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Intracerebral hemorrhages (ICH) represent about 10–15% of all strokes per year in the 
United States alone. Key variables influencing the long-term outcome after ICH are 
hematoma size and growth. Although death may occur at the time of the hemorrhage, 
delayed neurologic deterioration frequently occurs with hematoma growth and neuronal 
injury of the surrounding tissue. Perihematoma edema has also been implicated as a 
contributing factor for delayed neurologic deterioration after ICH. Cerebral edema results 
from both blood–brain barrier disruption and local generation of osmotically active 
substances. Inflammatory cellular mediators, activation of the complement, by-products 
of coagulation and hemolysis such as thrombin and fibrin, and hemoglobin enter the brain 
and induce a local and systemic inflammatory reaction. These complex cascades lead to 
apoptosis or neuronal injury. By identifying the major modulators of cerebral edema after 
ICH, a therapeutic target to counter degenerative events may be forthcoming.
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iNTRODUCTiON

Intracerebral hemorrhage (ICH) comprises 10–15% of strokes annually in the United States and 
associated with the highest morbidity and mortality (1). There is approximately 40% mortality 
at 1-month postbleed, and only about 20% of those patients regain functional independence (2). 
A key factor affecting ICH outcome is hematoma size and hematoma expansion. Although death 
may occur acutely at the sentinel ICH event, delayed neurologic deterioration often occurs with 
the evolution of the hematoma and injury of the surrounding tissue. Key variables influencing the 
long-term outcome after ICH are hematoma size and location and are not modifiable at the onset 
of symptoms. Hematoma growth can also be a predictor of poor outcome, and recent clinical 
evidence suggests that it may be preventable. Additional risk factors for hematoma growth include 
antithrombotic therapy, hypertension, large initial hematoma size, and genetic predisposition such 
as with APOE genotype. Approximately 30% of patients demonstrate significant hematoma expan-
sion during hospitalization (3). Therapies aimed at the prevention of hematoma growth generally 
target either blood pressure (BP) control or hemostasis. Recent large clinical trials tested therapies 
aimed at modifying these outcomes and included BP reduction and hemostatic therapy with 
recombinant factor VIIa (rFVIIa) assisted by computed tomography (CT) angiography (CT-A) 
findings (4).
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TABLe 1 | Phases of iCH and proposed pathophysiologic events [with 
permission from Rincon and Mayer (59)].

Phase event Time implicated mechanism

I Vascular rupture 1–10 s Chronic vascular changes: 
lipohyalinosis, amyloid angiopathy, 
hypocholesterolemia

II Hematoma formation <1 h Blood pressure, coagulation 
abnormalities

III Hematoma expansion 1–6 h Blood pressure, perihematomal 
vascular + tissue injury

IV Edema formation 24–72 h Cellular and humoral toxicity, 
blood degradation products
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Perihematoma edema (PHE) has also been implicated as a 
contributing factor for delayed neurologic deterioration after 
ICH (5). Cerebral edema forms within hours in the immediate 
vicinity of the clot (PHE) and can last for several weeks. PHE is 
the result of both blood–brain barrier (BBB) disruption and local 
generation of osmotically active substances that spread to adja-
cent structures (6). Inflammatory cellular mediators, activation of 
the complement, by-products of coagulation and hemolysis such 
as thrombin and fibrin, and hemoglobin spread into the brain tis-
sue and induce a local and systemic inflammatory response. This 
process likely results from complex chemotactic signals including 
upregulation of adhesion molecules leading to leukocyte recruit-
ment and migration into the brain tissue (7) (Table 1).

HeMATOMA GROwTH

Studies from ICH models that used histopathology, CT analysis, 
single-photon emission computed tomography (SPECT), and 
both conventional CT and CT-A techniques suggested that sec-
ondary multifocal bleeding into the perihematoma region is more 
likely to occur in individuals who experience early hematoma 
growth. Preliminary histopathological studies provide evidence 
that the presence of microscopic and macroscopic bleeds in the 
area surrounding hematoma may represent ruptured arterioles 
or venules (8). More recent studies that used CT and SPECT 
techniques have shown that in some patients, early hematoma 
growth is associated with secondary bleeding in the periphery of 
the existing hematoma and into congested areas of the perihema-
toma tissue (9).

Irregular clot morphology, which may represent ongoing or 
active bleeding after ICH, is another variable that has been asso-
ciated with (10) early hematoma growth. In support, additional 
secondary studies from large randomized clinical trials on BP 
reduction after ICH have also demonstrated that irregular clot 
morphology is associated with worse long-term outcomes after 
ICH (11). One study using CT-A technology demonstrated that 
the presence of active contrast extravasation into the hematoma 
was associated with subsequent hematoma growth (12) and higher 
mortality (13) in 30–46% of patients (14, 15). Simultaneous bleed-
ing from multiple lenticulostriate arteries has been demonstrated 
angiographically immediately after ICH (16, 17). This evidence 
suggests that early hematoma growth occurs because of bleeding 
into a congested layer of tissue that forms acutely at the periphery 
of the hematoma (18). Possible contributing factors include (a) 

increased local tissue pressure leading to mechanical injury, (b) 
a local fibrinolytic effect, (c) plasma protease induction, and (d) 
secondary inflammation related to clotting proteins and end-
blood products. However, the relative importance of these factors 
in the early hours after ICH is unclear (6, 19–21).

A proposed theory is that the increase in local tissue pressure 
occurs in the brain surrounding the hematoma at the expense of 
a form of “congestive” tissue ischemia. This phenomenon may 
be similar to what is seen after cerebral infarction from cortical 
vein or dural sinus thrombosis. All of these mechanisms coupled 
with regional mechanical and ischemic tissue damage and the 
possibility of a local coagulopathic environment may contribute 
to worsening secondary bleeding from venules and arterioles.

