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Abstract
Background: Ovarian	cancer	(OC)	is	the	most	lethal	gynecological	malignancy.	
The	 objective	 of	 this	 study	 was	 to	 establish	 and	 validate	 an	 individual	 aging-	
related	gene	signature	and	a	clinical	nomogram	that	can	powerfully	predict	inde-
pendently	the	overall	survival	rate	of	patients	with	ovarian	cancer.
Methods: Data	on	transcriptomic	profile	and	relevant	clinical	information	were	
retrieved	from	The	Cancer	Genome	Atlas	(TCGA)	database	as	a	training	group,	
and	the	same	data	from	three	public	Gene	Expression	Omnibus	(GEO)	databases	
as	validation	groups.	Univariate	Cox	regression	analysis,	lasso	regression	analy-
sis,	and	multiple	multivariate	Cox	analysis	were	analyzed	sequentially	to	select	
the	genes	to	be	included	in	the	aging-	associated	signature.	A	risk	scoring	model	
was	established	and	verified,	the	predictive	value	of	the	model	was	evaluated,	and	
a	clinical	nomogram	was	established.
Results: We	found	eight	genes	 that	were	most	 relevant	 to	prognosis	and	con-
structed	an	eight-	mRNA	signature.	Based	on	the	model,	each	OC	patient's	risk	
score	was	able	 to	be	calculated	and	patients	were	 split	 into	groups	of	 low	and	
high	risks	with	a	distinct	outcome.	Survival	analysis	confirmed	that	the	outcome	
of	patients	in	the	high-	risk	group	was	dramatically	shorter	than	that	of	those	in	
the	low-	risk	group,	and	the	eight-	mRNA	signature	can	be	considered	as	a	pow-
erful	and	 independent	predictor	 that	could	predict	 the	outcome	of	OC	patient.	
Additionally,	the	risk	score	and	age	can	be	used	to	construct	a	clinical	nomogram	
as	a	simpler	tool	for	predicting	prognosis.	We	also	explored	the	association	be-
tween	the	risk	score	and	immunity	and	drug	sensitivity.
Conclusion: This	study	suggested	that	the	aging-	related	gene	signature	could	be	
used	as	an	intervention	point	and	latent	prognostic	predictor	in	OC,	which	may	
provide	new	perceptions	for	postoperative	treatment	strategies.
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1 	 | 	 INTRODUCTION

Ovarian	 cancer	 (OC)	 is	 the	 most	 lethal	 gynecological	
malignancy	 in	 females,	 with	 a	 high	 rate	 of	 recurrence.1	
According	 to	 2020  global	 cancer	 statistics,	 more	 than	
310,000	new	cases	and	more	than	200,000	deaths	world-
wide	 were	 reported.2	 As	 early	 OC	 is	 asymptomatic	 and	
the	fact	that	the	late	symptoms	of	OC	are	nonspecific,	and	
there	 is	no	effective	 screening	method	 for	early	OC,	 the	
disease	is	often	already	at	an	advanced	and	incurable	stage	
when	it	is	diagnosed.3–	6	For	decades,	the	treatment	of	OC	
has	largely	involved	surgery	and	platinum	chemotherapy.7	
The	survival	 rate	at	5 years	 for	 stage	 I	OC	has	exceeded	
90%,	while	 that	of	 stage	 III	or	 IV	 female	patients	 is	 less	
than	 25%.3,8–	10	 At	 present,	 transvaginal	 ultrasound	 and	
measurement	 of	 biomarkers	 such	 as	 CA125	 are	 the	 two	
most	commonly	used	screening	methods	for	OC,	but	ac-
cording	to	clinical	trials,	these	two	screening	methods	do	
not	increase	the	survival	rate	of	patients.11–	13	Hence,	it	is	
of	major	significance	to	identify	new	biological	indicators	
for	diagnosis	and	prognosis.

Due	to	population	growth	and	aging,	the	incidence	of	
cancer	will	continue	to	increase	over	the	next	20 years.2	
Aging	and	cancer	have	become	inseparable.14	Age	is	one	
of	 the	 strongest	 and	 most	 frequently	 studied	 risk	 fac-
tors	for	OC	incidence	and	mortality.15–	17	Meanwhile,	the	
changes	 in	 gene	 expression	 in	 tumor	 tissues	 are	 stably	
correlated	 with	 the	 prognosis	 of	 cancer.18–	20	 Therefore,	
by	 studying	 the	 expression	 level	 of	 aging-	related	 genes	
in	tumor	tissue,	we	can	identify	the	subgroup	of	patients	
with	worse	prognosis	earlier	and	carry	out	correspond-
ing	 clinical	 treatment	 as	 soon	 as	 possible	 to	 confer	 a	
survival	 advantage	 in	 patients.	 Recent	 studies	 have	 re-
vealed	 a	 model	 constructed	 using	 age-	related	 genes	 to	
aid	in	the	prediction	of	outcome	in	colorectal	cancer	pa-
tients.21	In	glioma,	aging	has	been	found	to	be	the	stron-
gest	risk	factor	for	disease	progression,	and	the	survival	
of	 glioma	 patients	 can	 be	 predicted	 by	 analyzing	 brain	
aging.22	However,	markers	for	aging-	related	gene	in	pre-
dicting	the	survival	rate	of	OC	patients	have	not	yet	been	
established.

In	this	study,	we	integrated	The	Cancer	Genome	Atlas	
(TCGA)	 and	 Gene	 Expression	 Omnibus	 (GEO)	 data-
bases,	 developed	 and	 validated	 personalized	 prognostic	
markers	based	on	aging-	related	genes,	and	constructed	a	
nomogram	 that	 validated	 the	 stability	 and	 sensitivity	 of	
the	 model.	 Moreover,	 we	 comprehensively	 analyzed	 pa-
tient	 clinical	 information,	 immune	 cell	 infiltration,	 and	

sensitivity	to	drugs	to	increase	the	accuracy	rating	of	the	
overall	prediction.

