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Expansions of short repeats—those with

units of #12 bp—account for as many as

40 diseases [1–4]. About half of these

disorders arise from expanded tracts of

CAG/CTG triplets, many encoding poly-

glutamine. Since the discovery of the first

polyglutamine-encoding CAG repeat dis-

order in 1991 [5], the predominant

hypothesis has been that pathogenesis of

the CAG category is a consequence of a

toxic gain-of-function of excessively long

strands of polyglutamine. Polyglutamine

toxicity has been most systematically

explored in Huntington’s disease (HD),

with evidence that it influences multiple

processes, including transcriptional regu-

lation, mitochondrial energy production,

and calcium regulation. This proteocentric

view is undergoing considerable revision,

as mounting evidence suggests toxic roles

for mutant transcripts in HD [6] (Figure 1).

The initial clues regarding CNG transcript

toxicity emerged from studies of myotonic

dystrophy type 1 (DM1). DM1 is caused

by an expanded CTG repeat located in

the 39 end of the DMPK gene. Transcripts

with long CUG repeats dysregulate the

splicing factors MBNL1 and CUGBP1,

leading to aberrant splicing of numerous

downstream transcripts; dysfunction of

these proteins directly correlates with

various features of the disease phenotype.

Subsequently, multiple lines of evidence

have emerged that RNA toxicity contrib-

utes to the pathogenesis of other CAG/

CTG disorders. Structurally, RNA with

sufficiently long stretches of CUG or CAG

triplets can form hairpin structures likely

to influence the affinity of RNA binding

proteins [7]. At least partly as a conse-

quence of these structures and changes in

protein binding, transcripts with either

type of repeat may aggregate into discrete

foci that include MBNL1 [8,9]. In HD,

RNA foci and misregulation of splicing

have been detected in peripheral HD

tissue [9]. The potential toxicity of tran-

scripts containing long CAG tracts has

been demonstrated in fly, worm, and

mouse systems [10–14]. HDL2, a disorder

clinically and pathologically similar to

HD, involves CUG transcript toxicity

mediated by dysregulation of MBNL1

[15,16]. A second potential mechanism

of CAG/CTG toxicity emerged from

evidence that bidirectional transcription

through the HTT repeat region [17] is a

source of Dicer-generated CAG/CUG

repeat siRNAs capable of targeting cellu-

lar transcripts containing complementary

repeats [18].

In this issue of PLoS Genetics, Bañez-

Coronel and colleagues [19] provide

further evidence for the involvement of

HTT RNA and the RNAi pathway in HD

pathogenesis. The authors demonstrate

that overexpression of translatable and

non-translatable HTT exon 1 constructs

with expanded CAG repeats leads to

Dicer-dependent production of short

CAG repeat RNAs (sCAGs) with cytotoxic

properties. Cytotoxic effects are triggered

by expanded CAG repeats (which can

form RNA hairpins), but not by expanded

CAA repeats (which, like CAG, encode

glutamine, but cannot form hairpins),

consistent with recent findings in a fly

model [11]. sCAG species were detected

in Ago-2 complexes, supporting associa-

tion with RNAi pathways. Antisense

inhibitors of the sCAG species reverse

cytotoxicity, and sCAGs were detected in

R6/2 HD transgenic mice and in post-

mortem human HD brain tissue. sCAGs

isolated from human HD tissue and then

transfected into cells induced toxicity. The

pathogenically relevant targets of the

sCAGs remain to be determined, but

initial experiments suggest several poten-

tial transcripts, including ADORA2A and

MEIS2 (both reduced in HD brain tissue)

and more variably DMPK, ASTN2, and

ZFR, all containing either fully or partially

complementary CUG and CAG repeats.

Determining a more complete list of target

sequences, and the extent to which

downregulation is necessary or sufficient

for toxicity, remain critical issues for

further exploration. Curiously, the sCAG

species isolated from HD models and

human HD brain that induced toxicity

were not a homogenous population of

RNAs, but were identified in the ,100-nt

fraction. While cytotoxicity was sCAG-

dependent (as toxicity was blocked with

anti-sCAG), the relative contribution of

sCAGs compared to other miRNAs in the

isolated fraction is unknown. Whether

Dicer is the only ribonuclease involved in

sCAG production also remains to be

determined.

It is noteworthy that a DM1 antisense

transcript containing the repeat in the

CAG orientation is also converted to 21-nt

fragments that include CAG units [20],

similar to the 21-nt sCAG fragments from

the HD locus reported by Bañez-Coronel

et al. [19]. While the function of the DM1

CAG fragments remains unknown, it was

suggested that they may play a role in the

abnormal chromatinization at the DM1

locus that occurs in the presence of the

expansion mutation [20], raising the

possibility that a similar phenomenon

may also occur at other loci, such as

HD, where sCNG fragments are generat-

ed. Both the DM1 and SCA7 antisense

transcripts are thought to regulate their

complementary sense transcripts [20,21].

Conversely, the findings in HD by Bañez-

Coronel et al. suggest that HD sCAG
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fragments might regulate non-HD CUG-

and CAG-containing transcript levels

(Figure 1), possibly through an RNA-

RNA hybrid mechanism. This may occur

through processes similar to the RNA-

RNA hybrids formed between the expand-

ed DMPK CUG repeats and the short

CAG repeats in CUGBP1 mRNA, pro-

posed to regulate the reduced CUGBP1

mRNA levels in DM1 patient muscles

[22].

