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Abstract
Background: Ovarian cancer (OC) is the most lethal gynecological malignancy. 
The objective of this study was to establish and validate an individual aging-
related gene signature and a clinical nomogram that can powerfully predict inde-
pendently the overall survival rate of patients with ovarian cancer.
Methods: Data on transcriptomic profile and relevant clinical information were 
retrieved from The Cancer Genome Atlas (TCGA) database as a training group, 
and the same data from three public Gene Expression Omnibus (GEO) databases 
as validation groups. Univariate Cox regression analysis, lasso regression analy-
sis, and multiple multivariate Cox analysis were analyzed sequentially to select 
the genes to be included in the aging-associated signature. A risk scoring model 
was established and verified, the predictive value of the model was evaluated, and 
a clinical nomogram was established.
Results: We found eight genes that were most relevant to prognosis and con-
structed an eight-mRNA signature. Based on the model, each OC patient's risk 
score was able to be calculated and patients were split into groups of low and 
high risks with a distinct outcome. Survival analysis confirmed that the outcome 
of patients in the high-risk group was dramatically shorter than that of those in 
the low-risk group, and the eight-mRNA signature can be considered as a pow-
erful and independent predictor that could predict the outcome of OC patient. 
Additionally, the risk score and age can be used to construct a clinical nomogram 
as a simpler tool for predicting prognosis. We also explored the association be-
tween the risk score and immunity and drug sensitivity.
Conclusion: This study suggested that the aging-related gene signature could be 
used as an intervention point and latent prognostic predictor in OC, which may 
provide new perceptions for postoperative treatment strategies.
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1   |   INTRODUCTION

Ovarian cancer (OC) is the most lethal gynecological 
malignancy in females, with a high rate of recurrence.1 
According to 2020  global cancer statistics, more than 
310,000 new cases and more than 200,000 deaths world-
wide were reported.2 As early OC is asymptomatic and 
the fact that the late symptoms of OC are nonspecific, and 
there is no effective screening method for early OC, the 
disease is often already at an advanced and incurable stage 
when it is diagnosed.3–6 For decades, the treatment of OC 
has largely involved surgery and platinum chemotherapy.7 
The survival rate at 5 years for stage I OC has exceeded 
90%, while that of stage III or IV female patients is less 
than 25%.3,8–10 At present, transvaginal ultrasound and 
measurement of biomarkers such as CA125 are the two 
most commonly used screening methods for OC, but ac-
cording to clinical trials, these two screening methods do 
not increase the survival rate of patients.11–13 Hence, it is 
of major significance to identify new biological indicators 
for diagnosis and prognosis.

Due to population growth and aging, the incidence of 
cancer will continue to increase over the next 20 years.2 
Aging and cancer have become inseparable.14 Age is one 
of the strongest and most frequently studied risk fac-
tors for OC incidence and mortality.15–17 Meanwhile, the 
changes in gene expression in tumor tissues are stably 
correlated with the prognosis of cancer.18–20 Therefore, 
by studying the expression level of aging-related genes 
in tumor tissue, we can identify the subgroup of patients 
with worse prognosis earlier and carry out correspond-
ing clinical treatment as soon as possible to confer a 
survival advantage in patients. Recent studies have re-
vealed a model constructed using age-related genes to 
aid in the prediction of outcome in colorectal cancer pa-
tients.21 In glioma, aging has been found to be the stron-
gest risk factor for disease progression, and the survival 
of glioma patients can be predicted by analyzing brain 
aging.22 However, markers for aging-related gene in pre-
dicting the survival rate of OC patients have not yet been 
established.

In this study, we integrated The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO) data-
bases, developed and validated personalized prognostic 
markers based on aging-related genes, and constructed a 
nomogram that validated the stability and sensitivity of 
the model. Moreover, we comprehensively analyzed pa-
tient clinical information, immune cell infiltration, and 

sensitivity to drugs to increase the accuracy rating of the 
overall prediction.