2 	 | 	 METHOD

2.1	 |	 Data collection and processing

The	RNA-	Seq	data	and	relevant	clinical	data	of	379	OC	
patients	 were	 retrieved	 from	 the	 TCGA	 (https://portal.
gdc.cancer.gov/)	database	as	the	training	set.	The	inclu-
sion	 criteria	 for	 OC	 patients	 were	 as	 follows:	 (1)	 only	
patients	with	primary	ovarian	cancer	were	selected;	(2)	
patients	had	complete	RNA	sequencing	data	and	clinico-
pathological	parameters	available;	(3)	patients	were	fol-
lowed	up	with	for	at	least	30 days;	and	(4)	overall	survival	
(OS)	was	 the	primary	endpoint.	The	 full	name	of	GEO	
database	(https://www.ncbi.nlm.nih.gov/geo/)	is	GENE	
EXPRESSION	 OMNIBUS.	 It	 contains	 high-	throughput	
gene	expression	data	submitted	by	research	institutions	
around	the	world,	that	is	to	say	as	long	as	it	is	currently	
published	papers,	the	data	for	the	gene	expression	tests	
covered	in	the	paper	can	be	found	in	this	database.	We	
searched	for	“ovarian	cancer	AND	survival”	in	the	GEO	
database,	and	the	data	sets	with	complete	survival	data	
and	the	sample	sizes	in	the	data	sets	are	greater	than	100	
was	used	as	the	validation	sets.	Thereupon,	the	mRNA	
expression	and	clinical	data	of	185	cases	of	ovarian	cancer	
and	10	normal	ovarian	tissues	from	the	GSE26712	data	
set	were	searched	and	downloaded	as	independent	vali-
dation	set	1	from	the	GEO	database.	The	mRNA	expres-
sion	and	clinical	data	of	260	cases	of	ovarian	cancer	from	
the	 GSE32062	 data	 set	 were	 searched	 and	 downloaded	
as	independent	validation	set	2.	The	mRNA	expression	
and	 clinical	 data	 of	 380	 cases	 of	 ovarian	 cancer	 from	
the	GSE14	0082	data	set	were	searched	and	downloaded	
as	 independent	 validation	 set	 3.	 In	 addition,	 Genome	
Tissue	 Expression	 (GTEx)	 (https://xenab	rowser.net/)	
was	used	to	collect	gene	expression	data	from	88	normal	
ovarian	tissues.	The	downloaded	data	were	standardized	
by	 the	 contributors.	 To	 better	 screen	 the	 differentially	
expressed	genes,	batch	effects	correction	was	performed	
using	the	"sva"	package	of	R	software	to	merge	the	RNA-	
Seq	data	from	the	TCGA,	GTEx,	and	GSE26712	data	sets	
to	eliminate	 the	batch	effect.	 In	view	of	 this	operation,	
GSE26712	 is	 used	 as	 an	 internal	 verification	 set,	 while	
GSE32062	and	GSE14	0082	are	used	as	an	external	veri-
fication	set.

K E Y W O R D S
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2.2	 |	 Screening of aging- related genes

The	complete	list	of	aging-	related	genes	was	downloaded	
from	 the	 Human	 Aging	 Genome	 Resource	 (HAGR,	
http://genom	ics.senes	cence.info/genes/),	which	 includes	
307  human	 aging	 genes	 in	 all	 (Table  S1).	 The	 aging-	
related	 genes	 (AGs)	 were	 determined	 by	 intersection	 of	
the	merged	genes	and	the	aging	genes.

2.3	 |	 Identification of differentially 
expressed AGs

The	"limma"	package	was	used	to	calculate	the	differen-
tially	expressed	AGs	(DEAGs)	in	the	TCGA	and	GSE26712	
data	sets,	and	a	heatmap	and	volcano	map	were	drawn	to	
visualize	 them.	Then,	a	Venn	diagram	was	drawn	using	
the	"venndiagram"	package,	and	the	genes	co-	upregulated	
or	co-	downregulated	in	the	TCGA	and	GSE26712	data	sets	
were	selected	as	candidate	genes	for	subsequent	analysis.

2.4	 |	 Bioinformatic analysis

Gene	 Ontology	 (GO)	 enrichment	 analysis	 was	 used	 to	
explore	 the	 potential	 biological	 process	 (BP),	 molecular	
function	 (MF),	 and	 cellular	 component	 (CC)	 of	 candi-
date	genes,	and	Kyoto	Encyclopedia	of	Genes	and	Genes	
(KEGG)	analysis	was	used	to	identify	the	signaling	path-
ways	of	all	the	DEAGs.	All	analyses	were	conducted	using	
the	cluster	profiler	package.

2.5	 |	 Construction of an 8- mRNA 
prognostic signature based on aging- 
related genes

We	use	the	TCGA	database	as	the	test	set	to	construct	the	
8-	mRNA	prognostic	 signature.	Selecting	 p < 0.05	as	 the	
filter	condition	and	using	the	R	package	"survival"	to	con-
duct	 a	 univariate	 Cox	 regression	 analysis	 on	 the	 TCGA	
training	 set	 to	 identify	 genes	 related	 to	 prognosis.	 Next,	
using	the	"glmnet"	package,	the	least	absolute	shrinkage	
and	 selection	 operator	 (Lasso)	 regression	 analysis	 was	
used	to	remove	collinearity	of	DEAGs	and	minimize	over-
fitting	of	 the	model.	Afterward,	multivariate	Cox	regres-
sion	was	used	to	identify	final	DEAGs	involved	in	the	final	
signature	 and	 to	 obtain	 a	 correlation	 coefficient	 to	 con-
struct	a	prognostic	risk	score	formula.	The	formula	was	as	
follows:	Risk	score = β	gene(1) × expression	gene(1) + β	
gene(2) × expression	gene(2)	+	···+	β	gene(n) × expres-
sion	 gene(n).  Patients	 were	 dichotomized	 into	 two	 sub-
groups	 by	 the	 patient's	 cut-	off	 value	 of	 the	 median	 risk	

score,	patients	with	a	risk	score	higher	than	the	median	
were	classified	as	the	high-	risk	group,	and	vice	versa	for	
the	 low-	risk	 group.	 The	 Kaplan–	Meier	 (K–	M)	 curves	
were	constructed	with	the	“tidyverse”	package	and	“sur-
vminer”	package	to	compare	OS	rate	differences	between	
the	 high-		 and	 low-	risk	 groups,	 and	 the	 receiver	 operat-
ing	characteristic	curve	(ROC)	curves	and	the	calibration	
curves	were	compared	to	investigate	the	accuracy,	sensi-
tivity,	and	specificity	of	the	model.

2.6	 |	 Construction of a nomogram

Cox	proportional	regressions	were	performed	for	univari-
ate	and	multivariate	on	age,	grade,	stage,	and	other	clin-
icopathological	parameters	and	the	risk	score	to	evaluate	
prognosis-	related	independent	factors	for	each	parameter.	
The	“rms”	package	and	“survival”	package	were	used	to	
construct	a	nomogram	together	with	 the	results	of	mul-
tivariate	Cox	regression,	and	3-	,	5-	,	and	7-	year	correction	
curves	were	drawn	to	assess	the	predictive	stability	of	the	
nomogram.

2.7	 |	 Correlation analysis of risk 
value and immune cells

We	downloaded	the	immune	cell	infiltration	table	of	the	
TCGA	tumors	from	TIMER2.0	(http://timer.comp-	genom	
ics.org/),	and	“limma,”	“scales,”	“ggplot2,”	“ggtext,”	and	
“ggpubr”	were	used	to	analyze	the	correlation	between	the	
risk	score	and	immune	cells.	The	immune	cell	differences	
between	the	high-		and	low-	risk	groups	were	compared.

2.8	 |	 Drug sensitivity analysis

We	used	the	Bioconductor	package	(“car,”	“ridge,”	“pre-
process	core,”	“generater,”	and	“SVA”)	to	predict	the	sen-
sitivity	 of	 high-		 and	 low-	risk	 groups	 to	 platinum	 drugs	
through	IC50	and	drew	box	plots.

