterology, and Endocrinology, Department of Medicine, Charité—Universitätsmedizin Berlin,
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Food intake behaviour and energy homeostasis are strongly regulated by a complex system of humoral factors and nerval structures
constituting the brain-gut-axis. To date the only known peripherally produced and centrally acting peptide that stimulates food
intake is ghrelin, which is mainly synthesized in the stomach. Recent data indicate that the orexigenic effect of ghrelin might be
influenced by other gastrointestinal peptides such as cholecystokinin (CCK), bombesin, desacyl ghrelin, peptide YY (PYY), as well
as glucagon-like peptide (GLP). Therefore, we will review on the interactions of ghrelin with several gastrointestinal factors known
to be involved in appetite regulation in order to elucidate the interdependency of peripheral orexigenic and anorexigenic peptides
in the control of appetite.

1. Introduction

According to the current state of knowledge, control of
food intake behaviour and energy homeostasis particularly
relies on the complex interactions between various humoral
components indicating the actual metabolic state of the
organism. As a well-established hypothesis in the context
of appetite regulation, the glucostatic theory suggests an
important role of metabolic substrates (e.g., blood glucose
levels) for the regulation of food intake [1]. Also, the assumed
modulation of food intake by signals reflecting upon energy
storage [2] has been validated by the discovery of the adipose
tissue hormone leptin [3].

During the past decades these theories were comple-
mented by the discovery of several additional mechanisms
involved in the control of energy homeostasis. Numerous
studies revealed that diverse gastrointestinal peptides are
particularly responsible for the control of hunger and satiety
[4]. Serving as the most important gateway connecting

the endocrine with the central nervous system (CNS), the
hypothalamus has been found to comprise and integrate
the humorally mediated information, which reflect the
metabolic state of the organism [4]. This interaction between
the central nervous system and the intestinal tract by
humoral factors and neuronal pathways has been named
brain-gut-axis [4]. As a part of the brain-gut-axis gastroin-
testinal neuropeptides as cholecystokinin (CCK), glucagon-
like peptide-1 (GLP-1), peptide YY (PYY), and many other
humoral components are mainly involved in short-term
regulation of energy homeostasis. Figure 1 provides an
overview of the sites of synthesis as well as of the effects
exhibited by these peripheral and central peptidergic factors
responsible for the regulation of hunger and satiety.

2. Ghrelin

So far the only known peripherally produced peptide
exerting a stimulating effect on food intake behaviour
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Pancreas:

- Glucagon ↓
- Insulin ↓
- Amylin ↓
- PP ↓

Gastrointestinal tract:

- Bombesin ↓
- GLP ↓
- CCK ↓
- PYY ↓
- DAG↓
- Ghrelin ↑

CNS:

- POMC ↓
- Serotonine ↓
- CART ↓
- CRF ↓
- TRH ↓
- MSH ↓

- NPY ↑
- AgRP ↑
- Orexins ↑
- Galanin ↑Adipose tissue:

- Leptin ↓

Figure 1: Peripheral and central peptides reducing (↓) or stimulating (↑) food intake (modified after Arora et al. [5]). AgRP: agouti-related
peptide; CART: cocaine and amphetamine regulated transcript; CCK: cholecystokinin; CRF: corticotropin releasing factor; DAG: desacyl
ghrelin; GLP: glucagon-like peptide; MSH: melanocyte stimulating hormone; NPY: neuropeptide Y; POMC: proopiomelanocortin; PP:
pancreatic polypetide; PYY: peptide YY; TRH: thyreotropin releasing hormone.

is ghrelin [6]. In 1999 this peptide was discovered by
Kojima et al. as the first endogenous ligand of the Growth
Hormone Secretagogue Receptor (GHS-R) [6]. Ghrelin is a
28 amino acid peptide, which exhibits an esterification with
an octanoyl chain at the serine residue on position three
as an unique modification [6]. The acylation is catalyzed
by the ghrelin-O-acyltransferase (GOAT) and converts the
peptide to the biologically active form [7]. Moreover, the
fatty acid residue has been found to be essential for the
directed transfer via the blood-brain-barrier [8].

Ghrelin is mainly produced by mucosal X/A-cells of the
stomach and in much smaller shares also in the pancreas,
duodenum, small intestine, and coecum as well as in the
heart and aorta [6, 9, 10]. Additionally, studies indicate that
also regions of the brain are involved in the ghrelin synthesis
as ghrelin-containing neurons were identified in the pituitary
gland as well as in the arcuate nucleus of the hypothalamus
[11, 12]. Moreover, ghrelin-immunopositive neurons have
been described in a hypothalamic region located nearby the
third ventricle [13].