2   |   METHOD

2.1  |  Data collection and processing

The RNA-Seq data and relevant clinical data of 379 OC 
patients were retrieved from the TCGA (https://portal.
gdc.cancer.gov/) database as the training set. The inclu-
sion criteria for OC patients were as follows: (1) only 
patients with primary ovarian cancer were selected; (2) 
patients had complete RNA sequencing data and clinico-
pathological parameters available; (3) patients were fol-
lowed up with for at least 30 days; and (4) overall survival 
(OS) was the primary endpoint. The full name of GEO 
database (https://www.ncbi.nlm.nih.gov/geo/) is GENE 
EXPRESSION OMNIBUS. It contains high-throughput 
gene expression data submitted by research institutions 
around the world, that is to say as long as it is currently 
published papers, the data for the gene expression tests 
covered in the paper can be found in this database. We 
searched for “ovarian cancer AND survival” in the GEO 
database, and the data sets with complete survival data 
and the sample sizes in the data sets are greater than 100 
was used as the validation sets. Thereupon, the mRNA 
expression and clinical data of 185 cases of ovarian cancer 
and 10 normal ovarian tissues from the GSE26712 data 
set were searched and downloaded as independent vali-
dation set 1 from the GEO database. The mRNA expres-
sion and clinical data of 260 cases of ovarian cancer from 
the GSE32062 data set were searched and downloaded 
as independent validation set 2. The mRNA expression 
and clinical data of 380 cases of ovarian cancer from 
the GSE14​0082 data set were searched and downloaded 
as independent validation set 3. In addition, Genome 
Tissue Expression (GTEx) (https://xenab​rowser.net/) 
was used to collect gene expression data from 88 normal 
ovarian tissues. The downloaded data were standardized 
by the contributors. To better screen the differentially 
expressed genes, batch effects correction was performed 
using the "sva" package of R software to merge the RNA-
Seq data from the TCGA, GTEx, and GSE26712 data sets 
to eliminate the batch effect. In view of this operation, 
GSE26712 is used as an internal verification set, while 
GSE32062 and GSE14​0082 are used as an external veri-
fication set.

K E Y W O R D S

aging, GEO, nomogram, ovarian cancer, signature, TCGA
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2.2  |  Screening of aging-related genes

The complete list of aging-related genes was downloaded 
from the Human Aging Genome Resource (HAGR, 
http://genom​ics.senes​cence.info/genes/), which includes 
307  human aging genes in all (Table  S1). The aging-
related genes (AGs) were determined by intersection of 
the merged genes and the aging genes.

2.3  |  Identification of differentially 
expressed AGs

The "limma" package was used to calculate the differen-
tially expressed AGs (DEAGs) in the TCGA and GSE26712 
data sets, and a heatmap and volcano map were drawn to 
visualize them. Then, a Venn diagram was drawn using 
the "venndiagram" package, and the genes co-upregulated 
or co-downregulated in the TCGA and GSE26712 data sets 
were selected as candidate genes for subsequent analysis.

2.4  |  Bioinformatic analysis

Gene Ontology (GO) enrichment analysis was used to 
explore the potential biological process (BP), molecular 
function (MF), and cellular component (CC) of candi-
date genes, and Kyoto Encyclopedia of Genes and Genes 
(KEGG) analysis was used to identify the signaling path-
ways of all the DEAGs. All analyses were conducted using 
the cluster profiler package.

2.5  |  Construction of an 8-mRNA 
prognostic signature based on aging-
related genes

We use the TCGA database as the test set to construct the 
8-mRNA prognostic signature. Selecting p < 0.05 as the 
filter condition and using the R package "survival" to con-
duct a univariate Cox regression analysis on the TCGA 
training set to identify genes related to prognosis. Next, 
using the "glmnet" package, the least absolute shrinkage 
and selection operator (Lasso) regression analysis was 
used to remove collinearity of DEAGs and minimize over-
fitting of the model. Afterward, multivariate Cox regres-
sion was used to identify final DEAGs involved in the final 
signature and to obtain a correlation coefficient to con-
struct a prognostic risk score formula. The formula was as 
follows: Risk score = β gene(1) × expression gene(1) + β 
gene(2) × expression gene(2) + ···+ β gene(n) × expres-
sion gene(n).  Patients were dichotomized into two sub-
groups by the patient's cut-off value of the median risk 

score, patients with a risk score higher than the median 
were classified as the high-risk group, and vice versa for 
the low-risk group. The Kaplan–Meier (K–M) curves 
were constructed with the “tidyverse” package and “sur-
vminer” package to compare OS rate differences between 
the high-  and low-risk groups, and the receiver operat-
ing characteristic curve (ROC) curves and the calibration 
curves were compared to investigate the accuracy, sensi-
tivity, and specificity of the model.

2.6  |  Construction of a nomogram

Cox proportional regressions were performed for univari-
ate and multivariate on age, grade, stage, and other clin-
icopathological parameters and the risk score to evaluate 
prognosis-related independent factors for each parameter. 
The “rms” package and “survival” package were used to 
construct a nomogram together with the results of mul-
tivariate Cox regression, and 3-, 5-, and 7-year correction 
curves were drawn to assess the predictive stability of the 
nomogram.

2.7  |  Correlation analysis of risk 
value and immune cells

We downloaded the immune cell infiltration table of the 
TCGA tumors from TIMER2.0 (http://timer.comp-genom​
ics.org/), and “limma,” “scales,” “ggplot2,” “ggtext,” and 
“ggpubr” were used to analyze the correlation between the 
risk score and immune cells. The immune cell differences 
between the high- and low-risk groups were compared.

2.8  |  Drug sensitivity analysis

We used the Bioconductor package (“car,” “ridge,” “pre-
process core,” “generater,” and “SVA”) to predict the sen-
sitivity of high-  and low-risk groups to platinum drugs 
through IC50 and drew box plots.