2.9	 |	 External verification of  
eight- mRNA signature

In	the	validation	phase,	the	signature	was	validated	in	the	
internal	validation	cohort	(GSE26712	data	set)	and	in	the	
external	 validation	 cohorts	 (GSE14	0082,	 and	 GSE32062	
data	sets).	Risk	scores	were	determined	in	the	validation	
samples	 based	 on	 the	 above	 equation	 and	 patients	 were	
dichotomized	into	high-		and	low-	risk	groups	by	their	op-
timal	 cut-	off	 point.	 The	 K–	M	 curve	 was	 drawn	 and	 the	

http://genomics.senescence.info/genes/
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
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log-	rank	test	was	utilized	to	visually	compare	 the	differ-
ence	in	OS	between	the	two	groups,	and	the	ROC	curve	
was	 drawn	 to	 evaluate	 the	 stability	 of	 the	 eight-	mRNA	
signature.

2.10	 |	 The expression of genes was 
verified by qPCR

Total	 RNA	 was	 extracted	 from	 OC	 samples	 and	 nor-
mal	 renal	 tissue	 samples	 using	 TRIzol	 reagent	 (Thermo	
Fisher	 Scientific,	 Waltham,	 MA,	 USA).	 Single-	stranded	
cDNA	was	synthesized	from	1 µg	of	total	RNA	using	the	
PrimeScript	 RT	 Reagent	 Kit	 with	 gDNA	 Eraser	 (Takara	
Biotechnology	Co.	Ltd.,	Dalian,	China).	Reverse	transcrip-
tion	quantitative	PCR	was	applied	to	explore	the	mRNA	
expression	 of	 the	 hub	 genes	 using	 a	 7500	 PCR	 system	
(Thermo	Fisher	Scientific).	The	 following	cycling	condi-
tions	were	adopted:	95°C	for	5 min,	followed	by	40	cycles	
of	95°C	for	10 s	and	60°C	for	30 s.	The	qPCR	assays	were	
performed	for	each	sample	in	a	reaction	volume	of	10 µL.	
The	 relative	 expression	 of	 genes	 in	 our	 signature	 was	
calculated	 using	 the	 2-	Ct	 method.	 The	 following	 qPCR	
primer	 sequences	 were	 used:	 β-	actin	 forward	 primer	
5′-	CATGTACGTTGCTATCCAGGC-	3′;	 β-	actin	 reverse	
primer	 5′-	CTCCTTAATGTCACGCACGAT-	3′;	 JAK2	
forward	 primer5′-	TCTGGGGAGTATGTTGCAGAA-	3′;	
JAK2	 reverse	 primer5′-	AGACATGGTTGGGTGGATA		
CC-	3′;	 IL2RG	 forward	 primer5′-	GTGCAGCCACTATC		
TATTCTCTG-	3′;	 IL2RG	 reverse	 primer5′-	GTGAAGTGT		
TAGGTTCTCTGGAG-	3′;	 EEF1E1	 forward	 primer5′-	
CCCTGGGACTGAGTAAGGGG-	3′;	 EEF1E1	 reverse	
primer5′-	GTTGGCTTGCTTGACTAGATGA-	3′;	UBB	for-
ward	 primer5′-	GGTCCTGCGTCTGAGAGGT-	3′;	 UBB	
reverse	 primer	 5′-	GGCCTTCACATTTTCGATGGT-	3′;	
EPS8	 forward	 primer5′-	TGAATGGCTACGGATCATC			
ACC-	3′;	EPS8	reverse	primer5′-	CACTGTCCCGTGCATAA		
TTCT-	3′;	 FOXO1	 forward	 primer5′-	TCGTCATAATCTG		
TCCCTACACA-	3′;	FOXO1	reverse	primer5′-	CGGCTTCG		
GCTCTTAGCAAA-	3′;	STAT5A	forward	primer	5′-	GCAGA		
GTCCGTGACAGAGG-	3′;	STAT5A	reverse	primer5′-	CCA		
CAGGTAGGGACAGAGTCT-	3′;	PAPPA	forward	primer5′-	
ACAAAGACCCACGCTACTTTTT-	3′;	and	PAPPA	reverse	
primer5′-	CATGAACTGCCCATCATAGGTG-	3′.

2.11	 |	 Statistical analysis

All	 analyses	 were	 performed	 using	 R	 version	 4.0.5.	
Univariate	 COX	 analyses	 were	 used	 to	 calculate	 the	
hazard	 ratio	 (HR)	 and	 95%	 confidence	 intervals	 (CIs)	
to	 identify	 genes	 associated	 with	 OS.	 Multivariate	 Cox	
regression	 analysis	 was	 used	 for	 factors	 significantly	

associated	 with	 OS	 in	 the	 univariate	 analysis.	 The	
Kaplan–	Meier	method	was	used	to	compare	the	OS	time	
of	patients.	The	prediction	accuracy	of	 the	risk	charac-
teristics	and	the	calibration	for	the	nomogram	were	de-
termined	by	the	ROC	curve.	All	experimental	data	were	
analyzed	using	GraphPad	Prism	5	Software	 (GraphPad	
Software	Inc.,	La	Jolla,	CA,	USA),	and	t-	test	was	used	to	
test	the	differences	between	tumor	and	normal	tissue	in	
PCR.	p < 0.05	was	deemed	to	be	significant	unless	indi-
cated	otherwise.

3 	 | 	 RESULT

3.1	 |	 Clinical information about patients 
included in the study

Figure 1 shows	the	flow	chart	for	constructing	and	verify-
ing	the	eight-	mRNA	signature.	A	total	of	374	OC	patients	
in	the	TCGA	database	were	included	in	the	training	group,	
185	OC	patients	in	the	GSE26712	data	set	were	included	
in	internal	validation	cohort,	and	260	OC	patients	in	the	
GSE32062	data	set	and	380	OC	patients	in	the	GSE14	0082	
data	set	were	included	in	external	validation	cohorts.	The	
baseline	clinical	characteristics	of	the	training	group	and	
validation	groups	are	shown	in	Table 1.