Clinical and Radiological evidence in 
Support of early Hematoma Growth
Early hematoma growth evidenced by consecutive CT scans can 
occur in 18–38% of patients scanned within 3 h of ICH onset. 
Multiple CT-based studies have provided further support for the 
occurrence of early hematoma growth after ICH (10, 22–26). The 
highest incidence of early hematoma growth (38%) was seen in 
the Brott and Broderick’s study, but the investigators concluded 
that the true frequency of hematoma growth may have been 
higher because clinical deterioration and immediate surgical 
intervention precluded the performance of the follow-up CT 
scans in some of the studied patients (26). To summarize, the only 
consistently identified predictor of early hematoma growth is the 
time from the onset of ICH to CT scan, in other words, the earlier 
the first CT scan is done, the more likely subsequent bleeding will 
be detected on a follow-up CT scan (10, 25, 27).

To this end, hematoma expansion occurs in only 5% of patients 
who are initially scanned beyond 6 h of symptom onset (10, 25, 
26, 28). Early hematoma expansion is consistently associated 
with poor clinical outcomes and higher mortality rates versus 
no expansion. Similarly, significantly greater reductions in the 
Glasgow Coma Scale and National Institute of Health Stroke 
Scales have been reported among patients with documented 
hematoma expansion on 1-h follow-up CT scans versus those 
without growth (26). These observations suggest that the reduc-
tion in hematoma growth may be an important strategy for 
improvement of survival and outcome after ICH.

TReATMeNT STRATeGieS TO PReveNT 
HeMATOMA GROwTH

BP Control
Patients with ICH should have tightly managed BP, but it 
is frequently elevated acutely (29). In the majority of cases, 
extremely high admission BP is the primary therapeutic issue in 
ICH patients. In the Study of Treatment of Acute Hypertension 
(30), nearly 30% of patients who presented to an Emergency 
Department with acute hypertension had a demonstrable 
brain injury of which 30% were ICHs. Systolic blood pressure 
(SBP > 140 mmHg) is seen in >75% of patients with ICH (29, 
31). Causes of this hypertensive response include upregulation of 
the sympathetic nervous system and the renin–angiotensin and 
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TABLe 2 | Comparison of iNTeRACT-ii versus ATACH-ii trials.

Randomization Treatment group Control group Outcome

INTERACT-II All within 6 h of symptom onset; 
48% systolic blood pressure 
(SBP) > 180 mmHg

Target SBP < 180 mmHg within 1 h 
after randomization

Target SBP < 140 mmHg with agents of 
physician’s choosing

No significant reduction in 
modified Rankin Scale (mRS) 
score at 3 months

ATACH-II All within 4.5 h of symptom onset; 
SBP > 180 mmHg

Maintain SBP 140–179 mmHg 
during 24 h after randomization

Maintain SBP 110–139 mmHg during 24 h 
after randomization with first-line nicardipine 
and second-line labetalol

No significant reduction in mRS 
score at 3 months
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pituitary-adrenal axis (32). Single-center studies and a systematic 
review have independently demonstrated a higher risk of early 
clinical deterioration, mortality, and worst long-term outcome 
with either extreme high or low levels of BP after ICH (33–38).

Extreme levels of BP could theoretically contribute to acute 
hematoma growth and later aggravate PHE and intracranial 
pressure (ICP). This could potentially translate into worst short- 
and long-term outcomes after ICH (39, 40). Preliminary studies 
provided some evidence of early hematoma growth from bleed-
ing into an ischemic penumbra zone surrounding the hematoma 
(41, 42). However, other studies did not confirm the existence 
of such ischemic and hypoperfused area in the periphery of the 
hematoma. In the landmark study by Brott et al. (26), acute hyper-
tension after ICH was not associated with hematoma growth, but 
the authors suggested that the use of antihypertensive agents 
may have negatively confounded this association. Similarly, acute 
hypertension was not associated with hematoma growth in the 
Recombinant Activated Factor VII ICH Trial (43).

Despite this conflicting evidence, the overall consensus is 
that extreme levels of BP (either low or high) after ICH should 
be treated carefully. Controversy exists regarding the optimal 
threshold for treatment and target level [SBP versus mean arte-
rial pressure (MAP)]. Aggressive BP reduction in the setting 
of impaired autoregulation may predispose to perihematomal 
or distant brain tissue ischemia, whereas intact autoregulation 
might result in reflex vasodilation and increase in cerebral 
edema resulting in higher ICP (44, 45). In a small pilot study 
of BP reduction after ICH, 14 patients with supratentorial ICH 
were randomized to receive either labetalol or nicardipine within 
22 h of ictus with the aim to lower the MAP by 15%. Cerebral 
blood flow (CBF) studies were performed before and after treat-
ment with positron emission tomography and [15O] water. No 
changes in global or perihematoma CBF were observed (46). 
Finally, earlier studies also demonstrated that a controlled phar-
macologically based reduction in BP had no adverse effects on 
CBF in both humans and animals (47, 48). These preliminary 
evidence led to the development of clinical studies on aggressive 
BP control after ICH.

Seven clinical trials have evaluated the role of intensive BP 
reduction after ICH (49–55). The Intensive Blood Pressure 
Reduction in Acute Cerebral Hemorrhage Trial (INTERACT)-I 
phase II study was an open-label trial of 403 patients randomized to 
a target SBP of <180 (guideline recommendation) or <140 mmHg 
within 6 h of onset (56). The study showed a trend toward lower 
relative and absolute hematoma growth from baseline to 24  h 
in the intensive treatment group (SBP < 140 mmHg) compared 
with the control group. The phase III clinical trial INTERACT-II 

concluded that aggressive BP control did not result in a significant 
reduction in the mortality rate or severe disability after ICH (54, 
57). However, a trend was observed when the primary outcome 
was analyzed in an ordinal fashion, suggesting that in a selected 
cohort of ICH patients, intensive lowering of BP may improve 
long-term outcomes (57).

