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The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”,
which consists principally of fission and fusion, reflects the recognition that mitochondria
play a significant role in human tumorigenesis and response to therapeutics. Proteins that
determine mitochondrial dynamics are referred to as “shaping proteins”. Marked
heterogeneity has been observed in the response of tumor cells to chemotherapy,
which is associated with imbalances in mitochondrial dynamics and function leading to
adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting
mitochondria-shaping proteins may prove to be a promising approach to treat
chemotherapy resistant cancers. In this review, we summarize the alterations of
mitochondrial dynamics in chemotherapeutic processing and the antitumor
mechanisms by which chemotherapy drugs synergize with mitochondria-shaping
proteins. These might shed light on new biomarkers for better prediction of cancer
chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the
clinical treatment of cancers.
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INTRODUCTION

Mitochondria are important dynamic organelles which can remodel morphology and functions, when
cells are exposed to severe conditions, such as hypoxia, viral infections, and nutrient deprivation (1, 2).
These cellular organelles are directly involved in the development of diseases such as diabetes,
neuropathy, cardiovascular malfunctions, and cancer (3, 4). Mitochondrial dynamics consist
principally of two mutually constrained remodeling processes, mitochondrial fission and fusion (5).
Abbreviations: Drp, Mitochondrial dynamin-related protein; Mff, Mitochondrial fission factor; MiD49/51, Mitochondrial
dynamics protein of 49/51kDa; Mfn1/2, Mitofusin1/2; OPA1, Optic atrophy 1; HCC, Hepatocellular carcinoma cells; NPC,
Nasopharyngeal cancer cells; RSV, Resveratrol 5-FU, 5-fluorouracil; XIAP, X-linked inhibitor of apoptosis protein; MMP,
Mitochondrial membrane potential; ERKs, Extracellular signal-regulated kinases; HBV, HCV, Hepatitis B and C viruses; EMT,
Epithelial-mesenchymal transition; LMP1, EBV encodes oncoprotein latent membrane protein 1; BTICs, Brain tumor
initiating cells; OXPHOS, Oxidative phosphorylation; 2-DG, 2-deoxy-Dglucose; PKM2, pyruvate kinase; AKAP1, A-kinase
anchoring protein 1.
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Several shaping proteins are involved in this process and mainly
include fission proteins, such as mitochondrial dynamin-related
protein 1 (Drp1) and mitochondrial outer membrane receptor
proteins [i.e., mitochondrial fission 1 protein (Fis1), mitochondrial
fission factor (Mff), and mitochondrial dynamics protein of
49/51kDa (MiD49/51)], and fusion proteins such as
mitofusin1/2 (Mfn1/2) and optic atrophy 1 (OPA1) (6, 7).
Tumor cells can adjust their mitochondrial morphology in
response to specific stressors to maintain functions that can
promote tumor phenotypes (8). These adjustments have pivotal
significance in tumorigenesis, ranging from enhanced malignant
transformation and tumor progression to the impact on the
response to treatment and anticancer immune monitoring (9–
12). Importantly, mitochondria are major organelles associated
with chemotherapeutic drug resistance and imbalances in
mitochondrial dynamics influences sensitivity to chemotherapy,
which are related to oxidative stress states, changes in
mitochondrial metabolism-related enzymes and metabolites, and
alterations in the mitochondrial-associated death pathway (13–15).
Frontiers in Oncology | www.frontiersin.org 2
MITOCHONDRIAL DYNAMICS
AND CANCERS

Mitochondrial Fission and Tumors
Divided mitochondria exhibit dot-like and fragmentary features.
This dynamic process participates in tumor heterogeneity,
promotes the malignant phenotype, accelerates tumor
progression and invasion, and affects treatment and prognosis
(16, 17). Mitochondrial fission is thought to be a multi-step and
complex process (Table 1). Raised cytosolic calcium triggers the
activation of endoplasmic reticulum (ER) protein inversion
formulator 2 (INF2) which redistributes actin filaments around
mitochondria and expands the ER-mitochondria contact point
to generate forces that reduce mitochondrial diameter (18, 19,
33); Spire (22), profilin, cofilin, and Arp2/3 (23) are best known
as regulators of actin filament, bind to almost all formins (6) that
facilitate the actin assembly (34). Then, Myosin II is recruited to
the fission site and acts on anti-parallel actin filaments,
causing network deformation and leading to mitochondrion
TABLE 1 | The functions of mitochondria-shaping proteins.

Mitochondria-shaping proteins Function Mechanism localization Refs

IFN2 Fission INF2 response to Ca2+, redistributing actin
filaments

ER (18, 19)

Actin Fission Surrounding mitochondria and expands the
ER-mitochondron contact sites

Cytosolic (20, 21)

Myosin II Fission Attaches to the fission site, causing actin
filaments deformation and shrinkage of
mitochondrion

Cytosolic (20)

Spire Fission promotes the actin assembly Cell nucleus (22)
Profilin Fission Binds to formins and facilitates the actin

assembly
Cytosolic (23)

Cofilin Fission Binds to formins and facilitates the actin
assembly

Cytosolic (23)

Arp2/3 Fission Binds to formins and facilitates the actin
assembly

Cytosolic (23)

MCU Fission Responsible for Ca2+ influx into
mitochondria and facilitates mitochondrial
fission

IMM (24)

Drp1 Fission Binding to mitochondrial outer membrane
receptor proteins and mediating the
formation of mitochondrial fragments

Mainly cytosolic but translocated to the OMM during activation (21, 25)

Dnm2 Fission Recruitment by mitochondrial adaptor
proteins and constricted mitochondrial neck

Mainly cytosolic but translocated to the OMM during activation (21)