3.2	 |	 Screening of DEAGs

Since	 both	 tumor	 samples	 and	 normal	 tissue	 samples	
were	 present	 in	 the	 TCGA,	 GTEX,	 and	 GSE26712	 data	
sets,	 to	 better	 screen	 for	 common	 differential	 genes,	
we	 merged	 the	 RNA-	Seq	 data	 of	 the	 TCGA,	 GTEX,	 and	
GSE26712	data	sets	and	eliminated	the	batch	effect.	Then,	
the	 merged	 transcriptome	 matrix	 was	 crossed	 with	 307	
aging	genes	to	obtain	the	expression	of	285	aging-	related	
genes.	 Among	 these	 285  genes,	 247	 DEAGs	 (including	
131	 downregulated	 genes	 and	 116	 upregulated	 genes)	
were	 obtained	 by	 comparing	 the	 expression	 of	 the	 AGs	
in	the	TCGA	tumor	samples	with	that	of	the	AGs	in	the	
GTEX	normal	samples.	The	247	DEAGs	are	illustrated	in	
the	 heatmap	 (Figure  2A)	 and	 volcano	 map	 (Figure  2B).	
Additionally,	we	compared	the	expression	of	AGs	in	nor-
mal	 tissues	and	tumor	tissues	 in	 the	GSE26712	data	set,	
extracted	189	DEAGs	(including	75	downregulated	genes	
and	 114	 upregulated	 genes),	 and	 presented	 them	 in	 a	
heatmap	(Figure 2C)	and	volcano	map	(Figure 2D).	After	
identifying	the	intersection	of	the	two	sets	of	DEAGs,	we	
obtained	64	 jointly	upregulated	DEAGs	(Figure 2E)	and	
49	jointly	downregulated	DEAGs	(Figure 2F).	These	113	
DEAGs	were	used	as	candidate	genes	for	constructing	the	
signature.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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3.3	 |	 Enrichment analysis of 
DEAGs function

To	 analyze	 the	 potential	 biological	 functions	 of	 the	
DEAGs,	 we	 used	 the	 cluster	 Profiler	 package	 of	 R	 soft-
ware	 for	 functional	enrichment	analysis.	The	GO	analy-
sis	results	(Figure 3A)	showed	that	the	top	10	enrichment	
scatter	plots	of	the	113	DEAGs	in	BPs	were	concentrated	
in	 response	 to	 oxidative	 stress,	 regulation	 of	 apoptotic	
signaling	pathway,	aging,	and	cellular	response	to	oxida-
tive	stress.	The	top	10	enrichment	scatter	plots	of	the	CCs	
are	concentrated	in	chromosomal	regions,	chromosomes,	
and	telomeric	regions.	The	enrichment	scatter	plot	of	the	
MFs	mainly	consists	of	DNA-	binding	transcription	activa-
tor	activity	and	RNA	polymerase	II	specificity.	The	results	
of	KEGG	analysis	showed	(Figure 3B)	that	the	PI3K-	Akt	
signaling	 pathway	 and	 microRNAs	 in	 the	 cancer	 path-
way	were	the	most	obvious	regions	of	DEAG	enrichment.	
Enrichment	analysis	showed	that	DEAGs	are	closely	re-
lated	 to	 aging,	 oxidative	 stress,	 chromosomal	 changes,	
and	cancer.

3.4	 |	 Screening of prognostic DEAGs and 
construction of an eight- mRNA signature

In	the	process	of	screening	for	biomarkers	related	to	prog-
nosis,	 we	 performed	 univariate	 Cox	 analysis	 on	 the	 113	
DEAGs	 that	 were	 jointly	 upregulated	 or	 downregulated	
in	the	TCGA	training	group.	As	a	result,	14	DEAGs	were	
significantly	correlated	with	the	OS	rate	of	the	374	OC	pa-
tients	(p < 0.05).	Subsequently,	the	candidate	genes	were	
reduced	to	12	using	the	Lasso	algorithm	to	prevent	gene	
overfitting	 (Figure  4A,B).	 Finally,	 through	 multivariate	
Cox	 analysis,	 we	 obtained	 the	 following	 eight	 DEAGs	
that	 are	 most	 relevant	 to	 the	 prognosis	 of	 OC	 for	 con-
structing	 an	 aging	 gene-	related	 risk	 scoring	 signature:	
JAK2,	 IL2RG,	 EEF1E1,	 UBB,	 EPS8,	 FOXO1,	 STAT5A,	
and	 PAPPA.	 The	 details	 of	 these	 eight	 genes	 are	 shown	
in	Table 2.	The	prognostic	risk	score	for	each	patient	was	
imputed	below:	Risk	score = (−0.457984 × JAK2) + (−0.
205973 × IL2RG) + (−0.184204 × EEF1E1) + (−0.09841
9 × UBB) + (0.227572 × EPS8) + (0.272872 × FOXO1) + 
(0.349501  ×  STAT5A)  +  (0.754430  ×  PAPPA).	 A	 violin	

F I G U R E  1  The	flow	chart	for	
constructing	and	verifying	the	eight-	
mRNA	signature



9102 |   LIU et al.

diagram	of	the	distribution	of	these	eight	gene	expression	
in	the	training	group	is	shown	in	Figure 5A–	H.	In	tumor	
tissues,	 four	 protective	 genes	 (JAK2,	 IL2RG,	 EEF1E1,	
and	UBB)	showed	relatively	 low	expression	 in	 the	high-	
risk	group;	 in	contrast,	 the	expression	of	 four	risk	genes	
(EPS8,	FOXO1,	STAT5A,	and	PAPPA)	was	more	highly	in	
the	high-	risk	group	than	that	in	the	low-	risk	group.

3.5	 |	 Identification and 
verification of the survival predictive 
power of the eight- mRNA signature

The	 risk	 scores	 of	 the	 TCGA	 training	 group	 (n  =  374),	
GSE26712	 data	 group	 (n  =  185),	 GSE32062	 data	 group	
(n  =  260),	 and	 GSE14	0082	 data	 group	 (n  =  380)	 were	
calculated	 by	 the	 same	 risk	 score	 formula.	 Using	 their	
own	median	score	as	the	cut-	off	value,	patients,	and	the	
K–	M	curve	and	ROC	curve	related	to	the	risk	model	were	
drawn	 accordingly.	 Survival	 analysis	 revealed	 that	 pa-
tients	 in	 the	 high-	risk	 group	 of	 both	 training	 group	 and	
the	validation	groups	exhibited	a	significantly	poorer	OS	
rate	than	the	low-	risk	group	(Figure 6A–	D).	The	distribu-
tion	of	risk	score,	survival	time,	and	survival	status	is	plot-
ted	in	Figure 7.	The	results	showed	that	the	mortality	of	
patients	was	significantly	elevated	with	the	survival	time	

gradually	 decreased	 as	 the	 progressively	 increasing	 risk	
score	 (Figure  7A–	D).	 In	 the	 TCGA	 test	 set,	 ROC	 values	
of	3-	,	5-	,	and	7-	year	were	0.663,	0.695,	and	0.744,	respec-
tively;	in	the	GSE26712	data	group,	ROC	values	of	3-	,	5-	,	
and	 7-	year	 were	 0.653,	 0.70,	 and	 0.642,	 respectively;	 In	
GSE32062	 data	 group,	 ROC	 values	 of	 3-	,	 5-	,	 and	 7-	year	
were	0.594,	0.572,	and	0.542,	respectively;	In	GSE14	0082	
data	group,	ROC	values	of	3-	,	5-	,	and	7-	year	were	0.584,	
0.598,	and	0.587,	respectively.	The	ROC	curve	over	 time	
showed	that	the	eight-	mRNA	signature	had	a	promising	
and	a	broad	applicability	in	predicting	the	OS	rate	of	OC	
patients	 (Figure  8A–	D).	 Then,	 we	 drew	 the	 calibration	
curve	of	each	group	for	3 years,	and	the	results	proved	that	
the	predicted	value	had	good	coincidence	with	the	actual	
value,	and	proved	the	good	stability	of	our	model	(Figure	
S1A–	D).