Blood ghrelin levels rise preprandially, after weight loss
and in the fasted state [14, 15]. Moreover, plasma ghrelin
levels have been found elevated in mammals after H. pylori
infection [16] as well as in patients suffering from peptic
ulcers [17]. In addition, Masaoka et al. found an increase
in plasma ghrelin levels and gastric preproghrelin mRNA
expression in diabetic rats, whereas gastric ghrelin levels
were decreased compared to nondiabetic animals [18]. In
this context, zinc supplementation significantly reduced the
density of ghrelin-producing cells in the fundic mucosa in
diabetic animals in comparison to untreated nondiabetic
controls [19].

In addition to a significant elevation of GH-secretion [6],
exogenous ghrelin strongly stimulates food intake behaviour

in rodents [14, 20–24] as well as in humans [25]. Likewise,
elevated endogenous plasma levels of ghrelin in patients
suffering from Prader-Willi-syndrome result in distinct
hyperphagia [26]. In addition to its impact in the context of
energy homoestasis ghrelin is also involved in the regulation
of several intestinal functions, such as gastric acid secretion
[27, 28] or extraintestinal actions, which are summerized in
Table 1.

Studies suggest that the orexigenic effect of ghrelin is
mediated via central mechanisms located in the arcuate
nucleus (ARC) of the hypothalamus. It has been shown that
intracerebroventricular (icv.) injection of ghrelin leads to a
significant increase of neuronal activity within ARC as well as
in the paraventricular nucleus (PVN), dorsomedial nucleus
of the hypothalamus (DMH), in lateral hypothalamic areas
(LHA), in the nucleus of the solitary tract (NTS), and in the
area postrema (AP) [29, 30]. Interestingly, intraperitoneal
(ip.) injection of ghrelin has been found to induce neuronal
activity in the ARC and PVN also, but yet failed to do so in
the NTS and AP [31, 32]. However, after intravenous (iv.)
ghrelin injection an increase in neuronal activity in the ARC,
PVN, as well as in the NTS and AP [33] or activity within
ARC, NTS, and AP but not in the PVN and DMH [34] has
been reported.

Although the complete central mechanism of action
remains to be elucidated, it is well established that the
orexigenic effect of ghrelin is mediated via central pathways
involving neuropeptide Y (NPY) and agouti-related peptide
(AgRP) in the ARC [21, 35–39]. Accordingly, ghrelin does
not effect food intake behaviour in NPY-/AgRP-deficient
mice [38]. These findings and the colocalization of NPY and
ghrelin receptor GHS-R1a in neurons of the ARC suggest
that NPY- and AgRP-positive neurons are a basic prerequisite
for the ghrelin-induced orexigenic effect [12, 36]. However,
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taking into account that the GHS-R1a is widely distributed
in the brain [40], many other brain regions have been
also found activated after ghrelin injection [32–34, 41, 42].
Therefore, it can be assumed, that there are further—
yet unknown—mechanisms mediating the various effects
of ghrelin. It is furthermore noteworthy that the effects
of exogenous as well as endogenous ghrelin seem to be
influenced by other factors of the brain-gut-axis. Therefore,
some recent studies focused on the interaction between
ghrelin and other humoral factors known to regulate hunger
and satiety. These findings and their impact on the role of
ghrelin in the hypothalamic system of food intake behaviour
and energy homeostasis will be discussed in the following.

3. Interaction between Ghrelin and
Peripheral Anorexigenic Peptides

3.1. Cholecystokinin. Cholecystokinin (CCK) was the first
gut hormone found to reduce food intake [43]. CCK is
secreted by I-cells located in the proximal small intestine as
a mixture of peptides with varying numbers of amino acids,
each of which possessing the required epitope for bioactivity
[44]. It is widely accepted that CCK-induced satiation is
mainly mediated by binding to CCK-1 receptors located on
the vagus nerve [45, 46].

