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Introduction
Historically, the brain was considered as an immune-privileged 
organ due to the absence of a lymphatic system and the main-
tenance of transplanted tissue grafts. However, we now under-
stand that the immune system readily interacts with cells in 
the brain parenchyma during stress, disease, and infections.1–3 
The interactions between resident and infiltrating immune 
cells and the brain tissue contribute to both neuroprotection 
and neuro toxicity, depending on the type of insult, the type of 
injured neural cell, and even the age of the host.4 Within the 
brain, innate immune cells, which respond nonspecifically to 
damaged or infected cells, and adaptive immune cells, which 
recognize specific antigens, are active during inflammatory 
responses. Recent discoveries describe mechanisms that allow 
exchange of antigenic information through channels present 
on astrocytes that encircle brain vasculature.4,5 This allows anti-
genic exchange between the central nervous system (CNS) and 
the periphery and results in specific, targeted immune responses 
within the CNS. The generation of effective innate and adap-
tive immune responses is critical, as many neurons in the brain 
are nonrenewable and cannot be readily replaced.

The CNS can be exposed to diverse insults and inju-
ries, including stroke, viral infections, neurodegenerative 

diseases, and autoimmune disorders. During these insults, 
inflammation in the brain is characterized by the activation 
of resident microglial cells as well as infiltration of peripheral 
macrophages and lymphocytes. These cells release pro- and 
anti-inflammatory cytokines and chemokines, which cause 
further immune activation and infiltration of other immune 
cell subsets. Ideally, the infiltration and activation of immune 
cells leads to resolution of the insult. However, excessive or 
chronic immune activation during insults such as stroke, 
Alzheimer’s disease (AD), and multiple sclerosis (MS) can 
cause neurotoxicity and damage to the CNS.6 Often, the 
mediators of neuronal loss are the cytokines and/or chemo-
kines released by immune cells. The challenge for the body is 
to strike a balance that resolves the adverse event, limits dam-
age to CNS cells, and avoids excessive immune activation. In 
conditions where the body fails to rescue or preserve neurons, 
pharmacological interventions must be devised to promote 
neuroprotection or neuroregeneration. In order to do so, it is 
important to understand the effects of inflammatory and anti-
inflammatory mediators on neural cells.

One of the cytokines released as part of the inflammatory 
milieu is interferon-gamma (IFNγ). It is the only member of 
the Type II family of interferons and is secreted predominately 
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by activated immune cells such as T cells and natural killer 
(NK) cells.7 In contrast, members of the type I family (IFNα 
and β) are secreted by almost all cells when the cell is infected 
or damaged. As part of the host response, IFNγ activates other 
immune cells and increases the expression of major histocom-
patibility complex class I and II on its target cells, helping to 
mount a robust immune response.8,9 In addition to these func-
tions, IFNγ also acts directly on neural cells.10–15 For example, 
IFNγ induces non-cytolytic clearance of several neurotropic 
viruses, such as Sindbis virus and measles virus, from CNS 
neurons.10,11,16 On the other hand, IFNγ also plays a role in 
neurodegeneration in many CNS diseases.17–19 Therefore, the 
precise role of IFNγ during CNS inflammation is still unclear 
but likely involves a complex set of responses from different 
cell types.

Neural stem/progenitor cells (NSPCs) are the only 
multi potent population of cells in the CNS. These cells are 
capable of self-renewal, thereby maintaining the NSPC pool, 
and of differentiation into neurons, astrocytes, and oligoden-
drocytes (Fig. 1). During CNS development, NSPCs populate 
the CNS broadly, while their anatomical localization becomes 
restricted as the brain matures.20,21 A small population of 
NSPCs persists in specific niches in the adult brain, namely 
within the subventricular zone (SVZ) and the subgranular 
zone (SGZ) of the dentate gyrus (DG).20,22,23 The SVZ is 
located along the lateral wall of the lateral ventricle. NSPCs 
in the SVZ differentiate into neuroblasts that migrate along 
the rostral migratory stream into the olfactory bulb. In the 
olfactory bulb, these neuroblasts terminally differentiate into 
granule and periglomerular neurons.24 NSPCs in the SGZ of 
the DG give rise to granule neurons, which are important in 
learning and memory. The role of NSPCs under physiologi-
cal conditions and in neurodegenerative diseases is an active 
area of study. In addition to normal NSPC functions such as 

CNS development, learning and memory, and maintenance 
of olfaction, NSPCs are affected differentially in CNS disea-
ses such as epilepsy, depression, and even natural aging.25–27 
A number of studies have looked at the role of IFNγ in medi-
ating changes in NSPC activity. However, the outcomes of 
these experiments differ depending on the source of NSPCs 
(fetal or adult), the models used (cell lines or primary cells), 
and the species of the host.28–32 In this review, we consoli-
date the current literature on the role of IFNγ in modifying 
NSPC activity in CNS diseases. We also try to understand 
the implications of IFNγ-mediated changes in NSPC activ-
ity, and how they contribute to neurological sequelae. We 
also discuss future directions for understanding the interac-
tions of NSPCs with IFNγ and other inflammatory cytokines 
during neuroinflammation.