The Antihypertensive Treatment in Acute Cerebral 
Hemorrhage (ATACH)-I trial (52, 58) confirmed the feasibility 
and safety of early rapid BP reduction in ICH. This phase II 
randomized prospective controlled study employed a dose esca-
lation regimen of intravenous nicardipine for BP reduction in 80 
patients with ICH. No effect was seen on outcome or neurologi-
cal worsening. Both INTERACT-II and ATACH-I showed that 
although early and intensive BP lowering is clinically feasible and 
safe, this was not associated with meaningful clinical outcome 
differences (see Table 2).

The recently completed phase III ATACH-II clinical study 
was closed based on futility translating into no meaningful 
benefit from the intensive treatment group (SBP < 140 mmHg) 
compared to the guideline recommendation (SBP < 180 mmHg) 
(53). The ATACH-II trial was designed to evaluate the efficacy of 
aggressively lowering the SBP in ICH patients but in an earlier 
time-window (60). One aim of the ATACH-II trial was to show 
that a more rapid intensive reduction in the SBP level than that 
used in INTERACT-II would make it more likely to show a larger 
therapeutic benefit. However, the intensive and early treatment 
did not result in a lower rate of mortality or poor outcome.

In the Intracerebral Hemorrhage Acutely Decreasing 
Arterial Pressure Trial (ICH-ADAPT) I (55), the use of a strict 
triple-regimen BP lowering protocol permitted a significant 
BP difference between the groups at 2  h postrandomiza-
tion. The target BP was achieved in 79% of patients in the 
<150 mmHg group at 2 h. The follow-up phase II ICH-ADAPT 
II is designed to test the hypothesis that aggressive antihy-
pertensive therapy will alter the natural history of hematoma 
growth, improving outcomes after ICH using MRI and DWI 
as primary outcomes. The study will identify biomarkers that 
may be putative mediators of ischemic injury in ICH patients 
(49) (see Table 3).

Current recommendations for Guidelines for the Management 
of Spontaneous Intracerebral Hemorrhage from AHA/ASA state 
that for “ICH patients presenting with SBP between 150 and 
220  mmHg and without contraindication to acute BP treat-
ment, acute lowering of SBP to 140 mmHg is safe (Class I; Level 
of Evidence A) and can be effective for improving functional 
outcome (Class IIA; Level of Evidence B)” (61). This recom-
mendation is consistent with the results of the ATACH-II trial 
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TABLe 3 | Prospective clinical trials of blood pressure management in iCH.

Trial Study design SBP targets Onset to randomization 
time

Medical intervention used end point

INTERACT n = 404, RCT, PROBE, phase II Standard: <180
Intensive: <140

<6 h Variable 24 h hematoma growth

INTERACT-II n = 2,839, RCT, phase III Standard: <180
Intensive: <140

<6 h Variable mRs at 90 days

ATACH n = 60, RCT, phase II Tier 1: <170–200
Tier 2: <140–170
Tier 3: <110–140

<6 h Nicardipine Treatment feasibility and safety

ATACH-II n = 1,200, RCT, PROBE, phase III Standard: <180
Intensive: <140

<4.5 h Nicardipine mRS at 90 days

ICH ADAPT n = 75, RCT, PROBE, phase II Standard: <180
Intensive: <150

<24 h Labetalol
Hydralazine
Enalapril

Perihematoma CBF

ICH ADAPT II RCT, PROBE, phase II Standard: <180
Intensive: <140

<6 h Labetalol
Hydralazine
Enalapril

DWI lesion frequency at 24 h

RCT, randomized control trial; PROBE, prospective randomized open blinded end point; CBF, cerebral blood flow; mRS, modified Rankin Scale; SBP, systolic blood pressure.
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in which participants with intracerebral hemorrhage volume 
<60 cm3 and participants with intracerebral hemorrhage volume 
<60 cm3 and GCS > 5 were assigned to a SBP goal <140 mmHg 
or SBP  <  180  mmHg. The ATACH-II trial did not result in a 
lower rate of death or disability with acute reduction of SBP to 
goal <140 mmHg than the standard goal SBP < 180 mmHg. The 
absolute difference between the two groups in the rate of death or 
disability was 1 percentage point (60). Although feasible and safe, 
the rate of renal adverse events within 7 days after randomization 
in ATACH-II was significantly higher in the intensive treatment 
group than in the standard-treatment group (9.0 versus 4.0%, 
P = 0.002) (60).

Hemostasis
As hematoma growth is a powerful predictor of outcome after 
spontaneous ICH, it makes biological sense to attempt to 
optimize hemostasis as early as possible. rFVIIa (Novoseven®, 
Novo Nordisk) has been approved for the management of 
bleeding patients with congenital forms of hemophilia and who 
are resistant to conventional factor VIII replacement therapy. 
There is substantial evidence that rFVIIa may optimize hemo-
stasis in patients with normal coagulation function. Recently, a 
randomized controlled phase II study of 399 patients with spon-
taneous ICH demonstrated that the administration of rFVIIa 
at doses of 40, 80, or 160 µg/kg within 4 h of onset was associ-
ated with a 38% reduction in death and improved functional 
outcomes at 90  days, despite a 5% increase in the frequency 
of arterial thromboembolic adverse events (62). However, this 
effect was not replicated in the follow-up phase III FAST clinical 
trial of rFVIIa after ICH. In this study, doses of 80 and 20 µg/kg 
of rFVIIa were compared against placebo in 841 subjects with 
spontaneous ICH. The study found no significant difference in 
the proportion of patients with death or severe disability (mRS 
5–6) at 90  days, but the hemostatic effect and adverse effect 
profiles were replicated (63). On the basis of these results, the 

routine use of rFVIIa as a hemostatic therapy for patients with 
spontaneous ICH cannot be recommended. A  post  hoc study 
of the FAST clinical trial demonstrated that factor rFVIIa may 
be useful in younger patients who present within an earlier 
time-window, but further recommendations may need to be 
supported by future clinical trials (64).