As the orexigenic effect of ghrelin is also partly medi-
ated by vagal afferents, Date et al. found that peripheral
injection of CCK curbs the decreased activity of gastric
vagal afferents induced by ghrelin [23]. Besides, exogenous
ghrelin significantly inhibits CCK-stimulated pancreatic pro-
tein secretion—even after acute subdiaphragmatic vagotomy
[47]. Furthermore, it has been shown that elevated food
intake after peripheral ghrelin administration is antago-
nized by pre- or simultaneous injection of CCK [48, 49].
Accordingly, the markedly increased neuronal activation of
the hypothalamic ARC in response to peripheral ghrelin
application is diminished by pre- or coapplication of CCK
[48, 50]. However, peripheral ghrelin had no effect on CCK-
induced neuronal activity in the PVN and the NTS [50].
Thus, it has been hypothesized that CCK inhibits the effect
of ghrelin via vagal projections to hypothalamic pathways
involving the ARC [50].

Interestingly, CCK-1 and -2 receptor deficient mice dis-
play a lower response to exogenous ghrelin and lower plasma
ghrelin levels after fasting as compared to their wild-type
littermates [51]. Moreover, intraduodenal infusion of ghrelin
has been found to increase CCK secretion [52]. However,
there are conflicting data concerning the influence of CCK on
ghrelin release. Two studies indicated that exogenous CCK
suppresses ghrelin release in healthy subjects, whereas after
ingestion of lipids CCK seems to act on CCK-1 receptors to
decrease ghrelin secretion [53, 54]. In contrast, it has been
shown that CCK perfusion of isolated stomachs increases
ghrelin secretion by ∼ 200% [55].

In summary, there is good evidence for the functional
antagonism of ghrelin and CCK on food intake whilst the
exact interplay concerning the secretion of both peptides
remains to be elucidated.

Table 1: Physiological effects of ghrelin.

Reference Physiological effect

Masuda 2000, Dornoville
2004 [56, 57]

Increased gastrointestinal motility

Masuda 2000, Date 2001
[56, 58]

Influence on gastric acid secretion

Broglio 2001, Dezaki 2004,
Yada 2008 [59–61]

Reduction of insulin secretion

Nagaya 2001 [62] Decreased blood pressure

Baldanzi 2002 [63]
Inhibition of apoptosis in
cardiomyocytes

Cassoni 2001 [64]
Inhibition of proliferation in
breast cancer

Weikel 2003 [65] Extension of slow-wave sleep

Asakawa 2001, Carlini 2002
[66, 67]

Anxiogenesis and memory
consolidation

3.2. Bombesin. Bombesin is an anorexigenic tetradeca-
peptide initially isolated from the amphibian skin of
Bombina bombina [68]. Since initial discovery, several mam-
malian bombesin-like peptides with structural homology to
bombesin, such as gastrin-releasing peptide, neuromedin B,
and neuromedin C, have been described [69]. Peripheral as
well as central injection of bombesin reduces food intake
mediated by bombesin receptors (BB1 and BB2) which are
widely spread in the gastrointestinal tract as well as in
the central nervous system [69–71]. Within the CNS, in
particular the nucleus of the solitary tract of the brainstem
has been shown to play a crucial role in the mediation of the
anorexigenic effect of bombesin [72].

Concerning a possible interaction with ghrelin, evidence
has been provided that coinjection of bombesin inhibits the
orexigenic effect of intraperitoneal ghrelin [73]. In addition,
simultaneous injection of bombesin and ghrelin signifi-
cantly increased neuronal activity of CRF-immunoreactive
neurons in the PVN compared to vehicle and to single
ghrelin application while it did not alter ghrelin-induced
neuronal activity in the ARC [73]. Therefore, it can be
assumed that peripheral bombesin inhibits ghrelin-induced
food intake and increases activation of CRF neurons in
the PVN [73].

In addition, in goldfish (Carassius auratus) peripheral
injection of bombesin diminished ghrelin expression levels in
the gut [74]. Furthermore, while exhibiting opposing effects
on food intake, application of exogenous bombesin and
ghrelin both stimulated growth hormone release. However,
the two peptides exerted different effects on somatostatin
production, whereas peripheral ghrelin blocks the effects
of bombesin on synthesis of the somatostatin mRNA [74].
Thus, the interactions between bombesin and ghrelin might
account for postprandial variations found in serum GH
levels and the forebrain expression of somatostatin mRNA
[74].