IFNγ signaling: canonical and Non-canonical 
Pathways
In order to understand the effects of IFNγ, we need to 
acknowledge the diversity of signaling pathways that it initi-
ates. IFNγ binds to the IFNγ receptor (IFNGR), which con-
sists of two IFNGR1 subunits and two IFNGR2 subunits. 
Binding of IFNγ to IFNGR1 causes heterotetramerization 
of the receptor, which then leads to the activation of down-
stream kinases.33,34 IFNγ predominantly activates the Janus 
associa ted kinase/signal transducer and activator of transcrip-
tion-1 (JAK/STAT) signaling pathway (Fig. 2). Activation of 
JAKs results in the recruitment and activation (phosphoryla-
tion) of STATs at the receptor. Out of the seven STAT family 
members, STAT1 is the main downstream effector of IFNγ. 
Upon phosphorylation by JAKs, STAT1 homodimerizes and 
translocates to the nucleus, where it initiates the transcription 
of IFNγ-stimulated genes (ISGs). There are approximately 500 
ISGs that can be stimulated by IFNγ, including genes involved 
in viral clearance, cell cycle control, and inflammatory signal-
ing.33 For example, IFNγ increases major histocompatibility 
complex (MHC) expression in a STAT1-dependent manner, 
leading to the recognition of tumor cells by the immune sys-
tem.35 IFNγ also inhibits the proliferation of fibroblasts by 
reducing cyclin and cyclin-dependent kinase (CDK) expres-
sion, particularly that of cyclin D/CDK4.36 The profile of ISGs 
is dependent both on cell type and on other inflammatory sig-
nals that are received by the target cell (reviewed by van Boxel-
Dezaire and Stark37). Thus, the phenotypic response to IFNγ 
also varies depending upon the cell type, which is reflected in 
the conflicting reports of neuroprotection and toxicity with 
IFNγ treatment.15,38,39

To evade clearance from the body, many viruses inhibit 
STAT1 function and expression, thereby abrogating the anti-
viral response of the cell.40,41 However, IFNγ also signals 
through STAT1-independent mechanisms, which may be 
activated alone or in parallel with STAT1-dependent path-
ways.42 These pathways result in protective as well as path-
ological outcomes. Primary hippocampal neurons utilize 
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Figure 1. Neural stem/precursor cells (NSPCs) differentiate into the 
neural cells of the central nervous system. NSPCs are capable of self-
renewal and differentiation into distinct neural cell lineages. Depending 
on external cues, NSPCs can differentiate into neurons (neuronal 
lineage) or astrocytes (glial lineage). NSPCs can also differentiate in 
oligodendrocyte precursor cells (OPCs), which are more restricted stem 
cells that can give rise to oligodendrocytes.
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STAT1-independent pathways for viral control, possibly 
because endogenous STAT1 expression is inherently low in 
these cells.11 Neurons also activate extracellular regulated 
kinase-1/2 (ERK-1/2) signaling in response to IFNγ, which 
confers neuroprotection against apoptotic insults. In con-
trast, primary astrocytes activate STAT3 upon IFNγ treat-
ment, which leads to the production of neurotoxic factors.43 
IFNγ stimulation may also lead to recruitment of adaptor 
molecules such as the c-Cbl proto-oncogene and the GTPases 
Ras and Rap1.44 Like STAT1-dependent signals, activation of 
Rap1 signaling inhibits cell proliferation in human embryonic 
kidney cells.45 Therefore, IFNγ may activate multiple pathways 
that limit cell growth, which could be advantageous for con-
trolling viral replication in a rapidly dividing cell. An interest-
ing observation is seen in lung epithelial cells, where STAT1 
is activated through the activation of the phospholipase 

C-gamma2/protein kinase C/Src (PLCγ2-PKCα-src) pathway 
in a JAK-dependent manner. This pathway causes increased 
expression of intercellular adhesion molecule (ICAM)-146 and 
facilitates binding and transmigration of immune cells into 
tissues. Therefore, in addition to pathways that are STAT1-
independent, other signaling proteins and adaptor proteins 
may link JAK and STAT1 indirectly in certain cell types.

IFNγ-Mediated signaling in NsPcs
The diversity of IFNγ-mediated signaling pathways raises 
the question of how IFNγ may affect NSPCs. The role of IFNγ 
is particularly important because the JAK-STAT family of pro-
teins has been implicated in NSPC proliferation and differen-
tiation.32,47,48 A number of reports show that IFNγ inhibits the 
proliferation of murine NSPCs derived from the adult SVZ 
in vitro.30,49–52 Moreover, NSPCs derived from mice lacking 
IFNγ show enhanced neurogenesis and proliferation.53 There 
is ample evidence that IFNγ can alter NSPC function through 
activation of the STAT family of proteins. Lum et al showed 
that when adult SVZ-derived NSPCs were treated with IFNγ, 
there was activation of both STAT1 and STAT3.50 Conversely, 
Pereira et al observed that IFNγ-treated NSPCs derived from 
postnatal brains (P7–P9) showed increased STAT1 activation 
but no change in STAT3 activation.51 One reason for this dis-
crepancy could be the time point at which STAT3 activation 
was measured; the former study assessed STAT3 activation 
4 days post treatment, whereas the latter measured activation 
at 15 minutes post treatment. Studies from our lab also report 
robust STAT1 activation and transient STAT3 activation in 
NSPCs derived from fetal mouse cortex (A. Kulkarni, unpub-
lished data). Consistent with an inhibition of growth, IFNγ 
decreased NSPC proliferation in a STAT1-dependent manner, 
with restriction in the late G1 phase of the cell cycle. Stud-
ies in many cell types indicate that STAT1 and STAT3 play 
opposing roles in cell proliferation; STAT1 is generally anti-
proliferative and STAT3 is pro-proliferative.54 This explains 
the role of STAT1 in mediating anti-proliferative effects of 
IFNγ on NSPCs, but the role of STAT3 is yet unclear. In 
NSPCs from STAT1 knockout mice, we observed substantial 
STAT3 activation post IFNγ treatment, suggesting poten-
tial crosstalk between the STAT1 and STAT3 pathways. It 
is interesting to note that the temporal response of NSPCs 
to IFNγ is distinct from other neural cells. Neurons show a 
delayed but sustained upregulation of STAT1 activation and 
expression, whereas astrocytes show spontaneous but transient 
STAT1 activation.15 NSPCs demonstrate rapid and sustained 
activation of STAT1 (over 72 hours), suggesting that neu-
ral cells possess unique mechanisms for regulating STAT1 
expression and dephosphorylation.