Fis 1 Fission Recruitment of Drp1 OMM (6, 7)
Mff Fission Recruitment of Drp1 OMM (6, 7)
MiD 49/51 Fission Recruitment of Drp1 OMM (6)
Endophilin B1 Fission Recruitment of Dnm2 OMM (21)
MTP18 Fission Leads to mitochondrial fission IMM (26)
Mfn1 Fusion OMMs aggregated together OMM (27, 28)
Mfn2 Fusion OMMs aggregated together OMM (27, 28)
MSTO1 Fusion Augments or starts MOMs fusion by

interacting with mitofusins
Cytosolic (29)

MitoPLD Fusion Converts cardiolipin to phosphatidic acid and
promotes OMMS fusion

OMM (19)

Bax, Bak Fusion Regulate the activity of Mfn2 OMM (30)
Opa1 Fusion IMMs fusion IMM (31)
Oma1 Fusion Produces the soluble form of S-Opa1 by

cleavaging L-OPA1
IMM (32)

Yme1l Fusion Maintains mitochondrial morphology and
complex respiratory activity

IMM (27)
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shrinkage (20). Drp1, a marker of mitochondrial dynamics,
encoded by the DNM1L gene, is a cytosolic GTPase (25). The
activity of Drp1 is regulated by post-translational modifications,
including phosphorylation, ubiquitination, and SUMOylation.
Nextly, activated Drp1 is recruited by mitochondrial fission
factors like Fis 1, Mff and MiD49/51 to the marked division
sites. This binding promotes Drp1 oligomerization, constituting
a ring-like structure that benefits an further narrowing of the
mitochondrial outer membrane (OMM) (20). Additionally,
mitochondrial calcium uniporter (MCU), anchored in the
inner mitochondrial membrane (IMM), is the most significant
single-way channel responsible for Ca2+ influx into
mitochondria (24). MCU upregulates the expression of Drp1/
Fis1 and facilitates the migration of Drp1 into mitochondria (35).
At the same time, GTP hydrolysis results in conformational
changes which further augment membrane contraction. In spite
of the fact that Drp1 can make the membrane tubular, it fails to
perform membrane cleavage (36). In fact, the GTPase Dynamin
2 (DNM2) assembles in the Drp1-regulated mitochondrial
constriction neck to push mitochondrial scission by the
adaptor proteins Endophilin B1 (Bif-1 and SH3GLB1) (21, 37).
Finally, the mitochondrion splits into two daughter
mitochondria and the fission complex is disassembled
(Figure 1). Generally, phosphorylated Ser616/Ser637 in human
and Ser600/Ser579 in mouse levels are critical for the activity of
Drp1 (38). Phosphorylation of Drp1 Ser616 promotes the
Frontiers in Oncology | www.frontiersin.org 3
translocation of Drp1 from the cytoplasm to the outer
mitochondrial membrane, which upregulates the Drp1 activity,
whereas phosphorylation of Ser637 has opposite effects (39, 40).
However, a new study revealed that phosphorylated Drp1 Ser637
distributes to both the cytosol and mitochondria. MiD49/51 and
Mff interact with phospho-Drp1 Ser637 and nonphospho-
Drp1Ser637, which do not play a major role in controlling
mitochondrial fission in 293T cells. Importantly, elevated Drp1
activity not only promotes tumor cell proliferation and
migration, but also assists in maintaining cell stemness and
influences tumor invasion and metastasis as well as response to
tumor therapy (41). Recently, inhibition of Drp1 activity in lung
cancer cells was reported to promote cancer cell cycle arrest and
increase transient apoptosis (42). In addition, analysis of clinical
glioma tissue samples revealed that patients with higher levels of
phosphorylated Drp1 Ser616 had a poorer survival prognosis
(43). These studies further suggest that targeting the Drp1
protein to suppress mitochondrial fission may be a new
strategy to overcome tumor survival.