2.9  |  External verification of  
eight-mRNA signature

In the validation phase, the signature was validated in the 
internal validation cohort (GSE26712 data set) and in the 
external validation cohorts (GSE14​0082, and GSE32062 
data sets). Risk scores were determined in the validation 
samples based on the above equation and patients were 
dichotomized into high- and low-risk groups by their op-
timal cut-off point. The K–M curve was drawn and the 

http://genomics.senescence.info/genes/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
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log-rank test was utilized to visually compare the differ-
ence in OS between the two groups, and the ROC curve 
was drawn to evaluate the stability of the eight-mRNA 
signature.

2.10  |  The expression of genes was 
verified by qPCR

Total RNA was extracted from OC samples and nor-
mal renal tissue samples using TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA). Single-stranded 
cDNA was synthesized from 1 µg of total RNA using the 
PrimeScript RT Reagent Kit with gDNA Eraser (Takara 
Biotechnology Co. Ltd., Dalian, China). Reverse transcrip-
tion quantitative PCR was applied to explore the mRNA 
expression of the hub genes using a 7500 PCR system 
(Thermo Fisher Scientific). The following cycling condi-
tions were adopted: 95°C for 5 min, followed by 40 cycles 
of 95°C for 10 s and 60°C for 30 s. The qPCR assays were 
performed for each sample in a reaction volume of 10 µL. 
The relative expression of genes in our signature was 
calculated using the 2-Ct method. The following qPCR 
primer sequences were used: β-actin forward primer 
5′-CATGTACGTTGCTATCCAGGC-3′; β-actin reverse 
primer 5′-CTCCTTAATGTCACGCACGAT-3′; JAK2 
forward primer5′-TCTGGGGAGTATGTTGCAGAA-3′; 
JAK2 reverse primer5′-AGACATGGTTGGGTGGATA 	
CC-3′; IL2RG forward primer5′-GTGCAGCCACTATC 	
TATTCTCTG-3′; IL2RG reverse primer5′-GTGAAGTGT 	
TAGGTTCTCTGGAG-3′; EEF1E1 forward primer5′-
CCCTGGGACTGAGTAAGGGG-3′; EEF1E1 reverse 
primer5′-GTTGGCTTGCTTGACTAGATGA-3′; UBB for-
ward primer5′-GGTCCTGCGTCTGAGAGGT-3′; UBB 
reverse primer 5′-GGCCTTCACATTTTCGATGGT-3′; 
EPS8 forward primer5′-TGAATGGCTACGGATCATC  	
ACC-3′; EPS8 reverse primer5′-CACTGTCCCGTGCATAA 	
TTCT-3′; FOXO1 forward primer5′-TCGTCATAATCTG 	
TCCCTACACA-3′; FOXO1 reverse primer5′-CGGCTTCG 	
GCTCTTAGCAAA-3′; STAT5A forward primer 5′-GCAGA 	
GTCCGTGACAGAGG-3′; STAT5A reverse primer5′-CCA 	
CAGGTAGGGACAGAGTCT-3′; PAPPA forward primer5′-
ACAAAGACCCACGCTACTTTTT-3′; and PAPPA reverse 
primer5′-CATGAACTGCCCATCATAGGTG-3′.

2.11  |  Statistical analysis

All analyses were performed using R version 4.0.5. 
Univariate COX analyses were used to calculate the 
hazard ratio (HR) and 95% confidence intervals (CIs) 
to identify genes associated with OS. Multivariate Cox 
regression analysis was used for factors significantly 

associated with OS in the univariate analysis. The 
Kaplan–Meier method was used to compare the OS time 
of patients. The prediction accuracy of the risk charac-
teristics and the calibration for the nomogram were de-
termined by the ROC curve. All experimental data were 
analyzed using GraphPad Prism 5 Software (GraphPad 
Software Inc., La Jolla, CA, USA), and t-test was used to 
test the differences between tumor and normal tissue in 
PCR. p < 0.05 was deemed to be significant unless indi-
cated otherwise.

3   |   RESULT

3.1  |  Clinical information about patients 
included in the study

Figure 1 shows the flow chart for constructing and verify-
ing the eight-mRNA signature. A total of 374 OC patients 
in the TCGA database were included in the training group, 
185 OC patients in the GSE26712 data set were included 
in internal validation cohort, and 260 OC patients in the 
GSE32062 data set and 380 OC patients in the GSE14​0082 
data set were included in external validation cohorts. The 
baseline clinical characteristics of the training group and 
validation groups are shown in Table 1.