The sonic hedgehog (Shh) protein also plays an impor-
tant role in NSPC proliferation and fate specification.55 In 
NSPCs, IFNγ induces Shh expression. These studies show 
that IFNγ-mediated Shh expression and signaling results in 
increased proliferation of cerebellar neural precursor cells.56 
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Figure 2. Current hypotheses for IFNγ-mediated effect on NSPC activity.
Notes: iFnγ binds to the IFNγ receptor (iFngR1 and 2) and activates 
Janus-activated kinases 1 and 2 and signal transducers and activators 
of transcription-1 (JAK-STAT1) pathway. In neural stem/progenitor cells 
(NSPCs), STAT1 activation blocks NSPC proliferation through decreased 
expression of cyclin/cyclin-dependent kinase (CDK) complexes. In fetal 
nsPCs, iFnγ-mediated STAT1 activation decreases NSPC differentiation 
in the neuronal lineage (A. Kulkarni, unpublished data). However, 
studies with adult nsPCs report that iFnγ-mediated STAT1 activation 
results in increased neuronal differentiation. STAT1 activation leads to 
increased expression and secretion of the sonic hedgehog (Shh) protein, 
which in turn causes anomalous and concurrent expression of both 
glial and neuronal markers in the same cell.57 Moreover, iFnγ-mediated 
STAT1 activation and Shh expression in granule precursor cells leads 
to increased NSPC proliferation. In Paju cells, IFNγ-induced activation 
of the extracellular-signal regulated kinase-1/2 (ERK-1/2) increases 
neuronal differentiation, which may be independent of STAT1 activation.61 
in C17.2 cells, iFnγ-mediated activation of c-jun N-terminal kinase (JNK) 
pathway causes neuronal differentiation, without the activation of ERK1/2 
pathway.62 Developmental cytokines such as the leukemia inhibitory 
factor and ciliary neurotropic factor mediate glial differentiation through 
stat3. iFnγ-mediated activation of STAT3 is observed in fetal NSPCs; 
however, the role of this pathway in NSPC differentiation is yet unclear.
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Other studies demonstrate that induction of Shh by IFNγ 
results in a dysregulated cell fate characterized by expression 
of glial and neuronal markers in the same cell.57 IFNγ also 
increases Shh expression in adipocyte precursors, suggesting 
that IFNγ may act broadly on undifferentiated cells to induce 
differentiation or growth.58

One outstanding question is how NSPC differentiation is 
affected by IFNγ during pathological insults. In vitro studies on 
adult murine NSPCs indicate that IFNγ induces neuronal dif-
ferentiation.30,49,50 Pereira et al showed that infusion of IFNγ into 
the mouse SVZ increased neuronal differentiation in a STAT1-
dependent manner.51 However, Ben-Hur et al did not observe 
any changes in differentiation in IFNγ-treated NSPCs derived 
from neonatal rat striatum.52 In contrast to many studies on adult 
NSPCs, embryonic NSPCs exhibit decreased neuronal differ-
entiation in response to IFNγ.59 Together, these studies suggest 
that NSPCs may differ in their responsiveness to IFNγ depend-
ing upon the anatomical location and the age of the host.

A number of other cytokines, including leukemia inhibi-
tory factor (LIF) and ciliary neurotropic factor (CNTF), acti-
vate JAK-STAT signaling and regulate NSPC cell fate. During 
CNS development, these cytokines trigger glial differentiation 
in NSPCs through activation of STAT1 and STAT3. How-
ever, they cause glial differentiation only during late gesta-
tional periods (embryonic day 16 and later). STAT-dependent 
gliogenic activity is repressed during the neurogenic period 
(embryonic days 10–14) through epigenetic inhibition of glial 
gene expression.48,60 Whether IFNγ synergistically affects 
LIF and CNTF signaling during development is unknown. 
However, one could conjecture that IFNγ may augment glial 
differentiation at later stages in development through the acti-
vation of JAK-STAT signaling.