3.6	 |	 Eight- mRNA signature was 
identified as an independent prognostic 
marker for OC patients

To	 investigate	whether	 the	any	of	 the	variables	have	 in-
dependent	 prognostic	 significance	 of	 the	 OS	 rate	 of	 pa-
tients	with	OC,	we	conducted	additional	univariate	Cox	
analysis	and	multivariate	Cox	analysis	on	clinical	factors	

T A B L E  1 	 Clinicopathological	characteristics	of	the	patients	included	in	the	training	group	and	validation	groups

Variables
Training group TCGA 
No.

Validation group 
GSE26712 No.

Validation group 
GSE32062 No.

Validation group 
GSE14 0082 No.

No.	of	patients 374 185 260 380

Age

<65 243 –	 –	 257

>=65 131 –	 –	 123

Vital	status

Alive 145 56 139 284

Dead 229 129 121 97

FIGO	stage

Stage	I 1 –	 –	 20

Stage	II 22 –	 –	 31

Stage	III 291 –	 204 266

Stage	IV 57 –	 56 62

Unknown 3 –	 –	 –	

Grade

G1 1 –	 –	 –	

G2 42 –	 131 –	

G3 320 –	 129 –	

G4 1 –	 –	 –	

Unknown 10 –	 –	 –	

Average	follow-	up	time(year) 3.27 3.91 3.73 2.07

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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such	 as	 risk	 score,	 age,	 grade,	 and	 stage	 of	 the	 training	
group.	Univariate	Cox	analysis	showed	that	risk	score	and	
age	were	significantly	related	the	OS	rate	of	OC	patients.	
The	 significant	 factors	 in	 the	 univariate	 Cox	 analysis	
were	included	in	the	multivariate	Cox	analysis.	After	the	

multivariate	Cox	analysis,	the	risk	score	and	age	remained	
as	 independent	 prognostic	 factors	 (Table  3).	 Taken	 to-
gether,	 these	 results	 show	 that	 the	 combined	 8-	mRNA	
risk	model	is	an	excellent	prognostic	marker	independent	
of	other	clinical	features.

F I G U R E  2  Heatmaps,	volcano	maps,	and	Venn	diagrams	of	differentially	expressed	genes	between	normal	tissue	and	ovarian	cancer.	
(A)	Heatmap	and	(B)	volcano	map	demonstrating	the	247	DEAGs	of	TCGA+GTEx.	(C)Heatmap	and	(D)	volcano	map	demonstrating	the	
189	DEAGs	of	GSE26712.	(E)	Jointly	upregulated	DEAGs.	(F)	Jointly	downregulated	DEAGs

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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F I G U R E  3  Functional	enrichment	analysis	of	DEAGs.	(A) GO	enrichment	analysis; (B) KEGG	pathway	enrichment	analysis

F I G U R E  4  Lasso	regression.	(A)	The	variation	trajectory	of	each	independent	variable.	The	logarithm	of	the	independent	variable	
lambda	was	taken	as	the	horizontal	axis,	and	the	coefficient	of	the	independent	variable	was	taken	as	the	vertical	axis.	(B)	Confidence	
intervals	for	each	phase	for	each	lambda,	the	vertical	black	dotted	lines	defined	the	optimal	values	of	lambda,	which	provides	the	best	fit

T A B L E  2 	 8-	gene	signature	selected	by	multivariate	Cox	regression

Name Coefficient Type Down/upregulated HR 95%CI p value

JAK2 −0.45798 Protective Down 0.63 0.40–	1.00 0.0497283

IL2RG −0.20597 Protective Up 0.81 0.69–	0.96 0.0158012

EEF1E1 −0.1842 Protective Up 0.83 0.65–	1.06 0.1319088

UBB −0.09842 Protective Down 0.91 0.83–	0.99 0.0382452

EPS8 0.227572 Risky Down 1.26 1.03–	1.54 0.02776

FOXO1 0.272872 Risky Down 1.31 1.07–	1.62 0.0098715

STAT5A 0.349501 Risky Down 1.42 1.11–	1.81 0.0050247

PAPPA 0.75443 Risky Down 2.13 1.19–	3.79 0.0103691
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F I G U R E  5  The	violin	diagram	of	the	expression	levels	of	eight	genes	in	the	training	group.	(A)	EEF1E1,	(B)	EPS8,	(C)	FOXO1,	(D)	
IL2RG,	(E)	JAK2,	(F)	PAPPA,	(G)	STAT5A,	and	(H)	UBB

F I G U R E  6  Identification	and	verification	of	the	predictive	eight-	mRNA	signature.	K–	M	curves	in	the	training	group (A),	GSE26712	
data	group (B),	GSE32062	data	group	(C),	and	GSE14	0082	data	group	(D)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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3.7	 |	 Construct a nomogram

In	order	to	provide	clinicians	with	more	convenient	and	
accurate	 tools,	 we	 use	 clinical	 characteristics	 and	 risk	
scores	to	construct	a	nomogram23	(Figure 9A).	On	the	cal-
ibration	 plots,	 a	 good	 correlation	 was	 observed	 between	
the	predicted	and	the	actual	values	of	the	OS	rate	of	OC	
patients	at	3,	5,	and	7 years	(Figure 9B).

3.8	 |	 Correlation analysis between the 
eight- mRNA signature and immune cells

We	further	identified	the	association	between	the	aging-	
related	risk	model	and	immune	cells	(Figure 10A).	Using	
p  <  0.05	 as	 the	 filter	 criterion,	 we	 found	 that	 the	 risk	
score	was	associated	negatively	with	B	cells	and	CD8+	T	
cells,	and	the	expression	of	B	cells	and	CD8+	T	cells	was	
relatively	high	when	the	risk	score	was	low	(Figure 10B,	
p  =  5.2e−05,	 Figure  10C,	 p  =  0.00028).	 Macrophages	
were	positively	related	 to	 the	risk	score,	and	the	expres-
sion	 of	 macrophages	 was	 higher	 in	 the	 high-	risk	 group	

(Figure 10D,	p = 0.00071).	CD8+	T	cells	are	involved	in	
the	growth	and	functional	maintenance	of	tumor.

3.9	 |	 Analysis of drug sensitivity related 
to the eight- mRNA signature

This	 study	 indicated	 that	 the	 high-	risk	 patients	 may	 re-
spond	better	compared	with	the	low-	risk	patients	treated	
with	the	same	drugs	(Figure 11A–	C).	Currently,	platinum-	
based	chemotherapy	 is	 the	cornerstone	of	 the	 treatment	
for	advanced	OC.	However,	 the	existence	of	drug	resist-
ance	and	heterogeneity	leads	to	differences	in	the	thera-
peutic	 effects	 of	 drugs	 among	 different	 populations.	
This	 study	 revealed	 the	 sensitivity	of	high-		 and	 low-	risk	
patients	 to	cisplatin,	paclitaxel,	and	gefitinib,	which	will	
provide	researchers	with	a	new	perspective	on	the	devel-
opment	of	drugs	with	higher	efficacy.	It	also	suggests	that	
clinicians	 should	 intervene	 in	 the	 high-	risk	 group	 with	
corresponding	drugs	earlier,	which	may	improve	the	sur-
vival	rate	of	high-	risk	patients,	providing	a	new	vision	for	
future	clinical	work.