Mitochondrial Fusion and Tumors
Fused mitochondria exhibit an interconnected and networked
structure. Mitochondrial over-fusion is associated with cancer
biology and etiology (27, 44). This dynamic procedure is
performed by both outer and inner membranes, with outer
membrane fusion mediated by the outer membrane protein,
FIGURE 1 | The mechanism of mitochondrial fission. INF2 causes the polymerization of actin at the ER-mitochondrial contact point to generate forces that drive ER
tubules around the mitochondria and reduce mitochondrial. Actin-regulatory factors induce actin filament nonequilibrium assembly. Myosin II is recruited to the fission
site, causing mitochondrion shrinkage. Subsequently, DRP1 is recruited to the marked division sites to bind to its OMM receptors (Fis 1, Mff, MiD49/51). DNM2
assembles in the DRP1-regulated mitochondrial constriction neck to push mitochondrial scission. GTP hydrolysis results in conformational changes which further
augment membrane contraction. Finally, mitochondrion splits to two daughter mitochondria, and the fission complex are disassembled.
November 2021 | Volume 11 | Article 769036
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Mfn1/2, and inner membrane fusion mediated by the optic nerve
atrophy protein, OPA1 (28, 31) (Table 1). Mitofusins contain
two transmembrane (trans) domains in between HR1 and HR2
domains. Firstly, the HR2 domain of mitofusins constitute an
anti-parallel coiled coil and tie the OMMs together in trans (45).
MitoPLD, a member of the phospholipase D family, is bound to
the OMM, where it converts cardiolipin to phosphatidic acid,
allowing the recruitment of adaptor proteins, bring the
membranes closer together (19). Then, GTP hydrolysis triggers
a massive conformational rearrangement of mitofusins, which
result in mitochondrial pairing and an increase of OMMs
junctions (46). In addition, Bax and Bak proteins are involved
in regulating the activity of Mfn2. Bax drives the focal
localization of Mfn2 on the outer mitochondrial membrane,
reduces the membrane mobility and increases the assembly of
Mfn2 (30). Moreover, misato (MSTO1) is a soluble cytoplasmic
protein that moves to the outer face of the MOM, where it can
augment or start MOMs fusion by interacting with mitofusins
(29). Following outer membrane fusion, OPA1 is proteolytically
hydrolyzed by two endosomal peptidases: Oma1 and the i-AAA
protease Yme1l to create two active forms. Long L-OPA1, which
is anchored to the mitochondrial inner membrane, and soluble
short S-OPA1, which is located at the mitochondrial
intermembrane space (32). IMMs fusion is completed by the
combined action of L-OPA1 and S-OPA1 (47). Transient head-
Frontiers in Oncology | www.frontiersin.org 4
to-tail assembly of L-OPA1 induces membrane curvature that
producing unstable tips on two opposing IMMs (27). After GTP
of L-OPA1 hydrolysis, IMMS fused together and cristae
maintenance (47) (Figure 2). The involvement of Mfn1/2 in
the regulation of tumorigenesis is assumed and its activity is less
well-reported. Accumulated evidence has shown that tumor cells
usually have a low fusion protein phenotype (48–51). For
example, lung cancer (49) and colon cancer cells (42) have
been shown to often exhibit an imbalance in mitochondrial
network structure (i.e., more fission than fusion). This
phenotype can be reversed by upregulation of Mfn2,
thereby promoting cell cycle arrest and increased apoptosis.
Clinically, the Mfn2 protein is poorly expressed in human
gastric tumors, with predominant mitochondrial hyper-
division and a poor survival prognosis (51). Consistent with
this report, lower Mfn2 expression is correlated with more
malignant breast tumors (52), which is proposing Mfn1/2 as a
tumor suppressor. Moreover, breast cancer cells with low Mfn1
expression are more migratory and thus overexpression of Mfn1
is associated with mitochondrial elongation, which significantly
inhibits the metastatic ability of breast cancer cells (53). Recently,
cumulative studies have revealed the function of OPA1 in tumor
advancement (47, 50, 54). Emerging evidence indicates that
hepatocellular carcinomas have higher levels of OPA1
expression compared to non-tumor tissues. Targeting OPA1
FIGURE 2 | The mechanism of mitochondrial fusion. The HR2 domain of Mfn1/2 constitute an anti-parallel coiled coil and ties the OMMs together in trans.
MitoPLD can bring the membranes closer together. Then, GTP hydrolysis triggers a massive conformational rearrangement of Mitofusin, placing two OMMs
together. Following outer membrane fusion, L-OPA1 is anchored to the mitochondrial inner membrane, transient head-to-tail assembly of L-OPA1 induces
membrane curvature that producing unstable tips on two opposing IMMs. After GTP of L-OPA1 hydrolysis, IMMS fused together. S-OPA1 is located at the
mitochondrial intermembrane space.
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depresses mitochondrial fusion and leads to cell death (50). The
tubular network of mitochondria meditated by OPA1 favors
tumor cell proliferation signals that may be linked to c-Myc
activation (54).
THE MECHANISM OF MITOCHONDRIA-
SHAPING PROTEINS AND
CHEMOTHERAPY

Mitochondrial dynamics confer bioenergetic plasticity to tumor
cells, allowing them to escape chemotherapy-induced death
pathways under stressful conditions. Understanding whether
mitochondrial fission or fusion serve as pro- or anti-cell death
factors is important, specifically with relevance to cell type, cell
state, and death initiators (55). Therefore, comprehending the
mechanisms of imbalanced mitochondrial dynamics during
tumor development and progression is critical for effective
cancer treatment.

Mitophagy Serves as a Bridge to
Mitochondria-Shaping Proteins Dependent
on Chemosensitivity
Mitophagy is the process of selective mitochondrial degradation
through autophagy, an evolutionarily conserved cellular
procedure for removing overabundant and impaired
mitochondria from eukaryotic organisms (56). The general
pathways of mitophagy can be categorized into two forms:
ubiquitin-mediated mitophagy and receptor-mediated
mitophagy. Parkin can ubiquitinate several outer mitochondrial
membrane proteins, such as Mfn1, Mfn2, VDAC (57).
Ubiquitinated proteins such as Mfn1/2 can be recognized and
bound by autophagy-associated protein LC3 to induce
mitochondrial autophagy (58). In the face of stress, mitophagy
receptors such as FUNDC1 and BNIP3 can promote
mitochondrial fission (59). For example, FUNDC1 acts directly
with Drp1 and recruits it to the outer mitochondrial membrane to
contribute to mitochondrial fragmentation (60). In addition,
BNIP3 can directly interact with OPA1 and facilitate the
breakdown of OPA1 oligomers, which increases mitochondrial
fission in HeLa cells (61). In the initial stage of chemotherapeutic
drug intervention, mitophagy keeps normal cellular metabolism
and suppresses tumorigenesis. With the prolongation of
chemothrapy, however, the occurrence of mitophagy improves
the tolerance of tumor cells and continuously screens tumor cells
to retain cells with stemness, leading to chemoresistance (62).

Interestingly, several mitophagy receptors, including BNIP3,
NIX and BCL2L13, belong to the BCL2 family (60). BCL2 family
proteins have been described to be involved in both apoptosis and
mitophagy processes, which keeps them at the center of
mitochondrial homeostasis (63). Dysregulation of these key
molecules involved in the induction of mitochondrial apoptosis
and mitophagy are the main mechanisms of increased tumor
chemoresistance, which includes decreases in the ratio of the pro-
apoptotic protein, Bax, to the anti-apoptotic protein, Bcl2 (64).
Importantly, fragmented mitochondria are conducive to
Frontiers in Oncology | www.frontiersin.org 5
mitophagy (62, 65). Hepatocellular carcinoma (HCC) cells carry
their own defense mechanisms, including autophagy and
mitophagy. With cisplatin intervention, the activation of Drp1
induced mitophagy in favor of HCC survival. Thus, the Drp1-
specific inhibitor, Mdivi-1, targets mitochondrial autophagy,
upregulates Bax and downregulates Bcl-xL, increases
mitochondrial membrane permeability, and stimulates
cytochrome c release, thereby increasing cisplatin-induced
apoptosis in HCC (66). Similar with it, a finding in colorectal
cancer reported that high-mobility group box 1 protein (HMGB1)
secreted from tumor cells after chemoradiotherapy which
promotes tumor cells regrowth, proliferation and metastasis.
HMGB1/receptor for advanced glycation end product (RAGE)/
Erks signal triggers the activation of Drp1, inducing LC3 and p62-
dependent mitophagy for chemoresistance in colorectal cancer
cells. Furthermore, rectal cancer patients with high phospho-
Drp1Ser616 are associated with high risk on developing tumor
relapse and poor survival time after chemoradiotherapy treatment
(67). These indicate that signals facilitating mitophagy are
associated with mitochondrial fission-regulated chemoresistance,
whereas apoptosis is often accompanied by mitochondrial fusion-
dependent chemosensitivity (68).