In addition to STAT1, mitogen-activated protein kinases 
(MAPKs) have also been implicated in mediating neuronal 
differentiation in cell lines. IFNγ induces neuronal differen-
tiation through the ERK-1/2 pathway in the human neuro-
blastoma Paju cell line.61 In a murine cerebellar cell line, IFNγ 
causes neuronal differentiation through the activation of c-jun 
N-terminal kinase (JNK) pathway.62 Moreover, inhibition of 
the JNK pathway but not the ERK-1/2 pathway reversed the 
effects of IFNγ. Other MAPKs, such as p38, have also been 
implicated in mediating neuronal differentiation.28 Admit-
tedly, these studies were conducted in transformed cell lines 
and not in primary NSPCs.61 However, they highlight the 
importance of MAPK signaling as an alternative pathway for 
influencing cell-fate decisions downstream of IFNγ.

The fact that IFNγ affects NSPC proliferation and cell-
fate specification is well established, although the necessary 
signaling pathways are still being defined. Variables such as 
the age of the host, brain region, and species may impact on 
the NSPC response to IFNγ. Regardless of the differences 
in model systems, STATs play a major role in mediating the 
effects of IFNγ on NSPC activity. Activation of non-canoni-
cal pathways, such as MAPKs, and crosstalk with other STAT 

signaling pathways may also be involved. It will be important 
to account for the mutable responses of NSPCs to IFNγ when 
considering how these cells react in in vivo disease models.

A central role for inflammation has been acknowledged 
in many CNS diseases.63–65 However, the role of inflamma-
tion, and specifically of IFNγ, in modulating NSPC func-
tions is under active study. IFNγ is one variable that affects 
how NSPCs respond in inflammatory environments. Because 
IFNγ is a pleiotropic cytokine, alterations in IFNγ expression 
often affect multiple neural and immune cells, which can fur-
ther impact on NSPC function. Taking into account the diver-
sity of signaling pathways activated by IFNγ, and variability 
of its effects on NSPCs in different systems, IFNγ may exert 
subtle alterations in pathological outcomes in neuroinflamma-
tory conditions. The discovery of multipotent NSPCs in the 
adult brain has also generated interest in how these NSPCs 
are affected by inflammation in the mature brain, particularly 
during neurodegenerative disease. Here, we discuss current 
studies that focus on the role of IFNγ and its effects in alter-
ing NSPC activity in models of Alzheimer’s disease, multiple 
sclerosis, and viral neurotropic infections.

Alzheimer’s disease
AD is the leading cause of dementia in the United States, with 
estimates of more than 5 million AD cases in that country 
alone. AD patients experience progressive memory loss, cog-
nitive decline, and functional and behavioral impairments that 
are irreversible with current therapies.66 Pathologically, the 
AD brain is characterized by widespread neuronal loss and 
by the accumulation of misfolded protein aggregates, which 
include amyloid plaques and neurofibrillary tangles. The amy-
loid plaques contain oligomers of the β-amyloid (Aβ) peptide, 
a cleavage product derived from the amyloid precursor protein 
(APP) after processing by β- and γ-secretases. Neurofibril-
lary tangles are comprised of hyperphosphorylated tau pro-
tein, which is normally associated with the microtubules. The 
accumulation of Aβ oligomers is thought to be responsible 
for synaptic dysfunction, neuronal death, and the activation 
of neighboring glial cells including astrocytes and oligoden-
drocytes.67–69 Despite the recognition that Aβ and tau are the 
main components of AD plaques and tangles, effective treat-
ments to prevent aggregation and subsequent neurodegenera-
tion are unavailable.

Although the initiating factors that lead to AD pathol-
ogy are not completely understood, it is clear that inflamma-
tion plays a role in the progression of the disease. It has been 
hypothesized that neurodegeneration triggers expression of 
pro-inflammatory cytokines that lead to hyperphosphory-
lation of tau, thus contributing to the formation of neurofi-
brillary tangles.70 Elevated levels of inflammatory cytokines 
such as interleukin-1β (IL-1β), IL-6, and tumor necrosis fac-
tor α (TNFα) are found in proximity to amyloid plaques and 
in the plasma and CSF of AD patients.71–74 Evidence for 
both protective and pathogenic effects of IFNγ have been 
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noted in AD. Astrocytes, the major source of Aβ in the brain, 
are stimulated to produce Aβ peptides when co-stimulated 
with IFNγ and TNFα or IL-1β.75 IFNγ alone can stimulate 
β-secretase expression in human astrocytes, suggesting that 
IFNγ might enhance processing of Aβ.76 Mononuclear cells 
from moderately severe AD patients produce elevated levels 
of IFNγ in comparison to cells from healthy controls or mild 
AD patients.77,78 Moreover, IFNγ increases the death of pri-
mary neurons treated with Aβ peptides.39 Although human 
studies are inconclusive as to whether IFNγ is elevated in the 
AD brain, polymorphisms in the IFNγ promoter that lead to 
high IFNγ expression are associated with slower progression 
of AD.79 These findings suggest that the neuroinflammatory 
response, including IFNγ production, may have differential 
effects on neural cells in AD pathogenesis.