A preliminary clinical study of the antifibrinolytic agent 
epsilon aminocaproic acid (ECA) was conducted with nega-
tive results (65). The management of ICH with Aminocaproic 
acid open-label pilot study (MANICHAN-PILOT) and the 
Antifibrinolytic Therapy in Acute Intracerebral Hemorrhage 
clinical trial are also designed to test the hypothesis that ECA 
administration within 3 h of ICH is associated with less hema-
toma growth and improved outcomes (66, 67). As antifibrino-
lytic therapies carry a higher risk of adverse thromboembolic 
events, additional studies have focused on determining the 
specific population of patients that might benefit from this 
therapy. Four ongoing clinical trials are studying if image-
assisted antifibrinolytic therapy may offer further benefit by 
identifying ICH patients with ongoing bleeding and whom may 
benefit from acute hemostasis (68–71).

Although CT-A post-ICH is not routinely performed in all 
clinical centers, it may prove helpful in predicting hematoma 
growth and clinical outcomes (13, 72). In a prospective study of 
39 patients with spontaneous ICH, focal enhancing foci (contrast 
extravasation, “spot sign”) seen in initial CT-A was associated 
with the presence and extent of hematoma progression with good 
sensitivity (91%) and negative predictive value (96%) (14). In 
the “Spot Sign” Selection of Intracerebral Hemorrhage to Guide 
Hemostatic Therapy (SPOTLIGHT), ICH patients with a “spot 
sign” (14) will be randomly assigned to a single injection of rFVII 
or placebo. The study aims at evaluating the rate of hematoma 
growth and the difference in proportion of clinical outcomes 
such as death and disability (69). In the Spot Sign for Predicting 
and Treating ICH Growth Study (STOP-IT), investigators will 
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TABLe 4 | Mechanisms implicated in the genesis and worsening of 
perihematomal edema.

early Late

<24 h 24–72 h >72 h

• Serum 
proteins

• Glucose
• Electrolytes 

(Na, K)

• Cellular toxicity (white blood cells, 
platelets)

• Humoral toxicity [interleukin 
(IL)-1, IL-6, intracellular adhesion 
molecule, tumor necrosis factor 
alpha, prostaglandins, leukotrienes, 
vascular endothelial growth factor, 
complement]

• Coagulation cascade (thrombin, 
fibrinogen, t-PA)

• Glutamate and amino acids
• Epinephrine?

• Blood degradation 
products (Hgb, Fe, 
biliverdin)

• Nitric oxide
• Free radicals
• Apoptosis
• Matrix 

metalloproteinases
• Glutamate and 

amino acids

With permission from Ref. (59).
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determine whether CT-A can predict which individuals with ICH 
will experience significant hematoma growth in the size of the 
hemorrhage and the effect of rFVIIa on hematoma growth (68). 
The end points of the Tranexamic Acid for Acute ICH Growth 
prEdicted by Spot Sign (TRAIGE) clinical trial and the Spot Sign 
and Tranexamic Acid On Preventing ICH Growth—AUStralasia 
Trial (STOP-AUST) are similar to STOP-IT, but in this study, the 
investigators will use tranexamic acid, a newer antifibrinolytic 
agent (70, 71).

Additional studies related to hemostasis involve the use 
of platelet transfusions and prothrombin complex concen-
trate (PCCs) for coagulopathic or antiplatelet-exposed ICH 
patients and optimization of coagulation before neurosurgical 
interventions (73–76). One study recently assessed the effect 
of platelet transfusion in an open-label inception cohort of 
ICH patients who underwent platelet function assays with 
Accumetrics (75). In those patients with abnormal platelet 
function results and risk of poorer outcome, early platelet 
transfusion improved platelet activity and was associated with 
smaller hematoma sizes and with a better functional outcome 
at 3  months (75). The recently finished Platelet Transfusion 
in Cerebral Hemorrhage (PATCH) clinical trial (73) aimed 
at determining whether platelet transfusion improves the risk 
of hematoma growth and functional outcome in ICH patients 
who were taking antiplatelet agents. The PATCH study demon-
strated significant adverse events, higher mortality, and worst 
long-term functional outcome in ICH patients who received 
transfusion. On the basis of the results of this study, platelet 
transfusion cannot be recommended as a standard procedure 
in this specific patient population.

Other approaches to optimize antifibrinolytic therapy 
have been used in combination with surgical evacuation. 
In the “Intraoperative intravenous administration of rFVIIa 
and hematoma volume after early surgery for spontaneous 
intracerebral hemorrhage clinical trial,” the administration of 
intravenous rFVIIa did not change the hematoma volume or 
the functional outcome after ICH combined with early surgery. 
Interestingly, the study showed that there were no meaningful 
differences in the rates of deep venous thrombosis, myocardial 
infarction, or cerebral ischemia (77). In the “International 
Normalized Ratio (INR) Normalization in Coumadin Asso-
ciated Intracerebral Hemorrhage phase III clinical study,” 
investigators will test the hypothesis that the treatment for 
coagulopathic ICH with PCC improves normalization of the 
INR, hematoma growth, and clinical outcomes compared to 
transfusions of fresh-frozen plasma (74).