Although only limited evidence is available, mitochondrial
fission appears to be one of the mechanisms by which cisplatin
induces cytotoxicity. Stress-inducible cellular protein P62 acts as
a signaling center to modulate multiple cellular traits, such as
autophagy and apoptosis. The Bcl2 inhibitor ABT737 triggers
selective aggregation of p62 during mitochondrial fission.
Increasing the ratio of the Drp1 60kD form to the Drp1 80kD
form subsequently activates mitochondria-dependent
autophagy, which increases sensitivity to cisplatin. This
investigation demonstrates that the 60kD form of Drp1,
located in the mitochondria, may be the main pro-fission
driver, which could enhance autophagy in favor of
chemotherapy (69). However, another study showed that
inhibiting mitophagy plays antitumor effects in breast cancer.
Liensinine, a new inhibitor of mitophagy, in combination with
doxorubicin inhibits the over-accumulation of mitophagosomes
to enhance mitochondrial fission-dependent apoptosis and
improve chemosensitivity (70).

P53 in the Mitochondrial Shaping
Protein-Regulated Chemotherapy
The C-terminus of the p53 protein contains the mitochondrial
localization sequence (71) that enhances mitochondrial
localization to mediate chemoresistance. P53 can elevate the
activity of Drp1 by its mitochondrial translocation and the
phosphorylation of Drp1 Ser616 (72). Cyclooxygenase-2
(COX-2) increases the stemness of nasopharyngeal carcinoma
(NPC) cells by enhancing the mitochondrial translocation of p53
that triggers the activation of Drp1. Importantly, the natural
compound resveratrol (RSV) inhibits the COX-2/p53/Drp1
signaling axis to reduce mitochondrial fission, leading to
increased sensitivity of NPC to the chemotherapy drug, 5-
fluorouracil (5-FU) (41). However, a study revealed that p53 is
the downstream regulator of Drp1. Repeated administration of
nedaplatin contributes to extensive hepatocellular injury and
November 2021 | Volume 11 | Article 769036
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resistance in patients of hepatocellular carcinoma by inactivating
the p53/Bcl-2 pathway (73). Additionally, Drp1 has been
reported to inhibit the expression of p53 and enhance
progression into the HCC cells cycle. Therefore, we
demonstrated that mitochondrial shaping protein Drp1
negatively regulates p53 leading to chemoresistance (74).

In addition, p53 exerts the dual function of mitochondrial
translocation and nuclear activation, which increases chemotherapy
sensitivity by driving mitochondria-shaping proteins. For
instance, wild-type p53 moves to the mitochondria in response
to cell cycle arrest, DNA damage response, and the induction of
apoptosis (75). In gynecological cancers, decreasing the level of
phosphorylated Drp1 Ser637 promotes mitochondrial
fragmentation and diminishes chemoresistance (76, 77).
Piceatannol, an extract from grapes and red wine, is capable of
inducing p53 nuclear activation and suppresses the X-linked
inhibitor of apoptosis protein (XIAP) (76). Also, the enhanced
mitochondrial fission or reduced fusion have been shown to be
related to chemoresensitive. Following the cisplatin-induced
DNA damage response, p53 is phosphorylated and
translocated to the mitochondria, where it pushes the self-
cleavage and activation of the mitochondrial protease OMA1.
OMA1 inactivates OPA1 by cleaving L-OPA1 to S-OPA1, which
inhibits mitochondrial fusion and induces apoptosis (78, 79).
Furthermore, mitochondrial chaperone protein CLPB sustains
Frontiers in Oncology | www.frontiersin.org 6
the mitochondrial cristae structure by interacting with the
cristae-shaping protein OPA1, while its deletion facilitates
apoptosis by causing cristae remodeling and mitochondrial
stress reactions. Targeting CLPB conquers venetoclax
resistance regulated by p53 loss and renders acute myeloid
leukemia (AML) cells sensitive to the co-treatment with
Venetoclax and Azacitidine through the induction of pro-
apoptotic proteins (80). These studies further indicated that
chemotherapy-sensitive cancer cells are mitochondria fission-
dependent (Figure 3).