To better elucidate the role of IFNγ, transgenic mouse 
models of AD have examined disease progression in relation 
to IFNγ expression and signaling, with varying effects on AD 
pathology. In Tg2576 mice, which harbor the Swedish mutation 
of human APP, deletion of the IFNγ receptor is associated with 
reduced glial activation and Aβ deposition due to a decrease in 
APP processing.80 In contrast, overexpression of IFNγ in APP 
transgenic mice leads to activation of microglia and astrocytes 
and expression of MHC-II and complement cascade proteins. 
In this case, the enhanced inflammation confers neuroprotec-
tion by promoting Aβ phagocytosis and reducing plaque for-
mation in the forebrain and hippocampus.81 IFNγ also leads to 
increased phosphorylation of tau in mouse models of tauopa-
thy, although the phosphorylated tau does not aggregate into 
tangles or contribute to neuropathology.82 These contradictory 
findings not only highlight the challenge of modeling distinct 
aspects of AD pathology in mice, but also show that IFNγ may 
have both protective and toxic effects on disease progression 
and the inflammatory response.

Accumulation of Aβ begins in the hippocampus in early 
stages of disease, which correlates with the loss of short-term 
memory as an early indicator of AD. In severely affected 
Alzheimer’s brains, expression of neurogenic markers (double-
cortin, NeuroD) is enhanced in the dentate gyrus and CA1 
region of the hippocampus,83 indicative of enhanced neuro-
genesis in AD. In presenile patients, there is little evidence 
of changes in neurogenesis, suggesting that the course of 
disease as well as differences in methodology may complicate 
interpretations of NSPC function in human tissues.84 Further 
evaluation of human AD brains is needed to fully understand 
changes in NSPC activity as a function of disease severity. 
In mouse models of AD, accumulation of Aβ through trans-
gene expression or intraventricular injection reduces NSPCs 
and newly born neurons in the hippocampus.85 Aβ treatment 
of primary NSPCs in vitro also inhibits NSPC proliferation 
and production of new neurons. These investigations show 
that NSPCs are responsive to the types of insults that occur in 
AD, although it is unclear how such changes in NSPC activity 
impact on disease progression in humans.

Several studies directly address the role of IFNγ in 
neurogenesis and NSPC proliferation in AD models. Using 
triple-transgenic mice (3 × Tg-AD), which harbor mutations 
in presenilin, APP, and tau, prolonged expression of IFNγ 
reveals opposing effects on AD pathology.86 IFNγ increases 
microglial activation and intracellular accumulation of Aβ, 
which is an early marker of AD. However, IFNγ also promotes 
neuro genesis in the hippocampus and reduces tau pathology 
in the 3 × Tg-AD model. Baron and colleagues observed that 
low levels of IFNγ expression increase neurogenesis and syn-
aptic activity in the dentate gyrus of aged wild-type mice and 
transgenic mice with a mutation in APP.87 Moreover, IFNγ-
induced neurogenesis correlates with improved spatial learn-
ing and memory, suggesting that changes in neurogenesis may 
improve neurological outcomes. Although IFNγ may play a 
neuroprotective role in AD models, injection of Aβ peptides 
into wild-type mice impairs IFNγ expression, neurogenesis, 
and NSPC proliferation in the hippocampus.85 Thus, whether 
IFNγ is able to influence NSPC function may depend largely 
on the stage of the disease and the inflammatory milieu that is 
expressed at each stage. Regardless, the sensitivity of NSPCs 
to IFNγ and the multiple factors that impact on IFNγ expres-
sion in AD suggest that modulation of IFNγ could slow the 
course of AD through encouraging neuroprotection and repair 
by NSPCs.

Multiple sclerosis and experimental Autoimmune 
encephalitis
MS is a chronic inflammatory disease of the brain and spi-
nal cord characterized by demyelination of axons and eventual 
neuronal death.88 Patients with MS exhibit motor impair-
ment, sensory and visual disturbances, pain, fatigue, and cogni-
tive deficits.89 The brain and spinal cord of MS patients have 
demyelinated areas called plaques or lesions that indicate a 
loss of the myelin sheath and death of oligodendrocytes in 
the white matter. The infiltration of immune cells causes the 
formation of lesions, with associated activation of glial cells 
and disturbances in neuronal signaling due to axonal degene-
ration90 (reviewed by Dendrou et al.91). Experimental autoim-
mune encephalomyelitis (EAE) is a rodent model of MS that 
is widely used to study the mechanism of the disease and to 
test the efficacy of therapies.92 This model recapitulates several 
clinical, pathological, and immunological features of MS by 
immunizing animals with myelin proteins, such as myelin basic 
protein or proteolipid protein, in adjuvants.93,94 Studies suggest 
that the immune response in MS and EAE causes apoptosis 
of oligodendrocytes, which contributes to demyelination and 
ultimately neurodegeneration.95,96

IFNγ is part of the inflammatory milieu in MS patients 
and can be found within MS lesions.97,98 Early clinical trials 
using recombinant IFNγ therapy exacerbated MS symptoms 
and elevated multiple inflammatory markers during intra-
venous administration.99 Serum levels of IFNγ also increase 
prior to clinical attacks, whereas IFNα expression increases 
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during periods of remission.100 A number of single nucleotide 
polymorphisms (SNPs) within different inflammatory and 
immune-related genes have been associated with susceptibility 
to MS.101 Sex-based differences are also observed in suscepti-
bility to MS, which is more common in women than in men.102 
Interestingly, population-based studies suggest that polymor-
phisms in the 3’ untranslated region of the IFNγ gene are 
associated with the development of MS in men.103 Although 
there is evidence for an association of IFNγ with MS, many 
questions remain about its role in the pathology of the disease. 
Most in vivo studies have focused on the effects of IFNγ on 
peripheral immune cells and mature oligodendrocytes, while 
its action on NSPCs is less defined in the pathogenesis and 
progression of MS and EAE.