3.2  |  Screening of DEAGs

Since both tumor samples and normal tissue samples 
were present in the TCGA, GTEX, and GSE26712 data 
sets, to better screen for common differential genes, 
we merged the RNA-Seq data of the TCGA, GTEX, and 
GSE26712 data sets and eliminated the batch effect. Then, 
the merged transcriptome matrix was crossed with 307 
aging genes to obtain the expression of 285 aging-related 
genes. Among these 285  genes, 247 DEAGs (including 
131 downregulated genes and 116 upregulated genes) 
were obtained by comparing the expression of the AGs 
in the TCGA tumor samples with that of the AGs in the 
GTEX normal samples. The 247 DEAGs are illustrated in 
the heatmap (Figure  2A) and volcano map (Figure  2B). 
Additionally, we compared the expression of AGs in nor-
mal tissues and tumor tissues in the GSE26712 data set, 
extracted 189 DEAGs (including 75 downregulated genes 
and 114 upregulated genes), and presented them in a 
heatmap (Figure 2C) and volcano map (Figure 2D). After 
identifying the intersection of the two sets of DEAGs, we 
obtained 64 jointly upregulated DEAGs (Figure 2E) and 
49 jointly downregulated DEAGs (Figure 2F). These 113 
DEAGs were used as candidate genes for constructing the 
signature.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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3.3  |  Enrichment analysis of 
DEAGs function

To analyze the potential biological functions of the 
DEAGs, we used the cluster Profiler package of R soft-
ware for functional enrichment analysis. The GO analy-
sis results (Figure 3A) showed that the top 10 enrichment 
scatter plots of the 113 DEAGs in BPs were concentrated 
in response to oxidative stress, regulation of apoptotic 
signaling pathway, aging, and cellular response to oxida-
tive stress. The top 10 enrichment scatter plots of the CCs 
are concentrated in chromosomal regions, chromosomes, 
and telomeric regions. The enrichment scatter plot of the 
MFs mainly consists of DNA-binding transcription activa-
tor activity and RNA polymerase II specificity. The results 
of KEGG analysis showed (Figure 3B) that the PI3K-Akt 
signaling pathway and microRNAs in the cancer path-
way were the most obvious regions of DEAG enrichment. 
Enrichment analysis showed that DEAGs are closely re-
lated to aging, oxidative stress, chromosomal changes, 
and cancer.

3.4  |  Screening of prognostic DEAGs and 
construction of an eight-mRNA signature

In the process of screening for biomarkers related to prog-
nosis, we performed univariate Cox analysis on the 113 
DEAGs that were jointly upregulated or downregulated 
in the TCGA training group. As a result, 14 DEAGs were 
significantly correlated with the OS rate of the 374 OC pa-
tients (p < 0.05). Subsequently, the candidate genes were 
reduced to 12 using the Lasso algorithm to prevent gene 
overfitting (Figure  4A,B). Finally, through multivariate 
Cox analysis, we obtained the following eight DEAGs 
that are most relevant to the prognosis of OC for con-
structing an aging gene-related risk scoring signature: 
JAK2, IL2RG, EEF1E1, UBB, EPS8, FOXO1, STAT5A, 
and PAPPA. The details of these eight genes are shown 
in Table 2. The prognostic risk score for each patient was 
imputed below: Risk score = (−0.457984 × JAK2) + (−0.
205973 × IL2RG) + (−0.184204 × EEF1E1) + (−0.09841
9 × UBB) + (0.227572 × EPS8) + (0.272872 × FOXO1) + 
(0.349501  ×  STAT5A)  +  (0.754430  ×  PAPPA). A violin 

F I G U R E  1   The flow chart for 
constructing and verifying the eight-
mRNA signature
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diagram of the distribution of these eight gene expression 
in the training group is shown in Figure 5A–H. In tumor 
tissues, four protective genes (JAK2, IL2RG, EEF1E1, 
and UBB) showed relatively low expression in the high-
risk group; in contrast, the expression of four risk genes 
(EPS8, FOXO1, STAT5A, and PAPPA) was more highly in 
the high-risk group than that in the low-risk group.

3.5  |  Identification and 
verification of the survival predictive 
power of the eight-mRNA signature

The risk scores of the TCGA training group (n  =  374), 
GSE26712 data group (n  =  185), GSE32062 data group 
(n  =  260), and GSE14​0082 data group (n  =  380) were 
calculated by the same risk score formula. Using their 
own median score as the cut-off value, patients, and the 
K–M curve and ROC curve related to the risk model were 
drawn accordingly. Survival analysis revealed that pa-
tients in the high-risk group of both training group and 
the validation groups exhibited a significantly poorer OS 
rate than the low-risk group (Figure 6A–D). The distribu-
tion of risk score, survival time, and survival status is plot-
ted in Figure 7. The results showed that the mortality of 
patients was significantly elevated with the survival time 

gradually decreased as the progressively increasing risk 
score (Figure  7A–D). In the TCGA test set, ROC values 
of 3-, 5-, and 7-year were 0.663, 0.695, and 0.744, respec-
tively; in the GSE26712 data group, ROC values of 3-, 5-, 
and 7-year were 0.653, 0.70, and 0.642, respectively; In 
GSE32062 data group, ROC values of 3-, 5-, and 7-year 
were 0.594, 0.572, and 0.542, respectively; In GSE14​0082 
data group, ROC values of 3-, 5-, and 7-year were 0.584, 
0.598, and 0.587, respectively. The ROC curve over time 
showed that the eight-mRNA signature had a promising 
and a broad applicability in predicting the OS rate of OC 
patients (Figure  8A–D). Then, we drew the calibration 
curve of each group for 3 years, and the results proved that 
the predicted value had good coincidence with the actual 
value, and proved the good stability of our model (Figure 
S1A–D).