F I G U R E  7  The	distribution	of	risk	score,	survival	time,	and	survival	status	in	the	training	group (A),	GSE26712	data	group (B),	
GSE32062	data	group	(C),	and	GSE14	0082	data	group	(D)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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F I G U R E  8  The	ROC	curve	over	time	in	the	training	group (A),	GSE26712	data	group (B),	GSE32062	data	group	(C),	and	GSE14	0082	
data	group	(D)

Univariate analysis Multivariate analysis

Feature HR 95%CI p value HR 95%CI p value

Risk 2.220 1.69–	2.91 8.47E−09 2.164 1.65–	2.84 2.87E−08

Age 1.020 1.01–	1.03 0.001131 1.018 1.01–	1.03 0.004326

Grade 1.194 0.80–	1.79 0.38942 –	 –	 –	

Stage 2.085 0.93–	4.70 0.076316 –	 –	 –	

T A B L E  3 	 Univariate	and	multivariate	
Cox	regression	analyses	of	the	gene	
signature

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32062
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140082
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F I G U R E  9  Establishment	of	the	prognostic	nomogram.	(A)	Nomogram	for	predicting	3-	,	5-	,	and	7-	year	overall	survival	of	OC	patients	
and	(B)	3-	,	5-	,	and	7-	year	nomogram	calibration	curves of	the	prognostic	nomogram

F I G U R E  1 0  Correlation	analysis	of	risk	value	and	immune	cells.	(A)	Correlation	coefficient	between	eight-	mRNA	signature	and	
immune	cells.	(B)	The	expression	of	B	cell	in	high-		and	low-	risk	groups;	(C)	the	expression	of	CD8+	T	cell	in	high-		and	low-	risk	patients;	
and	(D)	the	expression	of	Macrophage	in	high-		and	low-	risk	patients
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3.10	 |	 Validation of candidate genes 
by qPCR

We	further	examined	the	differential	expression	of	JAK2,	
IL2RG,	 EEF1E1,	 UBB,	 EPS8,	 FOXO1,	 STAT5A,	 and	
PAPPA	 genes	 between	 OC	 and	 normal	 ovarian	 tissue	
samples.	The	RT-	qPCR	results	showed	that	compared	to	
normal	 ovarian	 tissue	 samples,	 trends	 in	 the	 expression	
levels	 of	 these	 genes	 were	 consistent	 with	 our	 previous	
findings	(Figure 12).

4 	 | 	 DISCUSSION

OC	is	the	most	fatal	gynecological	malignancy	in	women.2	
Since	 age	 is	 one	 of	 the	 main	 reason	 for	 OC,15–	17	 with	
the	 aging	 process,	 the	 incidence	 of	 OC	 will	 continue	
to	 increase,2	 and	 the	 process	 of	 aging	 and	 cancer	 is	
inseparable.14

Following	 the	 advent	 of	 new	 high-	throughput	 se-
quencing	technology	and	the	development	of	the	TCGA	
and	 GEO	 databases,	 scholars	 have	 established	 a	 large	
number	 of	 risk	 models	 based	 on	 gene	 expression	 lev-
els	 that	 can	 better	 predict	 the	 OS	 rate	 of	 OC	 patients.	
However,	 among	 the	various	 risk	characteristics,	 there	
is	no	aging-	related	gene	signature	in	predicting	the	out-
come	of	OC	patients.

In	our	study,	we	identified	285	AGs	in	the	TCGA	train-
ing	group	and	GSE26712 validation	group.	After	screening	
for	differential	genes,	113	DEAGs	that	were	either	upreg-
ulated	or	downregulated	were	found	in	the	training	group	
and	 validation	 group	 1.	 After	 univariate	 Cox	 analysis,	
Lasso	regression	and	multivariate	Cox	analysis	of	candi-
date	 genes	 in	 the	 training	 group,	 the	 aging-	related	 gene	
signature	of	eight	genes	was	further	constructed,	includ-
ing	JAK2,	IL2RG,	EEF1E1,	UBB,	EPS8,	FOXO1,	STAT5A,	
and	PAPPA.	Following	the	comprehensive	analysis	of	this	
signature,	we	observed	that	the	risk	score	related	to	aging	

F I G U R E  1 2  Validation	of	candidate	genes	by	qPCR.	(A)	EEF1E1,	(B)	EPS8,	(C)	FOXO1,	(D)	IL2RG,	(E)	JAK2,	(F)	PAPPA,	(G)	STAT5A,	
and	(H)	UBB

F I G U R E  1 1  Drug	sensitivity	analysis.	(A)	Cisplatin,	(B)	Paclitaxel,	and	(C)	Gefitinib

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26712
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is	 notably	 correlated	 with	 the	 OS	 rate	 of	 OC	 patients.	
According	to	the	area	under	the	ROC	curve,	the	prediction	
results	 were	 accurate,	 and	 we	 conducted	 external	 verifi-
cation	in	three	GEO	data	sets.	Moreover,	compared	with	
other	 clinicopathological	 characteristics,	 the	 risk	 score	
signature	showed	a	more	reliable	predictive	ability.	In	ad-
dition,	we	constructed	a	nomogram	combining	risk	score	
and	age	as	a	more	convenient	clinical	tool	for	predicting	
prognosis.	Additionally,	the	correlation	between	the	level	
of	the	risk	score	and	the	infiltration	of	immune	cells	was	
analyzed,	revealing	that	the	risk	score	was	positively	cor-
related	 with	 macrophage	 and	 negatively	 correlated	 with	
CD8+	T	cells	and	B	cell.	Finally,	based	on	the	risk	score,	
we	can	judge	the	sensitivity	of	patients	to	paclitaxel,	car-
boplatin,	and	gefitinib,	allowing	for	timely	treatment	with	
the	appropriate	drugs.