Hypoxia-Induced ROS Stress-Dependent
Drp1 Mediated-Mitochondrial Fission
in Chemotherapy
Chemotherapy has long been the cornerstone of cancer treatment,
but its ability to kill tumor cells is oxygen-dependent. Hypoxia
induces an increased expression of Drp1, thereby promoting
mitochondrial fission and enhancing the ability of metastatic
tumor cells to invade and metastasize in breast cancer. Thus
inhibition of Drp1-dependent mitochondrial fragmentation
attenuated this hypoxia-induced invasive metastasis (81).
Interestingly, this study also reported that cisplatin induced
significant apoptosis in cells exhibiting a high mitochondrial
fission state. Moreover, Mdivi-1 targeted Drp1 and siRNA
silencing of Drp1 effectively increased the mitochondrial
FIGURE 3 | Mitophagy and p53 in mitochondrial shaping protein-regulated chemotherapy. In chemosensitive cells, cisplatin-induced DNA damage exerts dual
functions of p53 nuclear activation and mitochondrial translocation, which drives mitochondria-shaping proteins to promote mitochondrial fission and inhibit fusion,
thereby increasing apoptosis. However, chemotherapeutic drugs can stimulate p53 mitochondrial translocation or directly increase mitochondrial fission by activation
of Drp1, thus promoting autophagy to escape apoptosis in chemoresistant cells.
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membrane potential (MMP), the generation of ROS, and
apoptosis in breast cancer cells (81). This suggests that the
inherent metastatic properties of breast cancer may be due
to the fission of the mitochondria under hypoxia. Drp1-driven
mitochondrial division can increase the antitumor activity of
cisplatin in breast cancer cells. In contrast, a new reports
identified that hypoxia-induced ROS triggers mitochondrial
fission by down-regulating phosphorylated Drp1 (Ser637) and
Mfn1 expression levels in ovarian cancer cells, thereby inducing
cisplatin resistance (82). This may be attributed to the observation
that chemoresistant cells showed greater oxidative stress activity
and increased mitochondrial division compared to chemosensitive
cells, favoring cell proliferation and autophagy (83).

Generally, oncogenic transformation is followed with an
increase in ROS levels in cells, contributing to redox imbalance
(84). Most tumor cells are killed by oxidized free radicals and
excess ROS (85). For example, the inhibitor of proviral integration
site for moloney murine leukemia virus (PIM) kinases induces the
production of mitochondrial ROS by leading to Drp1-dependent
mitochondrial fission which results in docetaxel sensitivity (86).
Therefore, overcoming anticancer activity and improving the
sensitivity of chemotherapy by effectively interfering with
hypoxia or ROS is crucial. Notably, oxidative stress is an
important mechanism of cisplatin toxicity and mitochondria are
the main targets of cisplatin-induced oxidative stress, with excess
ROS production eventually leading to cell death. For example, co-
culture of bone marrow mesenchymal stem cells (MSCs) with
acute leukemia cells stimulates activation of extracellular signal-
regulated kinases (ERKs), which trigger Drp1-dependent
mitochondrial fragmentation and leads to decreased
mitochondrial ROS levels and promotion of the glycolytic
phenotypic switch resulting in chemoresistance (87). This study
proposes that mitochondria fission interferes with cisplatin-
induced oxidative stress to reduce cytotoxicity and escape death,
while undergoing metabolic reprogramming to increase metabolic
activity, leading to chemoresistance.
REMODELING OF MITOCHONDRIA-
SHAPING PROTEINS AND ENERGY
METABOLISM TO MODULATE
CHEMORESISTANCE

Tumor metabolism is inextricably linked to mitochondrial
dynamics, and mitochondrial fission and fusion are adaptive
processes that continually adjust mitochondrial size, shape, and
subcellular location to adapt to changes in the cellular
environment. These changes obviously contribute to
mitochondrial quality control and cellular responses to energy
stresses (88).

Mitochondrial Fission Prefers Glycolysis to
Resist Chemotherapy
During metabolic reprogramming of tumor cells, mitochondrial
morphology changes, with a predominant preference for
Frontiers in Oncology | www.frontiersin.org 7
fragmentation. Reports indicate that most tumor stem cells are
more prone to glycolysis, and such tumors were recognized as
glycolysis-addictive tumors, based on increased glucose uptake,
lactate production, and expression of glycolytic enzymes, which
may be related to their mitochondrial hyper-fragmented state
(89–91). Glycolysis-additive cancers include lung, gastric, breast,
glioma, colon, neuroblastoma, ovarian, pancreatic, and
melanoma with high levels of Drp1 and low levels of Mfn1/2
proteins. Thus, inhibition of Drp1 or overexpression of Mfn1/2
that remodels mitochondrial shape and metabolism could result
in decreased proliferation and increased apoptosis of tumor cells
(42, 51, 53, 92).

For instance, mitochondrial shaping protein Drp1 affects the
metabolic reprogramming of brain tumor-initiating cells
(BTICs). Compared with normal neural stem cells, the
mitochondria of BTICs are highly fragmented and
upregulation of GLUT3 increases glycolytic flux, indicating
that the coupling of glycolysis and mitochondrial division is
essential in neuronal CSCs (43). Indeed, some findings indicated
that oncogene-mediated Drp1 activity-driven metabolic changes
are associated with high levels of ROS and glycolytic flux (88, 93,
94). These studies suggest that Drp1-dependent mitochondrial
fission and glycolytic metabolism are mutually reinforcing
processes in tumor progression and that oncogenic gene-
regulated metabolic reprogramming will result in changes in
mitochondrial morphology to support metabolic alterations. In
addition, deletion of Mfn1 increased a shift in the metabolic
pattern of hepatoma cells from OXPHOS to glycolysis, with
enhanced cell proliferation and epithelial-mesenchymal
transition (EMT) capacity. The glycolysis inhibitor 2-deoxy-
glucose (2-DG) reverses vascular invasive metastasis in cancer
cells with loss of Mfn1 (95).

These findings imply that mitochondrial fission supports
metabolic alterations as a non-negligible factor in tumor
initiation and progression. Importantly, it is also closely related
to chemotherapy. Some interesting researches revealed that anti-
apoptotic protein complex induces mitochondrial fragmentation
by up-regulating the translocation of Drp1 to mitochondria and
inhibits mitochondrial respiratory complex I, thereby preventing
the accumulation of ROS (96, 97). The loss of energy production
due to OXPHOS can be compensated for by an increase in
glycolysis. Thus, the glycolysis inhibitor 2-DG can attenuate the
anti-apoptotic effects of survivin and decrease tumor cell
proliferation, making the tumor sensitive to chemotherapeutic
agents (96, 97). Recently, we revealed that Epstein-Barr virus
latent membrane protein 1 (EBV-LMP1) increases the
mitochondrial fission-induced glycolytic metabolic phenotype
for NPC cells survival to resist chemotherapy, and
phosphorylation of Drp1 Ser616 or dephosphorylation of
Drp1Ser637 is essential for LMP1-regulated enhancement of
glycolytic metabolism (98). In addition, our earlier studies have
shown that LMP1 activates HK2, a key metabolic enzyme in the
glycolysis, and facilitated NPC cells proliferation by blocking
apoptosis (99). This suggests that the tumor-causing protein
LMP1 alters mitochondrial morphology, possibly through the
modifications of enzymes related to glycolytic metabolism in
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NPC cells and then performs metabolic reprogramming to
increase chemoresistance.