Several studies demonstrate that IFNγ contributes to the 
death of oligodendrocytes by macrophage/microglia activation, 
upregulation of MHC molecules, and induction of inflamma-
tory mediators (reviewed by Goverman104). Studies in trans-
genic mice with temporally regulated expression of IFNγ show 
that the duration of IFNγ expression dictates its beneficial or 
detrimental effects on the development of EAE.105,106 IFNγ 
expression in the CNS before the onset of EAE improves 
the course of disease and prevents loss of oligodendrocytes, 
demyelination, and axon degeneration. This protective effect 
of IFNγ is mediated by pancreatic endoplasmic stress kinase 
(PERK) activation in oligodendrocytes.106 Further studies 
suggest that enhanced PERK signaling inhibits apoptosis of 
oligodendrocytes before the start of clinical disease and blocks 
EAE-induced demyelination and axonal degeneration at the 
peak of the disease.107 These protective effects on axons are not 
due to a decrease in the inflammatory response but may be due 
to maintenance of myelin integrity. PERK signaling activates 
an antiapoptotic transcription factor, nuclear factor kappa-B, 
which may be a possible protective mechanism in oligodendro-
cytes.107 In contrast, IFNγ expression at the recovery stage of 
EAE suppresses oligodendrocyte regeneration and remyelina-
tion in lesions.105 However, how IFNγ impacts NSPC func-
tion, and the potential differentiation into oligodendrocyte 
precursors, remains largely un explored in the chronic inflam-
matory environment of MS.

In MS, there is the dual challenge of replacing or pro-
tecting both degenerating neurons and damaged/dying oligo-
dendrocytes. NSPCs are capable of giving rise to new neurons 
and to oligodendrocyte precursor cells (OPCs), which are 
more restricted stem cells that can ultimately produce new oli-
godendrocytes (Fig. 1). Both NSPCs and OPCs are of poten-
tial therapeutic importance in MS.108 Acute inflammation 
may contribute to remyelination by inducing development of 
OPCs.109 Yet, in MS brains, OPCs do not fully differentiate 
into mature oligodendrocytes or participate in remyelination, 
despite the localization of OPCs in the white matter lesions.110 
Because MS is a chronic inflammatory disease, the response 
of NSPCs and OPCs must be considered in the context of 
prolonged exposure to inflammatory mediators.

Studies suggest that EAE induces the proliferation of 
NSPCs and OPCs in the SVZ. The subsequent migration of 
mitotically active SVZ cells to the olfactory bulb and regions 
of demyelinated white matter is also enhanced.111 In the brains 
of postmortem MS patients, there is increased proliferation 
of NSPCs in the SVZ, which also express the oligoden-
droglial markers Sox10 and Olig2,112 although the eventual 
migration and maturation of the cells in lesions is limited.110 
These studies suggest that NSPCs respond to inflammatory 
changes in MS, but may not fully participate in remyelination 
of lesioned areas. One possible explanation for the disrupted 
activity of NSPCs and OPCs is the reactivation of Shh by 
IFNγ. Shh is a member of the hedgehog family of morpho-
gens that are critical in the regulation of stem cell niches and 
proliferation of NSPCs in postnatal telencephalon,113 adult 
hippocampus,114 and SVZ.115 Typically, Shh activates the 
downstream transcription factor Gli1 in order to mediate 
differentiation of neurons and oligodendrocytes.116,117 How-
ever, in MS lesions and EAE mice, Shh expression is highly 
upregulated while Gli1 expression is decreased.116 The authors 
found that IFNγ treatment of embryonic and adult NSPCs 
recapitulated their in vivo observations, with increased Shh 
expression and inhibition of Shh-induced Gli1 expression.116 
Thus, IFNγ inhibits the differentiation of NSPCs by down-
regulation of Shh-induced Gli1 expression. This paradoxical 
effect of IFNγ on Shh-Gli1 signaling may contribute to the 
lack of differentiation and maturation of NSPCs and OPCs 
in MS.116 These findings further imply that prolonged IFNγ 
exposure may have a negative impact on maturation and remy-
elination by new oligodendrocytes. In support of this idea, 
IFNγ limits remyelination and OPC recruitment in a model 
of chronic toxin-induced demyelination, suggesting that IFNγ 
may have long-term impacts on remyelination.118

Due to the dysregulation of the endogenous stem cell pool, 
many studies have attempted to transplant NSPCs or other 
stem cell lineages into mouse models of EAE. The adminis-
tration of NSPCs derived from mesenchymal stem cells corre-
lates with reduced T-cell infiltration, less demyelination, and 
an increase in the number of nestin-positive cells.119 Impor-
tantly, this study and others demonstrate that transplanted 
stem cells can be immunosuppressive and highlights the cross-
talk that can occur between NSPCs and immune cells.119,120 
Furthermore, transplant of NSPCs into a cuprizone-induced 
demyelination model demonstrated remyelination by endog-
enous OPCs, without migration or differentiation by the 
transplanted cells.121 The authors found that the transplanted 
NSPCs encouraged differentiation of resident OPCs through 
the release of growth factors. These studies suggests that the 
protective mechanisms of NSPCs may be due to a trophic 
effect, allowing transplanted cells to communicate with resi-
dent neural cells in the brain.119 As there is a need for therapies 
that not only modulate the immune response but also repair 
CNS injury in MS, NSPCs that retain their multipotential 
capacity are good candidates for repair of MS lesions. Thus, 
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further studies are warranted to consider how inflammatory 
cytokines such as IFNγ may influence the differentiation or 
proliferation of endogenous and transplanted NSPCs.