3.6  |  Eight-mRNA signature was 
identified as an independent prognostic 
marker for OC patients

To investigate whether the any of the variables have in-
dependent prognostic significance of the OS rate of pa-
tients with OC, we conducted additional univariate Cox 
analysis and multivariate Cox analysis on clinical factors 

T A B L E  1   Clinicopathological characteristics of the patients included in the training group and validation groups

Variables
Training group TCGA 
No.

Validation group 
GSE26712 No.

Validation group 
GSE32062 No.

Validation group 
GSE14​0082 No.

No. of patients 374 185 260 380

Age

<65 243 – – 257

>=65 131 – – 123

Vital status

Alive 145 56 139 284

Dead 229 129 121 97

FIGO stage

Stage I 1 – – 20

Stage II 22 – – 31

Stage III 291 – 204 266

Stage IV 57 – 56 62

Unknown 3 – – –

Grade

G1 1 – – –

G2 42 – 131 –

G3 320 – 129 –

G4 1 – – –

Unknown 10 – – –

Average follow-up time(year) 3.27 3.91 3.73 2.07

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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such as risk score, age, grade, and stage of the training 
group. Univariate Cox analysis showed that risk score and 
age were significantly related the OS rate of OC patients. 
The significant factors in the univariate Cox analysis 
were included in the multivariate Cox analysis. After the 

multivariate Cox analysis, the risk score and age remained 
as independent prognostic factors (Table  3). Taken to-
gether, these results show that the combined 8-mRNA 
risk model is an excellent prognostic marker independent 
of other clinical features.

F I G U R E  2   Heatmaps, volcano maps, and Venn diagrams of differentially expressed genes between normal tissue and ovarian cancer. 
(A) Heatmap and (B) volcano map demonstrating the 247 DEAGs of TCGA+GTEx. (C)Heatmap and (D) volcano map demonstrating the 
189 DEAGs of GSE26712. (E) Jointly upregulated DEAGs. (F) Jointly downregulated DEAGs

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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F I G U R E  3   Functional enrichment analysis of DEAGs. (A) GO enrichment analysis; (B) KEGG pathway enrichment analysis

F I G U R E  4   Lasso regression. (A) The variation trajectory of each independent variable. The logarithm of the independent variable 
lambda was taken as the horizontal axis, and the coefficient of the independent variable was taken as the vertical axis. (B) Confidence 
intervals for each phase for each lambda, the vertical black dotted lines defined the optimal values of lambda, which provides the best fit

T A B L E  2   8-gene signature selected by multivariate Cox regression

Name Coefficient Type Down/upregulated HR 95%CI p value

JAK2 −0.45798 Protective Down 0.63 0.40–1.00 0.0497283

IL2RG −0.20597 Protective Up 0.81 0.69–0.96 0.0158012

EEF1E1 −0.1842 Protective Up 0.83 0.65–1.06 0.1319088

UBB −0.09842 Protective Down 0.91 0.83–0.99 0.0382452

EPS8 0.227572 Risky Down 1.26 1.03–1.54 0.02776

FOXO1 0.272872 Risky Down 1.31 1.07–1.62 0.0098715

STAT5A 0.349501 Risky Down 1.42 1.11–1.81 0.0050247

PAPPA 0.75443 Risky Down 2.13 1.19–3.79 0.0103691
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F I G U R E  5   The violin diagram of the expression levels of eight genes in the training group. (A) EEF1E1, (B) EPS8, (C) FOXO1, (D) 
IL2RG, (E) JAK2, (F) PAPPA, (G) STAT5A, and (H) UBB

F I G U R E  6   Identification and verification of the predictive eight-mRNA signature. K–M curves in the training group (A), GSE26712 
data group (B), GSE32062 data group (C), and GSE14​0082 data group (D)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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3.7  |  Construct a nomogram

In order to provide clinicians with more convenient and 
accurate tools, we use clinical characteristics and risk 
scores to construct a nomogram23 (Figure 9A). On the cal-
ibration plots, a good correlation was observed between 
the predicted and the actual values of the OS rate of OC 
patients at 3, 5, and 7 years (Figure 9B).

3.8  |  Correlation analysis between the 
eight-mRNA signature and immune cells

We further identified the association between the aging-
related risk model and immune cells (Figure 10A). Using 
p  <  0.05 as the filter criterion, we found that the risk 
score was associated negatively with B cells and CD8+ T 
cells, and the expression of B cells and CD8+ T cells was 
relatively high when the risk score was low (Figure 10B, 
p  =  5.2e−05, Figure  10C, p  =  0.00028). Macrophages 
were positively related to the risk score, and the expres-
sion of macrophages was higher in the high-risk group 

(Figure 10D, p = 0.00071). CD8+ T cells are involved in 
the growth and functional maintenance of tumor.