PHe AFTeR iCH

The secondary injury of ICH results is the formation of PHE, 
which may contribute to an increase in peri-hematoma volume 
by at least 75% (78). This progression of neuronal injury may 
lead to increased ICP, herniation, neurological deficits, and 
death. Enhanced models of hydrostatic and osmotic forces have 
been recently formulated to explain PHE based on the unique 
properties of the BBB. Early PHE is attributed to the transcapil-
lary efflux of electrolytes and water from blood vessels (ionic 

edema), osmotically active serum proteins, and cytotoxic edema 
from neuronal energy failure. Delayed PHE is produced by the 
BBB disruption (vasogenic edema) and neuronal death (cytotoxic 
edema) (20). Three intertwined neurotoxic cascades contribute 
to the development of delayed PHE: inflammation, erythrocyte 
lysis, and thrombin production (79). The combination of these 
processes results in BBB disruption and death of brain paren-
chyma cells (Table 4).

Edema formation after ICH progresses through several 
phases: a hyperacute phase involves transendothelial osmotic 
pressure, clot retraction, and cytotoxic edema in the first several 
hours; an acute phase in the first day involves the clotting cas-
cade, thrombin production, and inflammatory activation; and a 
third phase, beginning approximately 72 h post-ICH, involves 
erythrocyte lysis and hemoglobin-induced neurotoxicity (80, 
81). In general PHE progresses over 24 h, then remains relatively 
constant for about 4 days and resolves over a period of several 
weeks (6). Some studies suggest that a “penumbra” of progres-
sive tissue damage and edema develop in the perihematomal 
region (82). A 75% median increase in relative edema and 100% 
median increase in absolute edema volume over the first 24 h 
after ICH has been observed (83). In one study using SPECT, 
perilesional CBF normalized from initially depressed levels 
as PHE formed during the first 72-h post-ICH. The eventual 
degree of PHE was associated with the volume of reperfused 
tissue implicating reperfusion injury in the pathogenesis of PHE 
formation (9). A significant heterogeneity in CBF can occur after 
ICH with lower CBF (hypoperfusion) near the hematoma and 
higher CBF (hyperperfusion) in healthy overlying subcortical 
and cortical regions. The vasodilatory response of pial arteries 
in the periphery of the injury zone may reflect a local inflam-
matory reaction.

Hyperacute Phase
In this phase, PHE starts with the extravasation of serum into the 
brain parenchyma and cellular dysfunction before BBB disruption. 
Several early pathophysiologic events leading to early PHE are 
related to the blood itself, which acts as a “neurotoxic” substance 
(80, 81). During the first hours after ICH, clot retraction occurs 
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with decreasing clot volumes and increasing PHE volume. Plasma 
protein extravasation acts oncotically increasing the interstitial 
osmotic pressure to induce rapid PHE development, extravas-
cular coagulation, and fibrin deposition (80, 81). Experimental 
evidence strongly supports the hypothesis that hyperacute PHE 
is largely composed of peripherally exuded serum proteins after 
clotting of the hematoma and consumption of plasma clotting 
factors (83–85). Cytotoxic edema secondary to transcellular shifts 
in Na+ and Cl− has also been shown to increase in the early 
phases after ICH (85). Within hours, the ensuing cytotoxic edema 
contributes to the transendothelial trans-BBB osmotic pressure 
gradient. The mechanisms implicated in early cytotoxic edema 
involve the extracellular accumulation of neurotoxins such as 
glutamate, which is associated with further mitochondrial and 
Na-ATP pump failure (86).

Acute Phase
Delayed edema formation may result from neuroinflamma-
tion and erythrocyte lysis, mediated by the local and systemic 
upregulation of chemotaxins, the complement system activa-
tion, and the release of thrombin and hemoglobin by-products 
(87). Inflammatory mediators also enhance early PHE after ICH 
by activation of leukocytes and generation of chemokines and 
chemotaxins via activation of the transcription factor NF-κB 
(88). Both immunochemical and physical stress in the PHE area 
lead to NF-κB activation with subsequent pattern recognition 
by receptors such as toll-like receptors 2 and 4 and thrombin 
engagement via protease-activated receptors (PARs). After 
activation, the NF-κB leads to upregulation of target genes that 
encode for cytotoxic cytokines, chemokines, and matrix metal-
loproteinases (MMPs), which are implicated in further BBB 
disruption.

White blood cells (WBCs) and neutrophils infiltrate the 
hemorrhagic brain within 4–5 h and may cause neuronal dam-
age by producing reactive oxygen species and pro-inflammatory 
proteases (89). Leukocytes die by apoptosis within 2 days after 
entering the hemorrhagic brain damaging brain tissue through 
microglia and macrophage activation (79). In this process, gluta-
mate and other excitotoxic amino acids continue to accumulate 
transiently in the extracellular fluid of the perihematomal region. 
In one study, peak elevation in glutamate concentrations was 
observed as early as 30 min post-ICH (90, 91).