At	 the	 present	 level	 of	 science	 and	 technology,	 aging	
is	 inevitable	 and	 is	 characterized	 by	 the	 stagnation	 of	
the	 cell	 cycle	 at	 the	 micro	 level	 and	 the	 gradual	 loss	 of	
function	 of	 tissues	 and	 organs	 at	 the	 macro	 level.24,25	
Cell	 senescence	 plays	 an	 important	 role	 in	 tumorigene-
sis,	 tumor	development,	and	tumor	immune	escape.	For	
example,	 the	 senescence-	associated	 secretory	 phenotype	
(SASP)	is	not	only	a	tumor	suppressor	but	can	also	act	as	
a	tumor	driver.24	On	the	one	hand,	aging	cells	can	induce	
senescence	in	adjacent	tumor	cells	through	autocrine	and	
paracrine	mechanisms	by	releasing	SASP	and	activate	im-
mune	surveillance	to	eliminate	senescent	and	proliferat-
ing	 tumor	 cells	 at	 the	 same	 time,	 thereby	 inhibiting	 the	
proliferation	 of	 cancer	 cells.26	 On	 the	 other	 hand,	 aging	
cells	 can	 reshape	 the	 tumor	 microenvironment	 through	
SASP,	promote	cell	proliferation,	and	drive	tumor	angio-
genesis,	thus	promoting	tumor	progression.27–	29

Among	the	eight	genes	in	the	eight-	mRNA	signature	of	
this	study,	EPS8,	FOXO1,	STAT5A,	and	PAPPA	were	risk	
factors,	and	JAK2,	IL2RG,	EEF1E1,	and	UBB	were	protec-
tive	factors.

EPS8	is	the	substrate	of	epidermal	growth	factor	recep-
tor	 (EGFR)	 kinase	 activity.30	 Previously,	 scholars	 found	
that	EPS8	was	usually	overexpressed	in	advanced	thyroid	
cancer,	pancreatic	cancer,	oral	squamous	cell	carcinoma,	
and	 pituitary	 tumors.31–	34	 In	 our	 study,	 compared	 with	
normal	 ovarian	 tissue,	 EPS8  showed	 low	 expression	 in	
ovarian	 cancer	 tissue,	 which	 may	 be	 related	 to	 the	 het-
erogeneity	of	 the	tumor.	EPS8	binds	to	AbI1	through	its	
SH3	 domain,	 and	 AbI1	 binds	 EPS8	 and	 SOS1	 together,	
thereby	 promoting	 the	 formation	 of	 a	 trimeric	 complex	
that	 activates	 Rac.30	 Rac	 activity	 is	 required	 for	 the	 me-
tastasis	 and	 colony-	forming	 ability	 of	 ovarian	 cancer	
cells.35	Therefore,	the	metastatic	potential	of	ovarian	can-
cer	 is	 closely	 related	 to	 the	 integrity	 of	 the	 SOS1/EPS8/
ABI1	complex.	In	addition,	some	scholars	have	found	that	
the	presence	of	the	SOS1/EPS8/ABI1	complex	correlated	

well	to	the	continuous	epithelial–	mesenchymal	transition	
(EMT)	characteristics	of	ovarian	cancer	cells,	and	an	in-
tact	 complex	 is	 required	 for	 this	 procedure.36	Therefore,	
silenced	or	low	expression	of	EPS8	can	reduce	the	migra-
tion	 and	 metastatic	 colonizing	 ability	 of	 ovarian	 cancer	
cells.35	Thus,	relatively	high	expression	of	EPS8	is	a	risk	
factor	 for	 ovarian	 cancer,	 which	 is	 consistent	 with	 our	
research	 results.	 Regarding	 FOXO1,	 it	 has	 long	 been	 re-
ported	that	FOXO1	expression	is	downregulated	in	cervi-
cal	cancer,	kidney	cancer,	breast	cancer,	prostate	cancer,	
endometrial	 cancer,	 and	 ovarian	 cancer.37–	42	 In	 ovarian	
cancer,	the	progesterone	receptor	(PR-	B)	induces	cell	se-
nescence	through	FOXO1,	and	one	of	the	characteristics	
of	aging	cells	is	the	upregulation	of	FOXO1	expression.43	
In	 our	 study,	 we	 reached	 the	 same	 conclusion	 that	 the	
expression	 level	 of	 FOXO1	 is	 generally	 downregulated,	
while	 the	expression	 level	of	FOXO1	 is	 relatively	higher	
in	high-	risk	patients,	which	indicates	that	patients	in	the	
high-	risk	group	are	more	prone	to	cell	aging.	STAT5A	is	
an	oncogene.	Members	of	the	STAT	family	are	related	to	
the	occurrence,	progression,	metastasis,	angiogenesis,	and	
immune	 escape	 of	 human	 cancer.44	 In	 prostate	 cancer,	
some	 scholars	 have	 found	 that	 knocking	 down	 STAT5A	
can	increase	the	sensitivity	of	prostate	cancer	to	radiother-
apy	and	reduce	radiation	damage	to	adjacent	tissues45;	in	
colorectal	 cancer,	 inhibition	 of	 STAT5A	 promotes	 che-
motherapy	(such	as	cisplatin	or	5-	FU)-	induced	apoptosis	
of	colorectal	cancer	cells.46	In	terms	of	immunity,	STAT5	
plays	a	key	role	in	the	function	and	development	of	Tregs,	
and	continuously	activated	STAT5	can	inhibit	antitumor	
immunity	 and	 increase	 the	 proliferation,	 invasion,	 and	
survival	of	 tumor	cells.47	In	our	study,	STAT5	was	a	risk	
factor,	and	relatively	high	expression	of	STAT5	increased	
the	risk	score	and	predicted	a	poor	prognosis.	Regarding	
PAPPA,	 although	 we	 did	 not	 find	 a	 differential	 level	 of	
PAPP-	A	 expression	 between	 normal	 ovarian	 tissue	 and	
ovarian	cancer,	there	is	evidence	that	the	downregulation	
of	 the	 pregnancy-	associated	 plasma	 protein	 A	 (PAPPA)	
gene	can	 reduce	 IGF-	I-	dependent	Akt	and	ERK1/2	acti-
vation,	 thereby	 reducing	 the	 growth,	 invasion,	 and	 me-
tastasis	 of	 OC	 cells.48	 Similarly,	 it	 has	 been	 found	 that	
overexpression	of	PAPPA	in	ovarian	cancer	cells	promotes	
the	growth	of	tumors.49	According	to	our	results,	PAPPA	is	
a	risk	factor,	and	the	relatively	high	expression	of	PAPPA	
may	be	one	of	the	reasons	for	poor	prognosis	in	the	high-	
risk	group.

Among	 the	 protective	 factors,	 JAK2	 expression	 has	
been	 found	 to	 be	 upregulated	 in	 OC	 tissues	 after	 pacl-
itaxel	 chemotherapy,	 and	 its	 expression	 is	 related	 to	 the	
drug	 resistance	 mechanism	 of	 OC.50	 The	 JAK2-	STAT3	
pathway	 promotes	 the	 development	 of	 paclitaxel	 resis-
tance	by	upregulating	the	expression	of	pro-	survival	and	
anti-	apoptosis	genes.	 Inhibition	of	JAK2	can	reverse	 the	
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resistance	 of	 ovarian	 cancer	 to	 paclitaxel.51	 Compared	
with	 normal	 tissues,	 the	 expression	 of	 JAK2	 in	 OC	 is	
downregulated,	which	may	be	related	to	the	heterogeneity	
of	the	tumor.	In	tumor	tissues,	the	expression	of	JAK2	is	
relatively	higher	in	low-	risk	patients,	which	may	be	caused	
by	chemotherapy	and	resistance.	This	point	is	worthy	of	
further	study.	Regarding	EEF1E1,	studies	have	found	that	
EEF1E1	is	overexpressed	in	most	tumors,	including	ovar-
ian	 cancer,	 and	 that	 high	 expression	 of	 EEF1G	 predicts	
better	OS	and	PFS	rates	in	OC	patients,52	which	is	consis-
tent	with	our	 research	results.	 In	addition,	 in	our	study,	
UBB	 was	 a	 protective	 factor,	 and	 the	 downregulation	 of	
UBB	predicted	a	worse	prognosis,	which	is	consistent	with	
the	conclusion	of	other	studies.	In	human	gynecological	
cancer,	 the	expression	of	UBB	is	decreased,	and	the	 low	
expression	of	UBB	is	associated	with	the	poor	survival	rate	
of	gynecological	cancer.53