Viral cNs diseases
Neurotropic viruses damage the CNS by directly killing 
infected neurons or as a result of the immune response to 
the virally infected cells.122 In addition to neurons, NSPCs, 
a mitotically active population of cells, are also altered dur-
ing viral infections. NSPCs are permissible to several viruses 
including murine and human cytomegalovirus, herpes sim-
plex virus, Japanese encephalitic virus, and Zika virus.123–126 
These infections result in reduced NSPC proliferation and 
increased apoptosis, which could impair neuronal repair and 
neurogenesis.125,126 In addition to direct viral infection, NSPC 
activity may be affected through a bystander effect from anti-
viral cytokines.108,127 IFNγ is critical in controlling the spread 
of many neurotropic viruses including measles virus, Theiler's 
virus, herpes simplex virus, and Sindbis virus.10,128–130 Even 
though the antiviral and immunomodulatory roles of IFNγ 
are well documented, its role in affecting NSPC activity in 
the context of viral infections is less clear. Recent research 
indicates that IFNγ may affect NSPC survival, proliferation, 
and neurogenic potential during infections, depending on the 
model system and on the cellular tropism of the virus. Here, 
we review the role of IFNγ on NSPCs in different models of 
neurotropic viral infections.

Herpes simplex virus-1 (HsV-1). HSV-1 is a DNA 
virus that infects approximately 54% of adults in the United 
States.131 In most cases, the virus resides latently in sensory 
neurons of the trigeminal ganglion with intermittent bouts 
of reactivation. During reactivation, new infectious viral 
particles are produced that travel down the axon and infect 
epithelial cells at the site of neuronal innervation, leading to 
the typical “cold sore” lesions associated with HSV-1. How-
ever, in some cases, HSV-1 may spread from the trigeminal 
ganglia to the temporal and inferior frontal lobes to establish a 
more severe, widespread CNS infection. The resultant herpes 
simplex encephalitis (HSE) can be fatal or cause long-term 
cognitive deficits. The factors that lead to HSE and unre-
stricted HSV-1 spread in the brain are unknown, although 
genetic factors, including deficits in the type I interferons, 
have been implicated.132

NSPCs, astrocytes, and young and mature neurons are 
all permissible to HSV-1 infection.133 In vivo studies involv-
ing nasal HSV-1 inoculation in mice implicate two mecha-
nisms of damage to the CNS. First is the infection and lysis 
of neurons that control critical physiological functions.134 In 
addition, Lundberg et al showed that the antiviral immune 
response against HSV-1 played a major role in CNS pathol-
ogy.135 In their study, mice susceptible to HSV-1 developed 
fatal focal lesions in the brain that consisted on infiltrating 
macrophages and neutrophils. When the macrophages and 
neutrophils were depleted, the mice showed delayed mortality 

as compared to nondepleted animals. Moreover, treatment 
with acyclovir decreased viral load to undetectable levels, but 
did not reduce mortality. Therefore, these studies show that 
the inflammatory response in the brain contributes to the 
pathology and death in HSV-1-infected mice.

Studies using intranasal delivery of HSV to the brain 
demonstrate an initial increase in the number of NSPCs 
during the acute phase (6 days post infection; dpi) of HSV 
infection. However, NSPC numbers decline during the 
chronic phase (10–30 dpi), wherein the adaptive immune 
response is active.136 Interestingly, the NSPCs are not infected 
by HSV-1 in the intranasal model, suggesting that changes 
in NSPC function are due to the inflammatory environment. 
During the chronic phase of HSV-1 infection, activated CD8+ 
T cells are the major source of IFNγ in the CNS. Coculture 
of virus-activated CD8+ T cells and NSPCs showed reduced 
NSPC proliferation and differentiation into glial cells.31 When 
antibodies blocking IFNγ binding to its receptor were used, 
the decrease in proliferation was abrogated. Together, these 
findings demonstrate that IFNγ may be a key factor in dictat-
ing how NSPCs respond to cytotoxic T cells. These studies 
further suggest that the IFNγ-mediated effects on NSPCs 
may affect functional recovery post-HSV-1 infection.

cytomegalovirus (cMV). CMV, like HSV-1, is also a 
DNA virus belonging to the herpesvirus family. Examination 
of serum samples from 1999 to 2004showed that 50.4% of the 
US population was infected with CMV.137 In adults, CMV 
mostly acts as an opportunistic pathogen affecting immu-
nocompromised adults including transplant recipients and 
HIV-infected patients. Clinical manifestations in immuno-
compromised adults include retinitis, encephalitis, and sub-
cortical dementia among others. Congenital CMV infections 
are a major cause of birth defects in the United States, with 
approximately 2% of newborns infected by transplacen-
tal transfer from the mother. Ten to fifteen percent of these 
infections develop neurological sequelae such as hearing loss, 
mental impairments, and microcephaly.138 Thus, the develop-
ing brain is especially susceptible to the pathogenic effects of 
CMV infection.