Two hypotheses may explain the release of the neurotoxic 
amino acids: ischemia and cellular trauma. In the setting of 
ischemic injury, release of amino acids has been recorded and 
cellular trauma to neurons has also been known to release intra-
cellular stores of glutamate into the extravascular space. Damage 
to astrocytes normally involved in the removal of glutamate may 
also exacerbate the accumulation of extracellular glutamate and 
other excitotoxic amino acids. Extraneuronal glutamate-based 
neurotoxicity is the result of activation of the postsynaptic 
N-methyl-d-aspartate receptor. The activation of this receptor 
leads to cellular influx of Ca++ and Na+, leading to transcellular 
ionic shift, cellular edema by flow of free water, and subsequent 
neuronal death (92). Previous reports show that even a transient 
exposure to glutamate can result in enhanced neurotoxicity 
(93). One study for example showed that high concentrations 

of glutamate in blood within the first 24  h of symptom onset 
were associated with an exaggerated subacute pro-inflammatory 
response and worst clinical outcome and increased volume of the 
residual cavity after ICH (94). This supports the hypothesis that 
excitotoxicity and inflammation have a role in PHE formation 
and secondary neuronal death after ICH.

In addition to glutamate, high concentrations of IL-6, tumor 
necrosis factor alpha (TNF-a), and intracellular adhesion 
 molecule-1 (ICAM-1) have been detected in the hypodense area 
surrounding the hematoma. TNF-a was shown to increase BBB 
permeability and cause WBC activation after its administration 
in a piglet model of ICH (95). It may also has an effect on other 
intracellular pathways such as G-protein-coupled activation of 
phospholipases, which lead to the generation of free radicals 
and an unhealthy redox state (96). Complex mechanisms in the 
injured neuronal tissue activate both pro- and anti-inflammatory 
mediators for at least 7  days after ICH. In parallel, transcript 
expression of pro-inflammatory cytokines rise rapidly within 6 h 
after the onset of ICH (97). In addition to these mechanisms, local 
and systemic inflammatory mediators also enhance tissue dam-
age by the activation of WBCS and generation of prostaglandins 
and leukotrienes (59).

Although CNS tissues are normally immunologically privi-
leged, BBB disruption may be expected to facilitate immune 
cell entry into the peri-hemorrhagic tissue. Major inflamma-
tory cells that are activated and accumulate within the brain 
after ICH are primarily brain trafficked monocytes and resident 
microglia (7, 98–105). Although pro-inflammatory cytokines 
IL-1/IL-6/TNF-a can be released by many cell types, including 
microglia, monocytes, and endothelial cells, their principal 
sources in the brain are from activated microglia and brain 
trafficked monocytes (105) The initial inflammatory response 
after ICH is primarily orchestrated by the cytokines, TNF-a, 
and IL-1b, which are upregulated within hours and increase 
BBB permeability and allow entry of peripheral immune cells. 
The cellular sources of these cytokines change during the 7-day 
time course (106). When edema forms, activated microglia 
contributes to the pathologic process through inflammatory 
cells and mediators and cytokine release. TNF-a is present as 
early as 1 day after ICH suggesting that synthesis and secretion 
of cytokines may be an early response of microglia to ICH (7). 
It has been demonstrated that microglia can also be maximally 
activated at 7 and 10 days after ICH, which is the time frame 
when the hematoma is being reabsorbed. The ICAM-1 is 
inducible by tissue injury and other inflammatory cytokines 
(107). The induction of ICAM-1 in neurons could promote 
the attachment of WBCs to neurons inducing neuronal injury 
through direct cell-to-cell interaction and the release of cyto-
toxic substances (7).

Neutrophils are also implicated in the development of PHE 
via production of cytotoxic molecules such as pro-inflammatory 
cytokines, reactive oxygen radical species, and MMPs (108). This 
early inflammatory response has become an attractive therapeu-
tic target. By inhibiting activation and migration of inflammatory 
cells, research has shown that minocycline, a tetracycline deriva-
tive, may reduce microvessel loss, plasma protein extravasation, 
and edema in addition to cytokine expression by reducing the 
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upregulation of some pro-inflammatory cytokines such as TNF-a 
and MMP-12 (109). This substance has been shown to reduce 
specific cytokines (TNF-a and IL-1b) and MMPs implicated in 
BBB damage (110).

The complement system is classically excluded from the 
brain by the BBB, but it could enter in its activated form at the 
time of ICH or through BBB disruption (111). Complement-
mediated brain injury is also assisted by the formation of the 
membrane attack complex (MAC) and the pro-inflammatory 
response that follows.

The MAC consists of the complement’s C5b–9 particles 
assembled after its activation. Once activated, the MAC inserts 
into the cell membrane forming a pore. The formation of MAC in 
ICH models induces erythrocyte lysis, which has been implicated 
in the generation of PHE (87). Not only does MAC cause cell 
lysis but it also modulates other cellular pathways implicated in 
the generation and release of cytokine, eicosanoid, and oxygen 
radical species (112). Similarly, MAC insertion may also occur in 
neurons and endothelial cells, causing neuronal death, cytotoxic 
edema, and BBB leakage through damage of endothelial cells. In 
animal models of ICH, therapeutic blockade of receptors for C3a 
and C5a resulted in less neutrophilic infiltration and lower brain 
water content compared with no treatment.

The MMPs are a family of proteolytic enzymes involved in the 
reorganization of the extracellular matrix. Specifically, MMP-9 
and MMP-2 degrade major components of the cellular wall’s 
basal lamina and can disrupt the BBB (113). MMP-9 has been 
linked to the pathophysiology of different neurological condi-
tions such as multiple sclerosis and cerebral ischemia (114, 115). 
One study showed that the levels of MMP-9 increased within the 
first 24 h in patients with supratentorial ICH and that the con-
centrations of MMP-9 positively correlated with PHE volumes 
in deep ICH (113).