In summary, bombesin directly interferes with sundry
effects of ghrelin, most likely via central mechanisms.
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3.3. Desacyl Ghrelin. The gastrointestinal peptide desacyl
ghrelin (DAG) displays the identical amino acid sequence
as ghrelin, however lacking the fatty acid residue [6].
Therefore, DAG—in contrast to ghrelin—does not interact
with the GHS-R1a and thus was initially considered to be a
degradation product of ghrelin without any biological effect
[6]. However, recent literature indicates numerous actions of
DAG (e.g., concerning cell proliferation and adipogenesis)
[63, 64, 75–77]. In this context, it was found that transgenic
mice over-expressing DAG showed a reduced food intake and
a lower body weight compared to wild-type mice suggesting
a role in the regulation of energy homeostasis [78, 79]. Also,
exogenous DAG led to a significantly reduced cumulative
body weight gain in adult male rats after one week of chronic
infusion [80].

In addition, there is inconsistent data concerning a
potentially anorexigenic effect of exogenous DAG [41, 79, 81,
82] that might be mediated by central pathways involving
Urocortin and Cocaine and Amphetamine Regulated Tran-
script (CART) in the hypothalamic ARC and PVN [8, 41, 79].
However, data remain inconclusive.

Concerning a possible interaction between DAG and
ghrelin, DAG was found to abrogate the metabolic effects
of ghrelin after coadministration of both peptides [83].
More precisely, in rodents as well as in goldfish intraperi-
toneally administered ghrelin significantly increased food
intake whereas simultaneously injected DAG abolished the
stimulatory effect of ghrelin on feeding behaviour [83, 84].
Accordingly, the effect on neuronal activity in the ARC
induced by ghrelin was significantly reduced when injected
simultaneously with DAG [83]. As nesfatin-1 immunore-
active neurons in the ventromedial part of the ARC were
activated by simultaneous injection of ghrelin and DAG, one
might speculate that DAG suppresses ghrelin-induced food
intake by curbing ghrelin-induced increased neuronal activ-
ity in the ARC and recruiting nesfatin-1 immunoreactive
neurons [83].

Moreover, there is evidence indicating that DAG may
counteract the role of ghrelin in the control of glucose
metabolism. In humans exogenous ghrelin induced rapid
changes in blood glucose and insulin levels, whereas DAG
prevented the acylated ghrelin-induced effect when coad-
ministered with acylated ghrelin [85, 86]. Furthermore,
Gauna et al. found that glucose output by primary hepato-
cytes is time- and dose-dependently increased by incubation
with ghrelin whilst this effect is counteracted by DAG
coincubation [87]. Additionally, ghrelin-decreased insulin
sensitivity has been reported to be prevented by intravenous
coinjection of DAG [86, 88]. Besides interference with insulin
secretion, in vitro DAG also abolished the effect of ghrelin on
glucagon, pancreatic polypeptide, and somatostatin release
[89].

Therefore, it can be summarized that DAG counteracts
the effect of ghrelin on food intake, hypothalamic neuronal
activation, glucagon, as well as on pancreatic polypeptide
and somatostatin release. Furthermore, also opposing effects
of DAG have been found on the effects of ghrelin covering
insulin levels, sensitivity to insulin, as well as on blood
glucose concentration.

3.4. Peptide YY. As a member of the pancreatic polypeptide
family, peptide YY (PYY) is postprandially released from L-
cells located in the distal gastrointestinal tract and has been
reported to inhibit food intake via NPY-2 receptors expressed
by neurons of the ARC [90, 91]. In addition to neurons
of the ARC also vagal afferents projecting to the NTS have
been found to be involved in the anorexigenic effect of PYY
[92]. Based on the evidence that peripherally injected ghrelin
acts via the N. vagus inducing neuronal activity in the ARC
[24] a possible interaction of both peptides may be assumed
theoretically.

However, recent data are conflicting as one study showed
PYY infusion to significantly reduces plasma ghrelin levels in
humans [93] while other reports failed to find an influence
on ghrelin concentrations in mice [94] and pigs [95].
Furthermore, in mice the anorexigenic effect of intraperi-
toneal PYY injection has not been found to be regulated
by prevailing endogenous plasma ghrelin concentrations or
coinjection of ghrelin [94]. However, in contrast Chelikani et
al. reported peripheral ghrelin injections in rats to attenuate
PYY-induced inhibition of food intake and gastric emptying
[96]. In support of these results, Riediger et al. observed
in rats that subcutaneous PYY directly inhibited ghrelin-
activated neurons of the ARC [97].