3.9  |  Analysis of drug sensitivity related 
to the eight-mRNA signature

This study indicated that the high-risk patients may re-
spond better compared with the low-risk patients treated 
with the same drugs (Figure 11A–C). Currently, platinum-
based chemotherapy is the cornerstone of the treatment 
for advanced OC. However, the existence of drug resist-
ance and heterogeneity leads to differences in the thera-
peutic effects of drugs among different populations. 
This study revealed the sensitivity of high-  and low-risk 
patients to cisplatin, paclitaxel, and gefitinib, which will 
provide researchers with a new perspective on the devel-
opment of drugs with higher efficacy. It also suggests that 
clinicians should intervene in the high-risk group with 
corresponding drugs earlier, which may improve the sur-
vival rate of high-risk patients, providing a new vision for 
future clinical work.

F I G U R E  7   The distribution of risk score, survival time, and survival status in the training group (A), GSE26712 data group (B), 
GSE32062 data group (C), and GSE14​0082 data group (D)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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F I G U R E  8   The ROC curve over time in the training group (A), GSE26712 data group (B), GSE32062 data group (C), and GSE14​0082 
data group (D)

Univariate analysis Multivariate analysis

Feature HR 95%CI p value HR 95%CI p value

Risk 2.220 1.69–2.91 8.47E−09 2.164 1.65–2.84 2.87E−08

Age 1.020 1.01–1.03 0.001131 1.018 1.01–1.03 0.004326

Grade 1.194 0.80–1.79 0.38942 – – –

Stage 2.085 0.93–4.70 0.076316 – – –

T A B L E  3   Univariate and multivariate 
Cox regression analyses of the gene 
signature

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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F I G U R E  9   Establishment of the prognostic nomogram. (A) Nomogram for predicting 3-, 5-, and 7-year overall survival of OC patients 
and (B) 3-, 5-, and 7-year nomogram calibration curves of the prognostic nomogram

F I G U R E  1 0   Correlation analysis of risk value and immune cells. (A) Correlation coefficient between eight-mRNA signature and 
immune cells. (B) The expression of B cell in high- and low-risk groups; (C) the expression of CD8+ T cell in high- and low-risk patients; 
and (D) the expression of Macrophage in high- and low-risk patients
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3.10  |  Validation of candidate genes 
by qPCR

We further examined the differential expression of JAK2, 
IL2RG, EEF1E1, UBB, EPS8, FOXO1, STAT5A, and 
PAPPA genes between OC and normal ovarian tissue 
samples. The RT-qPCR results showed that compared to 
normal ovarian tissue samples, trends in the expression 
levels of these genes were consistent with our previous 
findings (Figure 12).

4   |   DISCUSSION

OC is the most fatal gynecological malignancy in women.2 
Since age is one of the main reason for OC,15–17 with 
the aging process, the incidence of OC will continue 
to increase,2 and the process of aging and cancer is 
inseparable.14

Following the advent of new high-throughput se-
quencing technology and the development of the TCGA 
and GEO databases, scholars have established a large 
number of risk models based on gene expression lev-
els that can better predict the OS rate of OC patients. 
However, among the various risk characteristics, there 
is no aging-related gene signature in predicting the out-
come of OC patients.

In our study, we identified 285 AGs in the TCGA train-
ing group and GSE26712 validation group. After screening 
for differential genes, 113 DEAGs that were either upreg-
ulated or downregulated were found in the training group 
and validation group 1. After univariate Cox analysis, 
Lasso regression and multivariate Cox analysis of candi-
date genes in the training group, the aging-related gene 
signature of eight genes was further constructed, includ-
ing JAK2, IL2RG, EEF1E1, UBB, EPS8, FOXO1, STAT5A, 
and PAPPA. Following the comprehensive analysis of this 
signature, we observed that the risk score related to aging 

F I G U R E  1 2   Validation of candidate genes by qPCR. (A) EEF1E1, (B) EPS8, (C) FOXO1, (D) IL2RG, (E) JAK2, (F) PAPPA, (G) STAT5A, 
and (H) UBB

F I G U R E  1 1   Drug sensitivity analysis. (A) Cisplatin, (B) Paclitaxel, and (C) Gefitinib

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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is notably correlated with the OS rate of OC patients. 
According to the area under the ROC curve, the prediction 
results were accurate, and we conducted external verifi-
cation in three GEO data sets. Moreover, compared with 
other clinicopathological characteristics, the risk score 
signature showed a more reliable predictive ability. In ad-
dition, we constructed a nomogram combining risk score 
and age as a more convenient clinical tool for predicting 
prognosis. Additionally, the correlation between the level 
of the risk score and the infiltration of immune cells was 
analyzed, revealing that the risk score was positively cor-
related with macrophage and negatively correlated with 
CD8+ T cells and B cell. Finally, based on the risk score, 
we can judge the sensitivity of patients to paclitaxel, car-
boplatin, and gefitinib, allowing for timely treatment with 
the appropriate drugs.