What regulates the expression of the

HTT antisense and sCAG fragments is

unknown but may involve epigenetic

factors. The expression of the DM1 and

SCA7 antisense transcripts are regulated

by CTCF binding at sites proximal to the

repeat and promoter regions coincident

with localized chromatin modifications

[20,21]. Interestingly, CTCF binding also

regulates SCA7 CAG instability [23]. The

potential role of the HD CTCF site

[17,24] in regulating the expression of

HTT or HTT antisense is yet to be

determined.

Two recent observations complicate the

interpretation of the Bañez-Coronel et al.

findings [19]. First, homopolymeric poly-

alanine or polyserine proteins were found

to be expressed via a mechanism termed

Repeat Associated Non-ATG Translation

(RAN) recently described by Zu et al. [25],

reviewed in [26]; this raises the possibility

that toxic RAN proteins could contribute

to the pathogenesis induced by the AUG-

free ‘‘untranslatable’’ HTT RNA fragment

(Figure 1). Secondly, since the construct

used by Bañez-Coronel et al. contains the

entire HTT exon 1, it is also possible that

the recently described antisense HTT

transcript is coexpressed with the sense

strand transcript [17]. Thus, the long

CUG HTT antisense transcript might

itself contribute to cytotoxicity, and/or

lead to RAN-translated products, and/or

influence the process by which sCAGs are

generated (Figure 1).

While Bañez-Coronel et al. [19] pri-

marily focus on the role of RNAi pathways

and the toxicity of sCAGs, it is likely that

toxicity induced by HTT sense and

antisense RNAs, as in the case of HTT

protein, involves multiple pathways, each

warranting exploration. For example,

what is the pathogenic effect of the

aggregation of transcripts containing long

CAG or CUG repeats? Might this lead to

sequestration or dysregulation of splicing

factors, as in DM1? Distinct proteins bind

to mRNA containing CAG and CUG

repeats—do properties of the transcripts,

such as repeat length and the sequence of

regions flanking the repeat, modulate this

binding? Does the CAG repeat tract

length affect transcript stability, or the

efficiency of transcription or translation?

What is the relationship between CAG

expression level and CAG repeat length in

inducing toxicity? Does RNA-mediated

toxicity provide any clues to selective

neuronal vulnerability in HD? Does

RAN-translation arise in HD as it does

in DM1 and SCA7 patient tissues? These

questions demonstrate that every step of

the mRNA life cycle in CAG/CTG

disease warrants exploration.

Of utmost importance, the findings of

Bañez-Coronel et al. [19] and others that

implicate RNA in HD pathogenesis pro-

vide new leads in the search for therapeu-

tic targets. Targeting only the mechanisms

induced by expanded polyglutamine tracts

may not be sufficient to stop disease

pathogenesis. A comprehensive strategy

to combat HD will require attention to

RNA-mediated toxicity.
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19. Bañez-Coronel M, Porta S, Kagerbauer B,

Mateu E, Pantano L, et al. (2012) A pathogenic

mechanism in Huntington’s disease involves small
CAG-repeated RNAs with neurotoxic activity.

PLoS Genet 8: e10002481. doi:10.1371/journal.
pgen.1002481.

20. Cho DH, Thienes CP, Mahoney SE, Analau E,
Filippova GN, et al. (2005) Antisense transcrip-

tion and heterochromatin at the DM1 CTG

repeats are constrained by CTCF. Mol Cell 20:
483–489.

21. Sopher BL, Ladd PD, Pineda VV, Libby RT,

Sunkin SM, et al. (2011) CTCF regulates ataxin-7
expression through promotion of a convergently

transcribed, antisense noncoding RNA. Neuron

70: 1071–1084.
22. Watanabe T, Takagi A, Sasagawa N, Ishiura S,

Nakase H (2004) Altered expression of CUG
binding protein 1 mRNA in myotonic dystrophy

1: possible RNA-RNA interaction. Neurosci Res

49: 47–54.
23. Libby RT, Hagerman KA, Pineda VV, Lau R,

Cho DH, et al. (2008) CTCF cis-regulates
trinucleotide repeat instability in an epigenetic

manner: a novel basis for mutational hot spot
determination. PLoS Genet 4: e1000257.

doi:10.1371/journal.pgen.1000257.

24. Filippova GN, Thienes CP, Penn BH, Cho DH,
Hu YJ, et al. (2001) CTCF-binding sites flank

CTG/CAG repeats and form a methylation-
sensitive insulator at the DM1 locus. Nat Genet

28: 335–343.

25. Zu T, Gibbens B, Doty NS, Gomes-Pereira M,
Huguet A, et al. (2011) Non-ATG-initiated

translation directed by microsatellite expansions.
Proc Natl Acad Sci U S A 108: 260–265.

26. Pearson CE (2011) Repeat associated non-ATG
translation initiation: one DNA, two transcripts,

seven reading frames, potentially nine toxic

entities! PLoS Genet 7: e1002018. doi:10.1371/
journal.pgen.1002018.

PLoS Genetics | www.plosgenetics.org 3 February 2012 | Volume 8 | Issue 2 | e1002545