CMV preferentially targets NSPCs in brain tissue, 
although it is capable of infecting other neural cells. CMV 
infection of NSPCs inhibits proliferation and neurogenesis 
and induces apoptosis.139 These observations have been made 
both in human NSPCs and in mouse models of murine CMV 
(mCMV) infection.125,140 Similarly, NSPCs infected with 
human CMV (hCMV) display reduced proliferation and 
decreased neuronal differentiation.140 Studies with hCMV 
also show that, when infected, human NSPCs undergo apop-
tosis due to improper folding of proteins in the endoplasmic 
reticulum (ER), triggering the ER stress response.139 These 
observations indicate that CMV not only inhibits NSPC 
function but also results in cell death.

mCMV models have been used extensively to study 
the effect of viral infection on NSPCs in vivo. mCMV 
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demonstrates a strong cellular tropism for NSPCs. Thus, the 
majority of the mCMV models involve direct infection of 
NSPCs by the virus. mCMV infection of newborn mice leads 
to extensive infection of NSPCs and a loss of NSPCs and 
newly born neurons.125 The immune response against the virus 
begins with infiltration of macrophages and NK cells and the 
activation of CNS resident microglia.141 CD8+ T cells, which 
are critical in controlling mCMV infection, follow the activa-
tion of innate immune cells.142 CD8+ T cells mediate clearance 
of CMV through cytolytic and non-cytolytic mechanisms, 
including IFNγ production.143 IFNγ increases the expression 
of MHC class I and II on NSPCs, which would allow recog-
nition by infiltrating T cells.144 mCMV, however, is able to 
counteract the IFNγ-mediated induction of MHC class I in 
NSPCs.145 These mechanisms may allow the virus to evade 
immune clearance and establish latency in the NSPCs. More-
over, MHC expression is important for neuronal develop-
ment and synaptic refinement.146 Therefore, a CMV-mediated 
decrease in MHC expression could hamper the development 
of neuronal networks, particularly during the formative stages 
of brain development.

Measles virus (MV). MV is a negative-strand RNA virus 
and a member of the Morbilivirus genus and Paramyxoviridae 
family. Upon exposure, the virus enters the upper respiratory 
tract and is taken up by dendritic cells, B cells, and T cells 
expressing the CD150 receptor.147 The route of MV entry 
into the brain is unknown, but may involve transmigration 
of infected leukocytes across the blood–brain barrier, infec-
tion of endothelial cells of the brain microvasculature, infec-
tion of the choroid plexus and the nasal epithelium, and/or 
antegrade transport via the olfactory nerves.148 MV infection 
in the CNS can cause severe neurological disorders: primary 
measles encephalitis, measles inclusion body encephalitis, and 
subacute sclerosing panencephalitis (SSPE).149

Mice are not infectable with MV, but transgenic mice 
expressing the human isoforms of the MV receptors are 
available. These mouse models include global or tissue-
 specific expression of the human receptors used by circu-
lating MV strains (CD150/SLAM) or by vaccine strains 
(CD46). Our laboratory uses a mouse model that expresses 
human CD46 under the control of the neuron-specific 
enolase promoter (CD46+ mice), thereby restricting MV 
infection to mature CNS neurons.150 In CD46+ adult mice, 
IFNγ is required for non-cytolytic clearance of MV from 
infected neurons.128 In neonatal CD46+ mice, we explored 
how the antiviral immune in the brain affected NSPCs, 
which were spared from MV infection. IFNγ preserved 
the NSPC pool during MV infection, but could not pre-
vent a decline in neurogenesis. Moreover, newly differenti-
ated neurons (doublecortin+) were lost regardless of IFNγ 
expression.151 These data indicate that IFNγ may be critical 
in protecting uninfected NSPCs during an antiviral immune 
response, but cannot protect new neurons from the effects 
of neuroinflammation.

There are considerable functional differences in the immune 
response of adults and neonates, with the neonatal immune 
response often failing to produce adequate levels of IFNγ during 
infections (reviewed by Adkins et al.152). In the CD46+ model of 
MV infection, neonatal mice succumb to MV despite immune 
cell infiltration in the brain, whereas adults survive the infec-
tion with effective viral control.153 This provides an opportu-
nity to examine how age-dependent differences in the immune 
response affect NSPC activity as well as how the antiviral 
response impacts on brain development. As NSPC growth and 
differentiation is altered during infection by many neurotropic 
viruses,123 the role of IFNγ will be central to understanding how 
antiviral immunity disrupts brain development and repair.

conclusion
Neurogenesis occurs under both physiological and pathologi-
cal conditions with unique stimuli and neurological outcomes. 
An understanding of the factors that dictate the proliferation 
and differentiation of NSPCs will inform the development 
of pharmaceutical strategies to manipulate neurogenesis. In 
order to design treatments that provide a therapeutic benefit, 
we must better define how new neurons are integrated into 
existing neural networks, and even determine whether pro-
duction of new neural cells is beneficial in pathological set-
tings. Neuroinflammation is apparent in many degenerative 
disorders and infectious diseases. IFNγ is only one factor that 
influences the inflammatory milieu and the response of neural 
cells to damage. Thus, the role of IFNγ must be considered in 
the context of a complete immune response, with a variable 
accompaniment of cytokines and chemokines, when consider-
ing the ultimate impact of IFNγ on NSPC function.
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