Mitochondrial Fusion Favors OXPHOS to
Resist Chemotherapy
Increasing evidence indicates an upregulation of OXPHOS in
many types of cancer, such as diffuse large B-cell lymphoma and
pancreatic cancer, and identifies them as OXPHOS-addictive
tumors (100, 101). Studies in pancreatic cancer have shown
that subsets of cancer stem cells with elevated metastatic and
neoplastic potential are OXPHOS-dependent (102). Fused
mitochondria in tumor stem cells are more dependent on
OXPHOS because they increase MMP expression, oxygen
consumption, and mitochondrial biogenesis (100, 103). Usually,
larger mitochondrial networks arising from fusions are observed in
metabolically active cells (104).High expression ofMfn2, enhanced
OXPHOS respiratory complex and ATP synthase, which facilitates
the proliferation and progression of tumor cells, thus inducing
doxorubicin resistance in Jurkat leukemia cells (105). In hepatoma
cells, highly activated mTOR signaling increases the interaction of
the M2 isoform of pyruvate kinase 2 (PKM2) and Mfn2 by
phosphorylating Mfn2 and thereby inhibiting the activity of
PKM2 and glycolysis. This further suggests that the mTOR/
Mfn2/PKM2 signaling axis couples the shift of glycolysis to
OXPHOS to promote cancer cell growth (106). The mechanisms
probably involves mitochondrial fusion proteins, which would
mediate metabolic related-enzymes through multiple signaling
pathways to achieve resistance to apoptosis.

Consistent with these findings, the mitochondrial characteristics
of paclitaxel-resistant lung cancer cells are significantly altered.
These changes include decreased mitochondrial volume and
membrane potential and a high activation of the mitochondrial
Frontiers in Oncology | www.frontiersin.org 8
biotransformation pathway, with decreased expression of the outer
mitochondrial membrane receptor protein Fis1 and increased
expression of PGC-1 and the fusion protein Mfn1/2 (107). PGC-
1 is a co-regulator that mediates transcription factors for
mitochondrial biogenesis and influences mitochondrial
respiration, reactive oxygen defenses, and fatty acid metabolism
(108). The paclitaxel-resistant cells with high levels of PGC-1
induced mitochondria to form a net-like structure to resist
external damage and help mitochondria escape autophagy by
increasing the efficiency of ATP synthesis. All of these studies
show that the mitochondrial fusion protein Mfn1/2 can
stimulate the mitochondrial biogenesis pathway and maintain
mitochondrial activity in paclitaxel-resistant cancer cells (107).
In addition, with long-term exposure to cisplatin, OPA1-
dependent mitochondrial fusion gradually increases. Thus, the
expression of PARP-1 and tumor cell apoptosis was decreased
leading to cisplatin resistance. At the same time, histone
deacetylase Sirt1 was also increased. Sirt1 is an important
assessment marker for tumor cell remodeling and the
mitochondrial metabolic shift to OXPHOS and resistance to
cisplatin treatment (109). This heightened resistance may be
attributable to the observation that the activity of SIRT1 is closely
controlled by the content of the mitochondrial OXPHOS
metabolite NAD+. Thus mitochondrial elongation favors its
cristae formation and the assembly of respiratory complexes
enhancing OXPHOS. This mitochondrial change activates
SIRT1 by enhancing NAD+ levels, which inhibited glycolysis in
response to energy stress and promotes tumor cell survival (110).
This study implies that tumor cells respond to chemotherapeutic
agents by adjusting mitochondrial morphology and that
mitochondrial fusion supports enough energy to lead to the
long-term effect of cisplatin-resistant therapy (Figure 4).
FIGURE 4 | Mitochondrial shaping protein-dependent metabolism and chemoresistance. Tumors addicted to glycolysis exhibit fragmented mitochondria that are
predominantly Drp1-dependent with high reactive oxygen species (ROS) levels to enhance chemoresistance. In contrast, tumors addicted to OXPHOS exhibit high
Mfn1/2-regulated fused mitochondria possessing elevated ATP, MMP, OCR, and mitochondrial biogenesis to resist chemotherapy.
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Micro RNA Drives Mitochondrial Dynamics
and Energy Metabolism to Modulate
Chemoresistance
Generally, miR-488 exhibits low expression in chemoresistant
cancer cells, which can suppress mitochondrial fission proteins,
such as Drp1 and Fis1, by decreasing downstream oncoprotein
Six1. As mitochondrial fission reduces, the increased activity of
the respiratory chain complex allows for the induction of ROS
production and a decrease in MMP. This indicates that
dampening the Six1/Drp1 signaling pathway contributes to the
suppression of cisplatin resistance (111). In addition, different
microRNAs perform various functions. For instance, miR-148a-
3p governs cisplatin sensitivity by downregulating A-kinase
anchoring protein 1 (AKAP1), which in turn promotes
mitochondrial fission. As a substrate of the energy metabolic
regulator AMPK, AKAP1 is upregulated in cisplatin-resistant
gastric cancer tissues and induces phosphorylation of Drp1
Ser637. The outcome showed inhibition of Drp1 activity and
reduced mitochondrial fission, which promoted cell survival
leading to increased cisplatin resistance (112). These discoveries
implied that microRNA rebuilding of mitochondrial structure
can synergize with chemotherapeutic agents to inhibit
tumor growth.
VIRUS-DRIVEN DRP1-DEPENDENT
MITOCHONDRIAL FISSION MEDIATES
CHEMORESISTANCE