Levels of MMPs and plasminogen activators are increased 
16–24  h after in experimental collagenase-induced intracer-
ebral hemorrhage models, suggesting that agents that block 
MMPs may reduce the swelling after ICH (21). In this model, 
treatment with an MMP inhibitor significantly reduced the 
brain edema in sites distant from the primary lesion, sug-
gesting that the inhibitor blocked vasogenic edema. Excessive 
proteolysis is normally prevented by tissue inhibitors of MMPs, 
but during the inflammatory process, the balance is disturbed 
as their natural inhibitors (TIMPs) are destroyed, favoring 
proteolysis. Astrocytes, endothelial cells, and microglia secrete 
MMPs as inactive zymogens that must be activated by other 
enzymes such as plasmin and free radicals (21). One study 
investigated the temporal profile of MMPs and their natural 
inhibitors after ICH and showed increased MMP-9 with PHE 
and increased MMP-3 with mortality (5). MMP-3 is laminin 
whose degradation leads to neuronal death. The main form of 
cell death associated with ICH in the perihematomal region has 
been shown to be apoptosis during the first days and necrosis 
from inflammation after 5 days of symptom onset (90, 91). The 
apoptotic pathway in ICH may involve nuclear factor kappa 
beta, which is a transcription factor controlling MMPs (116). 
TIMPs are now recognized as exerting both MMP inhibition 
and antiapoptotic properties (5).

Early edema formation is associated with both the activa-
tion of the coagulation cascade and the generation of throm-
bin (80, 81). Thrombin is a serine protease produced in the brain 
immediately after ICH (117). It activates potentially harmful 
pathways such as apoptosis, microglia activation, and glutamate 
potentiation. Thrombin-induced brain edema results partly 
from the disruption in the BBB and may be mediated by the 
complement cascade. Thrombin is formed in the clot almost 
immediately after an ICH, but the influx of prothrombin into the 
brain tissue due to BBB disruption serves as a secondary source 
(6). Intracerebral infusion of thrombin showed an increase in 
complement C9 and deposition on neuronal membranes (118). 
Thrombin-cleaved C3a-like fragments are chemotactic for 
WBCs and can induce enzyme release for neutrophils (119). 
Higher levels of TNF-a were seen after the infusion of thrombin 
in one animal model of ICH (120).

The most direct effect of thrombin is its role in the coagulation 
cascade with cleavage of fibrinogen to fibrin and other effects are 
protein mediated. PARs regulate some of the pathological effects 
of thrombin and are involved in CNS pathophysiology in some 
animal studies (121). Thrombin is associated with permeability 
change in the BBB leading to edema through chemotaxin and 
MMP activation, as well as the release of vascular endothelial 
growth factor (VEGF) from neurons through receptor activation 
(122). VEGF increased vascular permeability and vasodilation via 
nitric oxide induction and may serve as a potential fuel for free 
radical generation (59). Thrombin at high concentrations also 
kills neurons and astrocytes in vitro (123). It can be detrimental 
at high concentration and protective at low concentrations (118). 
To this end, thrombin-mediated brain injury has been identified 
as a possible therapeutic target after ICH. Administration of a 
thrombin inhibitor may effectively limit PHE formation and sec-
ondary neuronal damage (124). In the GUSTO-1 trial, the onset 
of symptomatic ICH arising as a complication of thrombolysis 
for acute myocardial infarction was ascertained and the potential 
mechanisms studied. The psot hoc analysis of GUSTO-1 study 
showed that there was minimal PHE when the patients received 
thrombolytic therapy, suggesting that thrombin levels may have 
been affected (125). Argatroban-mediated inhibition of thrombin 
proved effective in reducing the degree of PHE in a rodent model 
of ICH (126). The plasminogen activator inhibitor-1 (PAI-1) 
protein levels increase in the rat brain after ICH or thrombin 
infusion but brain levels of tPA remain unchanged (127). The 
upregulation of PAI-1 after ICH implies that endogenous inhibi-
tors of thrombin may limit brain injury and could be potential 
future therapeutic agents. Although thrombin formation occurs 
rapidly after ICH, it may remain within the clot and linked to 
fibrin, which can in turn lead to delayed release of thrombin and 
therefore delayed PHE (126).

Hyperglycemia can induce inflammatory reactions in ICH 
leading to neuronal death (7, 128). Activated blood components 
triggered by high glucose levels may induce increased inflamma-
tory cytokine activity such TNF-a and IL-1, which exacerbates 
BBB permeability causing vasogenic edema (129). Hyperglycemia 
increases the secretion of IL-1b in cultured endothelial cells 
and TNF-a in epithelial cells (130, 131). Free radical forma-
tion is increased with hyperglycemia-induced brain injury 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


8

Lim-Hing and Rincon ICH: Hematoma Growth and Edema

Frontiers in Neurology | www.frontiersin.org April 2017 | Volume 8 | Article 74

leading to increased BBB permeability and brain edema (132). 
Hyperglycemia also induces bradykinin-mediated vasodilation 
and inflammation. Bradykinin increases BBB permeability and 
facilitates extravasation by dilation of arterial blood vessels (133).

Subacute Phase
Thrombin and the coagulation cascade play a major role in 
acute edema formation following ICH as shown when thrombin 
inhibitors markedly reduce edema formation (84). In contrast, 
injection of whole red blood cells into brain fails to induce 
edema formation by 24  h (19). This delayed RBC lysis may 
be attributed to either activation of complement system and 
formation of MAC (134) or depletion of intracellular energy 
reserves (135). Hemoglobin has been shown to cause brain 
injury through inhibition of sodium/potassium ATPase activity, 
toxic radical generation, and lipid peroxidation (80, 81). In one 
study, upon injection of packed RBCs, there was no edema 
formation 24 h postinjection, but marked edema after 3 days. 
This delayed edema is explained by RBC lysis and hemoglobin 
release (80, 81). Hemoglobin release from erythrocyte lysis 
increases during the first few days after an ICH (136). Studies 
show that PHE formation after thrombin injection peaks at 
1–2 days, whereas delayed edema formation from erythrocyte 
lysis peaks at 3 days (80, 81).