At the present level of science and technology, aging 
is inevitable and is characterized by the stagnation of 
the cell cycle at the micro level and the gradual loss of 
function of tissues and organs at the macro level.24,25 
Cell senescence plays an important role in tumorigene-
sis, tumor development, and tumor immune escape. For 
example, the senescence-associated secretory phenotype 
(SASP) is not only a tumor suppressor but can also act as 
a tumor driver.24 On the one hand, aging cells can induce 
senescence in adjacent tumor cells through autocrine and 
paracrine mechanisms by releasing SASP and activate im-
mune surveillance to eliminate senescent and proliferat-
ing tumor cells at the same time, thereby inhibiting the 
proliferation of cancer cells.26 On the other hand, aging 
cells can reshape the tumor microenvironment through 
SASP, promote cell proliferation, and drive tumor angio-
genesis, thus promoting tumor progression.27–29

Among the eight genes in the eight-mRNA signature of 
this study, EPS8, FOXO1, STAT5A, and PAPPA were risk 
factors, and JAK2, IL2RG, EEF1E1, and UBB were protec-
tive factors.

EPS8 is the substrate of epidermal growth factor recep-
tor (EGFR) kinase activity.30 Previously, scholars found 
that EPS8 was usually overexpressed in advanced thyroid 
cancer, pancreatic cancer, oral squamous cell carcinoma, 
and pituitary tumors.31–34 In our study, compared with 
normal ovarian tissue, EPS8  showed low expression in 
ovarian cancer tissue, which may be related to the het-
erogeneity of the tumor. EPS8 binds to AbI1 through its 
SH3 domain, and AbI1 binds EPS8 and SOS1 together, 
thereby promoting the formation of a trimeric complex 
that activates Rac.30 Rac activity is required for the me-
tastasis and colony-forming ability of ovarian cancer 
cells.35 Therefore, the metastatic potential of ovarian can-
cer is closely related to the integrity of the SOS1/EPS8/
ABI1 complex. In addition, some scholars have found that 
the presence of the SOS1/EPS8/ABI1 complex correlated 

well to the continuous epithelial–mesenchymal transition 
(EMT) characteristics of ovarian cancer cells, and an in-
tact complex is required for this procedure.36 Therefore, 
silenced or low expression of EPS8 can reduce the migra-
tion and metastatic colonizing ability of ovarian cancer 
cells.35 Thus, relatively high expression of EPS8 is a risk 
factor for ovarian cancer, which is consistent with our 
research results. Regarding FOXO1, it has long been re-
ported that FOXO1 expression is downregulated in cervi-
cal cancer, kidney cancer, breast cancer, prostate cancer, 
endometrial cancer, and ovarian cancer.37–42 In ovarian 
cancer, the progesterone receptor (PR-B) induces cell se-
nescence through FOXO1, and one of the characteristics 
of aging cells is the upregulation of FOXO1 expression.43 
In our study, we reached the same conclusion that the 
expression level of FOXO1 is generally downregulated, 
while the expression level of FOXO1 is relatively higher 
in high-risk patients, which indicates that patients in the 
high-risk group are more prone to cell aging. STAT5A is 
an oncogene. Members of the STAT family are related to 
the occurrence, progression, metastasis, angiogenesis, and 
immune escape of human cancer.44 In prostate cancer, 
some scholars have found that knocking down STAT5A 
can increase the sensitivity of prostate cancer to radiother-
apy and reduce radiation damage to adjacent tissues45; in 
colorectal cancer, inhibition of STAT5A promotes che-
motherapy (such as cisplatin or 5-FU)-induced apoptosis 
of colorectal cancer cells.46 In terms of immunity, STAT5 
plays a key role in the function and development of Tregs, 
and continuously activated STAT5 can inhibit antitumor 
immunity and increase the proliferation, invasion, and 
survival of tumor cells.47 In our study, STAT5 was a risk 
factor, and relatively high expression of STAT5 increased 
the risk score and predicted a poor prognosis. Regarding 
PAPPA, although we did not find a differential level of 
PAPP-A expression between normal ovarian tissue and 
ovarian cancer, there is evidence that the downregulation 
of the pregnancy-associated plasma protein A (PAPPA) 
gene can reduce IGF-I-dependent Akt and ERK1/2 acti-
vation, thereby reducing the growth, invasion, and me-
tastasis of OC cells.48 Similarly, it has been found that 
overexpression of PAPPA in ovarian cancer cells promotes 
the growth of tumors.49 According to our results, PAPPA is 
a risk factor, and the relatively high expression of PAPPA 
may be one of the reasons for poor prognosis in the high-
risk group.