Recently, tumor mitochondrial fission conducted by various onco-
viruses has been demonstrated. Hepatitis B and C viruses (HBV,
HCV) enhance the expression and activity of Drp1 in
hepatocellular carcinoma cells, causing an induction of
mitochondrial fission and mitophagy that alleviate virus-evoked
apoptosis (113, 114). In gastric and breast cancers, the EBV latent
membrane protein 2A (LMP2A) stimulates mitochondrial fission
and triggers cell migration and EMT (115), suggesting that virus-
driven mitochondrial fission boosts tumor cell survival and may
be an important mechanism by which viruses mediate resistance
to cancer therapy. Our recent study revealed that EBV-LMP1
differentially regulates the signaling axes of AMPK/p-Drp1Ser637
and cyclin B1-Cdk1/p-Drp1Ser616 leading to remodeling of
mitochondrial morphology and function. Furthermore, clinical
NPC samples indicate that high Drp1 activity is associated with a
poor prognosis (98). EBV-LMP1 induced mitochondrial
fragmentation, resulting in an increased IC50 value of cisplatin
in NPC. Metformin and cucurbitacin E targeting the Drp1
signaling axes enhanced the sensitivity of cisplatin in vitro and
in vivo. This is probably due to the observation that in cisplatin-
resistant cancer cells, mitochondria are able to tolerate mtDNA
damage and accelerate fission. Importantly, regaining control of
mitochondrial mass and maintaining cancer cell survival, suggests
an integrated link between mitochondrial dynamics and
chemoresistance triggered by tumor virus-stress offers new
research directions for cancer therapy.
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TARGETED DRUGS FOR
MITOCHONDRIA-SHAPING PROTEINS

Mitochondria-shaping proteins can be used as cancer therapeutic
targets, and their expression and activity can be predictive of tumor
development or as prognostic biomarkers. A variety of drugs
directly targeting mitochondria-shaping proteins have shown
great promise in reducing the viability and proliferation of cancer
cells. For instance, Mdivi-1 is a specific Drp1 inhibitor that is
currently widely used in tumor research (116). It impairs the
oligomerization of Drp1 on OMM and its ability to promote GTP
hydrolysis (116). Given the role of Drp1-mediated mitochondrial
fission in tumor cell proliferation and metastasis, Mdivi-1 has
potential antitumor effects (117). Thus, Mdivi-1 can inhibit cell
proliferation by antagonizing the highly activated Drp1 in tumor
cells, with potential chemosensitizing functions. However, it has
been reported that in neuronal cell lines, mdivi-1 regulates
mitochondrial ROS levels and ETC complex I, which was
independent of mitochondrial length or Drp1 (118). Another
Drp1 inhibitor, p110, blocks the recruitment of Drp1 by Fis1,
thereby inhibiting Drp1 translocation to the outer mitochondrial
membrane, leading to mitochondrial fragmentation and massive
ROS production, which in turn affects apoptosis and cell viability,
and is mainly used in neurodegenerative diseases (119).
Leflunomide is an FDA-approved drug for the treatment of
rheumatoid arthritis, and its pharmacological role is to activate
Mfn2-mediated mitochondrial fusion by inhibiting dihydroorotate
dehydrogenase (DHODH) (120). In pancreatic cancer cells,
leflunomide activates Mfn2, and through inhibition of de novo
pyrimidine synthesis, prevents tumor cell growth and enhances the
chemosensitivity of gemcitabine (121). To date, evidence suggests
that specific inhibitors or activators of mitochondrial fission and
fusion are not widely used in the clinic. In fact, most studies deal
with only non-specific targeting agents, as exemplified by the
inhibitor of upstream regulators that have been approved for
clinical use. The synergistic interaction of these compounds with
chemotherapeutics can also emphasize the multidimensional
function of mitochondrial dynamics in cancer chemotherapy
(Table 2). More relevant, a critical need exists to develop and
identify more drugs that directly interfere with mitochondria-
shaping proteins.
CONCLUSION

Lately, mitochondrial dynamics has been extensively applied in
classifying tumors, predicting clinical prognosis, and assessing
therapeutic response. The study of delicate modifications of
mitochondrial fission and fusion in relation to tumor
development appears to be an active academic frontier. The
chemoresistant phenotype of tumor cells may result from
alterations in mitochondrial dynamics proteins and their
signaling pathways, affecting tumor cell death and
metabolic changes.

Disturbed energy metabolism is an increasingly recognized
mechanism by which mitochondria-shaping proteins mediate
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chemoresistance. Tumors addicted to glycolysis show
predominantly Drp1-dependent mitochondrial fragmentation
in order to enhance chemoresistance. In contrast, tumors
addicted to OXPHOS exhibit high Mfn1/2-regulated fused
mitochondria to resist chemotherapy. On the basis of
metabolic typing, Drp1 or Mfn1/2 proteins might serve as
markers for further stratification of tumor chemotherapy
resistance. Furthermore, our recent findings reveal that the
onco-virus protein EBV-LMP1 exerts a signaling function that
indirectly regulates mitochondrial shaping protein-induced
chemoresistance. Other tumor causing viruses, such as HBV
and HCV have been reported to drive mitochondrial fission by
activating Drp1 to evade apoptosis. The biological effects may
affect chemotherapy sensitivity of HBV- or HCV-related liver
cancer, but the mechanism is still unclear. Of course, these
viruses may play an indirect regulatory role similar to EBV
viruses or encoded proteins might translocate to the
mitochondria and interact with mitochondria-shaping proteins
directly, which needs to be further investigated.
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Overall, we reviewed the alterations of mitochondrial
dynamics in cancer chemotherapy from a tumor cell
perspective. Moreover, its role in the tumor microenvironment
should also be brought to our attention. Mitochondria have
essential functions in both innate and adaptive immunity.
Mitochondrial remodeling allows quiescent immune cells to
rapidly change their metabolism and become activated,
producing mediators, such as cytokines, chemokines and even
metabolites to execute an effective immune response (122).