Taken together, available data remain inconclusive con-
cerning the interactions of ghrelin and PYY with a need for
further investigation.

3.5. Glucagon-Like Peptide. The 31 amino acid hormone
glucagon-like peptide (GLP) belongs to the incretins and is
postprandially secreted by L-cells in the ileum [98, 99]. The
peptide has been found to significantly reduce energy intake,
gastric emptying rate, and energy consumption in humans
[100].

In the context of interaction, it has been shown that icv.
injection of GLP-1 significantly inhibited ghrelin-induced
stimulation of food intake [101]. Vice versa, also intravenous
coinfusion of ghrelin has been found to significantly atten-
uate the GLP-1-induced reduction of food intake and its
inhibitory effect on gastric emptying [96].

Moreover, it is noteworthy that GLP-1 administration
has been found to prevent the initial postprandial decline in
ghrelin levels, possibly due to delayed gastric emptying [102].
Furthermore, exogenous GLP-1 significantly decreased ghre-
lin secretion after meal ingestion in healthy man [102] as
well as during vagal prestimulation in isolated rat stomachs
[103]. Also, application of “the closely related peptide”
GLP-2 has been reported to reduce ghrelin concentrations
in humans [104]. However, Brennan et al. observed that
intravenous GLP-1 injection did not exhibit any effect on
ghrelin concentrations in healthy humans [53].

In conclusion, there is some evidence that GLP might
diminish ghrelin-triggered effects on food intake and gastric
emptying and lead to a reduction of ghrelin release.

3.6. Amylin. Amylin is an anorexigenic peptide hormone
composed of 37 amino acids, which is cosecreted with insulin
from pancreatic islet β-cells in response to nutrient ingestion,
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incretin hormones, and neural input [105, 106]. Acute as
well as chronic administration of amylin has been found
to reduce food intake and body weight, which is predom-
inantly mediated by neurons located in the area postrema
[107, 108].

Initially, it has been shown that coadministration of
amylin did not alter ghrelin-induced hyperphagia in rats
[73]. In accordance, Osto et al. observed that the anorex-
igenic effect of amylin injection remained unchanged by
simultanous ghrelin application in rats [109]. Thus it may be
hypothesised that the metabolic state—ad libitum fed [73]
or fasted [109] —of the animals might determine whether
effects of ghrelin or amylin are predominant.

However, in conclusion interaction between ghrelin and
amylin seems to be unlikely.

3.7. Pancreatic Polypeptide. The 36 amino acid peptide pan-
creatic polypeptide (PP) is mainly produced by cells located
in the periphery of endocrine pancreatic islets. Secretion
of PP is stimulated postprandially and peripheral injection
of PP in rodents as well as in humans has been shown to
reduce food intake and body weight, most likely mediated
via indirect effects on the hypothalamic ARC involving the
area postrema [110, 111].

Arosio et al. reported that peripheral injection of ghrelin
in humans leads to a significant increase of PP levels in
healthy subjects but to have a variable effect on PP release
in acromegalic patients [112, 113]. In contrast, Qader and
colleagues observed a dose-dependent inhibitory effect of
ghrelin perfusion on PP secretion of rodents’ isolated islet
cells [89].

Due to this conflicting data and the lack of studies
investigating coinjection of both peptides the interplay
between ghrelin and PP remains to be further elucidated.

3.8. Insulin. The 51 amino acid peptide insulin is produced
by pancreatic beta islet cells and is commonly recognized
as the most important hormone regulating glucose home-
ostasis. Central injection of insulin has been shown to
reduce food intake as well as body weight [114], most likely
mediated via insulin receptors expressed on ARC neurones
[115]. High blood glucose levels increase insulin release
and likewise ghrelin treatment in rats has been shown to
stimulate insulin secretion from isolated pancreas tissue
[116, 117] as well as in vivo [118]. In contrast, in exper-
iments conducted by other investigators ghrelin perfusion
of isolated rodents pancreas suppressed insulin release in
response to glucose and other secretagogues [89, 119–121]
and portal vein infusion of ghrelin inhibited the glucose-
induced insulin secretion [122]. In line with these results,
ghrelin administration decreased insulin serum levels in rats
in vivo [59, 60, 123]. Accordingly, ghrelin infusion likewise
significantly suppressed C-peptide levels in gastrectomized
humans [124].