Although	age	is	an	important	risk	factor	for	the	devel-
opment	 of	 OC,	 there	 are	 few	 published	 data	 to	 demon-
strate	the	influence	of	aging	and	aging	genes	on	OC.	Only	
in	animal	studies	has	 it	been	 found	that	aging	 increases	
susceptibility	to	ovarian	cancer	metastasis	in	a	mouse	al-
lograft	model.54	Therefore,	our	eight-	mRNA	signature	and	
nomogram	can	provide	new	perspectives	for	clinical	work.

Interestingly,	 we	 also	 found	 some	 differences	 in	 im-
mune	 cell	 infiltration	 between	 the	 high-		 and	 low-	risk	
groups,	suggesting	that	aging-	related	genes	may	be	related	
to	 tumor	 immunity.	 Several	 previous	 studies	 have	 shed	
light	 on	 the	 relationship	 between	 aging	 and	 immunity.	
The	characteristic	of	aging	is	graduate	senescent	immune	
remodeling	termed	immunosenescence.	For	example,	the	
immunosenescence	of	T	cells,	including	shrinkage	of	im-
mune	repertoire,	 the	exhaustion	of	memory	T	cells,	and	
the	 reduction	 of	 immune	 costimulatory	 molecules,	 all	
of	them	lead	to	a	significant	decline	in	immune	function	
with	aging.	One	of	the	main	tasks	of	the	human	immune	
system	 is	 cancer	 detection.	 Mutations	 or	 genetic	 disor-
ders	 in	 somatic	 cells	 may	 cause	 them	 to	 be	 considered	
foreign	antigens.	For	the	elderly,	as	the	age	increases,	the	
decline	 of	 immune	 function	 will	 reduce	 the	 recognition	
and	elimination	of	these	cells,	eventually	leading	to	their	
accumulation.55	 These	 senescent	 cells	 and	 SASP	 factors	
can	reprogram	the	tumor	microenvironment	 into	an	en-
vironment	more	prone	to	 the	growth	of	malignant	cells,	
which	has	been	proven	by	a	large	number	of	studies.56–	59	
In	our	study,	the	expression	levels	of	B	cells	and	CD8+T	
cells	were	significantly	higher	in	the	low-	risk	group.	As	far	
as	we	know,	CD8+T	cells	play	a	pivotal	role	in	controlling	
tumor	cell	growth,	and	prior	studies	have	already	demon-
strated	 that	 CD8+	 T	 cells	 indicate	 a	 better	 prognosis.60	
Other	studies	have	found	that	not	only	does	the	percent-
age	of	peripheral	blood	B	cells	decrease	with	the	increase	
in	 age,	 but	 also	 their	 capacity	 to	 spontaneously	 secrete	

IgM	 decreases.61	 In	 contrast,	 the	 expression	 of	 macro-
phages	was	higher	in	the	high-	risk	group.	Some	scholars	
have	observed	an	increase	in	the	number	of	macrophages	
in	aging	adipose	tissue;	in	addition,	the	increase	in	mac-
rophages	 in	 the	 lymphatic	 tissues	 of	 elderly	 individuals	
was	 dominated	 by	 an	 increase	 in	 immunosuppressive	
M2 macrophages.62	The	above	may	be	one	of	the	reasons	
for	the	better	prognosis	of	the	low-	risk	group.

Platinum-	based	chemotherapy	is	the	first-	line	chemo-
therapy	 for	 ovarian	 cancer.	 Given	 its	 limited	 specificity,	
many	 of	 the	 side	 effects	 associated	 with	 the	 treatment	
tend	to	endanger	the	lives	of	more	elderly	people.	There	
are	many	examples	of	how	the	aging	microenvironment	
can	lead	to	chemotherapy	resistance.	Senescent	fibroblasts	
with	 SASP	 and	 other	 stromal	 components	 secrete	 cyto-
kines	that	promote	cancer	cell	resistance	to	chemotherapy	
in	a	paracrine	manner.63–	65	In	addition,	research	supports	
the	 fact	 that	 chemotherapy	 can	 further	 induce	 SASP	 in	
tumor,	 immune,	 and	 stromal	 cells	 through	 treatment-	
induced	 senescent	 cells.	 Therefore,	 based	 on	 our	 sen-
sitivity	 analysis,	 we	 may	 be	 able	 to	 draw	 a	 conclusion:	
high-	risk	 populations	 were	 more	 sensitive	 to	 platinum-	
based	chemotherapeutics,	but	due	to	the	development	of	
SASP,	 they	 developed	 drug	 resistance	 faster,	 and	 finally	
led	to	a	poor	treatment	outcome.	However,	as	we	did	not	
know	whether	the	population	included	in	the	study	had	
previously	 experienced	 platinum-	based	 treatment,	 this	
conclusion	requires	further	exploration.

Although	 we	 have	 made	 many	 efforts	 to	 study	 the	
prognostic	model,	there	are	still	some	shortcomings.	First,	
the	ROC	value	of	the	external	validation	groups	was	un-
satisfactory.	Second,	 some	clinical	 features	 such	as	post-
operative	interventions,	radiotherapy,	and	chemotherapy	
for	OC	patients	extracted	from	the	TCGA	and	GEO	data-
bases	are	incomplete	and	not	available,	so	at	the	time	of	
writing,	we	could	not	conduct	a	full	analysis	of	OS.	Third,	
because	clinical	samples	are	relatively	difficult	to	obtain,	
we	only	used	six	pairs	of	clinical	samples	to	verify	our	con-
clusion.	 Currently	 we	 are	 actively	 collecting	 more	 clini-
cal	samples,	and	multicenter,	large-	scale	prospective,	and	
well-	designed	 studies	 are	 required	 to	 further	 verify	 the	
prediction	model	presented	here.

5 	 | 	 CONCLUSION

All	in	all,	we	constructed	a	prognostic	signature	of	eight	
aging-	related	genes	and	a	clinical	nomogram	that	pro-
vides	potential	biomarkers	for	predicting	the	prognosis	
of	patients	with	OC,	helps	 to	understand	 the	potential	
pathogenesis	of	OC,	and	can	possibly	be	used	to	develop	
new	 approaches	 for	 the	 clinical	 treatment	 of	 ovarian	
cancer.
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