In innate immunity, mitochondrial fusion enhances the
formation of (extra-neutrophilic traps) NETs in neutrophils
(123) and promotes M2-like polarization of bone marrow-
derived macrophages (124). Furthermore, hypoxia invokes
excessive mitochondrial fission in liver tumor-infiltrating NK
cells, while enhancing mTOR-Drp1 signaling and decreasing the
anti-tumor activity of NK cells (125). In adaptive immunity,
mitochondria-shaping proteins are required for T cell activation,
differentiation, migration (126). OPA1-regulated T cell
mitochondrial fusion promotes T memory cell metabolism by
TABLE 2 | Summary of targeted mitochondrial dynamics synergistic chemotherapy.

Cancer types Chemotherapeutics Intervention Mitochondrial
shaping
proteins

Findings Refs

Hepatocellular
carcinoma

Cisplatin Drp1 inhibitor/
Mdivi-1

Drp1 Mdivi-1 targets mitochondrial autophagy, increasing cisplatin-induced
apoptosis

(66)

chollangiocarcinoma Cisplatin Bcl2 inhibitor/
ABT737

Drp1 ABT737 promotes the ratio of Drp1 60 kD/80 kD form in mitochondria by
acting in mitochondrial fission-dependent mitophagy, increasing the sensitivity
to cisplatin.

(69)

Ovarian cancers Cisplatin Piceatannol Drp1 Piceatannol to enhance CDDP sensitivity, and it acts on p53, XIAP, and
mitochondrial fission, leading to more effective induction of apoptosis.

(76)

Ovarian cancers Cisplatin ROS inhibitor
/Piperlongumine

Drp1 Piperlongumine-induced apoptosis appeared to be mediated by Drp1-
dependent mitochondrial fission.

(77)

Breast cancer Doxorubicin Catehol Drp1 Liensinine inhibiting autophagy, activates Drp1 to increase apoptosis and
improve chemosensitivity.

(70)

Nasopharyngeal
cancer

5-fluorouracil Resveratrol Drp1 RSV inhibits the Cox-2/p53/Drp1 signaling axis to inhibit mitochondrial fission,
increased sensitivity of NPC to 5-FU.

(41)

Ovarian cancers Cisplatin OMA1 OPA1 P53 activates Oma1, promoting OPA1 by cleavage L-OPA1 to S-OPA1, which
reduces miyochondrial fusion and sensitizes to cisplatin.

(78)

Breast cancer Cisplatin Drp1 inhibitor/
Mdivi-1

Drp1 Mdivi-1 target Drp1to increase MMP, the generation of ROS and apoptosis. (81)

Ovarian cancers Cisplatin Antioxidant Drp1/Mfn 1 hypoxia-induced ROS triggers mitochondrial fission by down-regulating p-Drp1
(Ser637) and Mfn1 expression levels in ovarian cancer cells, thereby inducing
cisplatin resistance

(83)

lymphoblastic
leukemia

Cisplatin MAPK/ERK
inhibitor,
PD325901

Drp1 ERK triggers Drp1-dependent mitochondrial fragmentation, leading to a
decrease in mitochondrial ROS levels and a promotion in glycolytic phenotypic
switch that resulting in chemoresistance

(87)

Nasopharyngeal
cancer

Cisplatin Metformin/
Cucurbitacin E

Drp1 Decreases mitochondrial fission and increases chemotherapy sensitivity to
cisplatin

(98)

Neuroblastoma Etoposide and
doxorubicin

Glycolysis
inhibitors /2-DG

Drp1 2-DG suppresses mitochondrial fission and increases the pro-apoptotic protein
BCL2L11/BimBCL2L11/Bim and attenuate the anti-apoptotic effect of survivin,
making the tumor sensitive to chemotherapeutic agent.

(97)

Neuroblastoma Cisplatin Targeting Sirt1 OPA1 Sirt1 remodeling mitochondrial metabolic to OXPHOS shift resistance to
cisplatin treatment.

(109)

Lung cancer Paclitaxel Targeting
PGC1, Mfn1/2

Mfn1/2 PGC1 induced Mfn1/2 dependent mitochondrial fusion to resist paclitaxel and
help mitochondria escape autophagy by increasing the efficiency of ATP
synthesis.

(107)

Ovarian cancer Cisplatin Restoration of
miR-488

Drp1 Inhibition of the Six1/Drp1 signaling pathway contributes to the suppression of
cisplatin resistance.

(111)

Gastric cancer Cisplatin Reconstitution
of miR-148a-3p

Drp1 Downregulation of KAP1, which in turn promotes mitochondrial fission. (112)
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altering mitochondrial cristae, leading to activation of the ETC
complex and efficient OXPHOS, improving cellular
immunotherapy against tumors (127).

The main effect of chemotherapeutic drugs in killing tumor
cells is non-immunotoxicity dependent, but there is some
immune activating or inhibiting activity (128). Based on this,
some questions need to be further explored, whether
chemotherapeutic drugs act on mitochondria-shaping proteins
of immune cells and ultimately affect their anti-tumor immune
response. Whether targeting mitochondria-shaping proteins to
regulate mitochondrial morphology in tumor cells also affects the
dynamics of mitochondria in immune cells. A dual role in the
development of tumor chemotherapy by intervening in
mitochondrial dynamics, which is able to both accelerate the
death of tumor cells and enhance the anti-tumor effect of
immune cells. Therefore, a comprehensive understanding of
Frontiers in Oncology | www.frontiersin.org 11
the role of mitochondrial dynamics in cancer chemotherapy
cannot ignore the activity of the immune system.
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