The adverse effects of hemoglobin in models of ICH may 
be due to the molecule itself or by its breakdown products. 
Hemoglobin rapidly activates lipid peroxidation directly in the 
first phase and then via iron, one of its breakdown by-products, 
in the following phase (137). Haptoglobin may inhibit phase I, 
whereas deferoxamine, an iron chelator, and transferrin, an iron-
binding protein, can inhibit phase II. The heme from hemoglobin 
may be broken down by heme oxygenase (HO) into iron (a potent 
catalyst for lipid peroxidation), carbon monoxide, and biliverdin 
(138). In turn, the enzyme biliverdin reductase catalyzes the 
conversion of biliverdin to bilirubin. Both carbon monoxide and 
iron can stimulate free radical formation leading to PHE. HO 
is primarily increased in microglia cells around ICH, which are 
also the most ferritin- and iron-positive cells (139). The intra-
cortical injection of iron, causes focal epileptiform discharges 
and more brain swelling (140). One study demonstrated that 
hemoglobin also upregulated HO levels in the brain and that HO 
inhibition by SnPP molecules reduced the classically observed 
hemoglobin-induced brain swelling (141). HO overexpression 
and reactive iron accumulation are also associated with oxygen 
and free-radical species-related cytotoxicity (142). Early expres-
sion of HO may result from induction of other plasma proteins 
and thrombin as well (143).

Intracerebral iron infusions have been shown to cause brain 
edema and free radical formation leading to neuronal damage 
(144). Erythrocyte lysis results in the accumulation of non-heme 
iron molecules in the brain tissue starting at day 3 and reaching its 
acme after about 7 days of ICH onset. The temporal relationship 
between HO and non-heme iron levels indicates that an increase 
in perihematomal HO levels may modulate home-based degra-
dation and iron overload/toxicity in the brain with ICH (145). 
Previous studies have shown that hemoglobin is toxic to spinal 
neurons via an iron-dependent, oxidative mechanism involving 

a hydrogen peroxide intermediate factor (146). Iron reacts with 
lipid hydroxyperoxides to produce free radicals. Deferoxamine, an 
iron chelator, is routinely used to treat hemochromatosis caused 
by iron toxicity. It also has been shown to reduce hemoglobin-
induced cerebral edema, indicating that iron is a key factor in 
the pathway for delayed PHE formation after ICH. The degree 
of secondary neuronal damage may be limited by changes in 
iron-handling proteins. Specifically, an upregulation in the brain’s 
iron-capturing protein ferritin may be neuroprotective.

Reactive oxygen species cause brain injury via many different 
pathways. Deoxyribonucleic acid is vulnerable to oxidative stress 
and markers have been observed at the perihematomal zone 
demonstrating that oxidative DNA damage is involved in hemor-
rhagic brain injury (144). Iron can induce lipid peroxidation and 
stimulate free radical formation, which in turn may cause DNA 
damage (140). Although apoptotic DNA damage may occur from 
erythrocyte-induced brain injury, non-apoptotic DNA damage 
may play an important role because iron levels in the brain are 
high after erythrocyte lysis (147). The degree of oxidative dam-
age in tissues is limited by a number of free radical scavenging 
systems. Intracerebral infusion of lysed RBCs causes marked 
brain edema associated with increased protein carbonyl content 
and DNA damage and thus reflecting oxidative stress (147). The 
oxidative stress may be due to upregulation in HO with resultant 
iron release.

CONCLUSiON

Spontaneous forms of ICH account for 10–20% of all strokes 
annually in the United States and is associated with the highest 
all-time morbidity and mortality (148). Among the factors related 
to poor prognosis after ICH are the hematoma size, growth, and 
PHE. To determine therapeutic targets, it is important to evaluate 
the mechanisms of each phase. Information of the pathophysi-
ologic mechanisms of injury have been identified as primary and 
secondary.

Hematoma growth in the setting of ICH has a multifacto-
rial etiology with contributing factors such as increased local 
tissue pressure, a fibrinolytic effect, plasma protease induction, 
and secondary inflammation. Reduction in hematoma size and 
growth will likely be important futuristic strategies to improve 
survival and outcome after ICH. This depends heavily on both 
BP management and hemostasis. Seven clinical trials have evalu-
ated the role of intensive BP reduction after ICH and ultimately 
concluded that intensive lowering of BP (SBP  <  140  mmHg) 
provides no significant improvement in outcome compared to 
the standard goal of SBP <  180 mmHg. Medical treatment for 
hemostasis varies if the patient was taking an anticoagulant or 
had an inherent coagulopathy. However, in spontaneous ICH, not 
related to anticoagulation, rFVIIa has been evaluated as a means to 
reduce hematoma growth and PHE formation. Although a phase 
II randomized clinical trial showed that treatment with rFVIIa 
reduced hematoma growth and improved clinical outcome after 
ICH, a conclusive phase III clinical trial failed to demonstrate any 
significant benefit.

The primary injury of hematoma formation and clot retrac-
tion occurs followed by secondary injury with BBB disruption 
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complicated by inflammation, coagulation, thrombin, and 
erythrocyte lysis. Edema formation after ICH progresses 
through several phases: a hyperacute phase, an acute phase, 
and a third phase, beginning approximately 72  h post-ICH. 
These complex cascades lead to worsening edema through BBB 
permeability and an end point of apoptosis or neuronal injury. 
By identifying the major modulators of cerebral edema after 
ICH, a therapeutic target to counter degenerative events may 
be forthcoming.
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