Among the protective factors, JAK2 expression has 
been found to be upregulated in OC tissues after pacl-
itaxel chemotherapy, and its expression is related to the 
drug resistance mechanism of OC.50 The JAK2-STAT3 
pathway promotes the development of paclitaxel resis-
tance by upregulating the expression of pro-survival and 
anti-apoptosis genes. Inhibition of JAK2 can reverse the 
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resistance of ovarian cancer to paclitaxel.51 Compared 
with normal tissues, the expression of JAK2 in OC is 
downregulated, which may be related to the heterogeneity 
of the tumor. In tumor tissues, the expression of JAK2 is 
relatively higher in low-risk patients, which may be caused 
by chemotherapy and resistance. This point is worthy of 
further study. Regarding EEF1E1, studies have found that 
EEF1E1 is overexpressed in most tumors, including ovar-
ian cancer, and that high expression of EEF1G predicts 
better OS and PFS rates in OC patients,52 which is consis-
tent with our research results. In addition, in our study, 
UBB was a protective factor, and the downregulation of 
UBB predicted a worse prognosis, which is consistent with 
the conclusion of other studies. In human gynecological 
cancer, the expression of UBB is decreased, and the low 
expression of UBB is associated with the poor survival rate 
of gynecological cancer.53

Although age is an important risk factor for the devel-
opment of OC, there are few published data to demon-
strate the influence of aging and aging genes on OC. Only 
in animal studies has it been found that aging increases 
susceptibility to ovarian cancer metastasis in a mouse al-
lograft model.54 Therefore, our eight-mRNA signature and 
nomogram can provide new perspectives for clinical work.

Interestingly, we also found some differences in im-
mune cell infiltration between the high-  and low-risk 
groups, suggesting that aging-related genes may be related 
to tumor immunity. Several previous studies have shed 
light on the relationship between aging and immunity. 
The characteristic of aging is graduate senescent immune 
remodeling termed immunosenescence. For example, the 
immunosenescence of T cells, including shrinkage of im-
mune repertoire, the exhaustion of memory T cells, and 
the reduction of immune costimulatory molecules, all 
of them lead to a significant decline in immune function 
with aging. One of the main tasks of the human immune 
system is cancer detection. Mutations or genetic disor-
ders in somatic cells may cause them to be considered 
foreign antigens. For the elderly, as the age increases, the 
decline of immune function will reduce the recognition 
and elimination of these cells, eventually leading to their 
accumulation.55 These senescent cells and SASP factors 
can reprogram the tumor microenvironment into an en-
vironment more prone to the growth of malignant cells, 
which has been proven by a large number of studies.56–59 
In our study, the expression levels of B cells and CD8+T 
cells were significantly higher in the low-risk group. As far 
as we know, CD8+T cells play a pivotal role in controlling 
tumor cell growth, and prior studies have already demon-
strated that CD8+ T cells indicate a better prognosis.60 
Other studies have found that not only does the percent-
age of peripheral blood B cells decrease with the increase 
in age, but also their capacity to spontaneously secrete 

IgM decreases.61 In contrast, the expression of macro-
phages was higher in the high-risk group. Some scholars 
have observed an increase in the number of macrophages 
in aging adipose tissue; in addition, the increase in mac-
rophages in the lymphatic tissues of elderly individuals 
was dominated by an increase in immunosuppressive 
M2 macrophages.62 The above may be one of the reasons 
for the better prognosis of the low-risk group.

Platinum-based chemotherapy is the first-line chemo-
therapy for ovarian cancer. Given its limited specificity, 
many of the side effects associated with the treatment 
tend to endanger the lives of more elderly people. There 
are many examples of how the aging microenvironment 
can lead to chemotherapy resistance. Senescent fibroblasts 
with SASP and other stromal components secrete cyto-
kines that promote cancer cell resistance to chemotherapy 
in a paracrine manner.63–65 In addition, research supports 
the fact that chemotherapy can further induce SASP in 
tumor, immune, and stromal cells through treatment-
induced senescent cells. Therefore, based on our sen-
sitivity analysis, we may be able to draw a conclusion: 
high-risk populations were more sensitive to platinum-
based chemotherapeutics, but due to the development of 
SASP, they developed drug resistance faster, and finally 
led to a poor treatment outcome. However, as we did not 
know whether the population included in the study had 
previously experienced platinum-based treatment, this 
conclusion requires further exploration.

Although we have made many efforts to study the 
prognostic model, there are still some shortcomings. First, 
the ROC value of the external validation groups was un-
satisfactory. Second, some clinical features such as post-
operative interventions, radiotherapy, and chemotherapy 
for OC patients extracted from the TCGA and GEO data-
bases are incomplete and not available, so at the time of 
writing, we could not conduct a full analysis of OS. Third, 
because clinical samples are relatively difficult to obtain, 
we only used six pairs of clinical samples to verify our con-
clusion. Currently we are actively collecting more clini-
cal samples, and multicenter, large-scale prospective, and 
well-designed studies are required to further verify the 
prediction model presented here.

5   |   CONCLUSION

All in all, we constructed a prognostic signature of eight 
aging-related genes and a clinical nomogram that pro-
vides potential biomarkers for predicting the prognosis 
of patients with OC, helps to understand the potential 
pathogenesis of OC, and can possibly be used to develop 
new approaches for the clinical treatment of ovarian 
cancer.
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