However, in growth hormone-deficient humans, periph-
eral ghrelin induced a rapid increase in plasma insulin levels,
a stimulation of lipolysis, and a reduced peripheral insulin
sensitivity [86, 125]. Interestingly, in ghrelin knockout mice

the usually displayed high-fat diet-induced glucose intoler-
ance was largely prevented [126] and also ghrelin receptor
knockout mice were found to have an increased insulin
sensitivity [127]. Also in ob/ob mice an improvement of the
diabetic phenotype has been observed after the ablation of
ghrelin [128].

Vice versa, most studies revealed an inhibitory effect
of exogenous insulin on ghrelin levels in humans [129–
132], rats [133, 134] as well as in isolated rat stomachs
[55, 103, 135]. Moreover, Murdolo et al. observed that insulin
seems to be essential for the prandial suppression of ghrelin
levels in humans [136]. However, challenging these results
Caixas et al. found that parenteral insulin does not influence
blood levels of ghrelin in humans [137], while Toshinai and
colleagues even observed increased ghrelin mRNA levels in
the stomach after insulin administration [138].

Furthermore, during ghrelin infusion, insulin-dependent
suppression of endogenous glucose production in mice has
been reported to be less effective [88]. However, coadmin-
istration of ghrelin stimulated the insulin-induced glucose
uptake in adipocytes [139]. Additionally, in hepatoma cells
ghrelin has been identified to regulate downstream molecules
of insulin signalling [140]. As antighrelin antibodies abol-
ished the insulin-induced neuronal activation within the
nucleus tractus solitarii of the brainstem, Solomon et al.
concluded that this brain area might participate in peripheral
ghrelin hunger signalling mediated by insulin [141].

Taken together, ghrelin and insulin obviously interfere
in the reciprocal secretion regulation in a very complex
manner.

4. Summary

Discovered in 1999, investigation of ghrelin as well as
ghrelin-dependent effects and interactions is a quite novel
field of research. However, during the last decade effects
of ghrelin have been subject to intensive investigation. As
obesity is a challenging problem worldwide, especially the
orexigenic effect of ghrelin has been extensively explored.
In this context, various possibilities to curb the stimulating
effect on food intake behaviour have been investigated with
more or less promising results [142, 143]. However, so far
no substance has been identified to reliably inhibit food
intake during long-term treatment. Nevertheless, it has been
shown that the stimulatory effect of ghrelin on food intake
is diminished by several anorexigenic peptides such as CCK,
bombesin, desacyl ghrelin, PYY, insulin, and GLP but not
by amylin. Some of these peptides inhibit ghrelin secretion
and exert opposite effects on hypothalamic neuronal activity
or gastric emptying. Thus, interaction between ghrelin and
these anorexigenic gastrointestinal hormones might be an
auspicious approach in the context of pharmacological
obesity treatment.

Moreover, in addition to the previously introduced
peptides originating from the gastrointestinal tract, also the
satiety factor leptin, which is primarily synthesized in the
adipose tissue, interacts with ghrelin. In this context, it has
been described that leptin and ghrelin diminish each others’
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Table 2: Interference between ghrelin and leptin.

Reference Interaction

Barazzoni 2003 [144] Leptin injection reduces starvation-induced ghrelin secretion.

Toshinai 2001 [138] Leptin administration increases ghrelin mRNA level in the
stomach

Dixit 2004 [145] Ghrelin inhibits leptin-induced cytokine expression

Nakazato 2001, Kim 2004 [21, 146] Ghrelin reverses leptin-induced feeding reduction

Shintani 2001, Kohno 2003, Kohno 2007 [37, 39, 147] Leptin suppresses Ghrelin-induced activation of NPY neurons
within the ARC

Rosicka 2003, Park 2005 [148, 149] Ghrelin and leptin levels are reversely correlated and depend
on the BMI

Bagnasco 2002, Beretta 2002, Dube 2002, Bagnasco 2003 [150–153] Central transgenic leptin expression elevates serum ghrelin
levels

effects on food intake via oppositional influence on NPY-
positive neurons within the ARC [37, 39]. Furthermore, as
summarized in Table 2, both peptides interfere in various
other ways [154, 155].

Taken together, during the last decade many aspects
of appetite regulation associated with ghrelin have been
elucidated. However, the brain-gut-axis—including ghrelin
as the only peripheral orexigenic peptide—is a very complex
system, for which our understanding to date remains limited.
Thus, we can be curious for the next decades of ghrelin and
its role in appetite regulation.
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