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Abstract: Nowadays, quantitative structure–activity relationship (QSAR) methods have been widely
performed to predict the toxicity of compounds to organisms due to their simplicity, ease of
implementation, and low hazards. In this study, to estimate the toxicities of substituted aromatic
compounds to Tetrahymena pyriformis, the QSAR models were established by the multiple linear
regression (MLR) and radial basis function neural network (RBFNN). Unlike other QSAR studies,
according to the difference of functional groups (−NO2, −X), the whole dataset was divided into
three groups and further modeled separately. The statistical characteristics for the models are
obtained as the following: MLR: n = 36, R2 = 0.829, RMS (root mean square) = 0.192, RBFNN:
n = 36, R2 = 0.843, RMS = 0.167 for Group 1; MLR: n = 60, R2 = 0.803, RMS = 0.222, RBFNN: n = 60,
R2 = 0.821, RMS = 0.193 for Group 2; MLR: n = 31 R2 = 0.852, RMS = 0.192; RBFNN: n = 31, R2 = 0.885,
RMS = 0.163 for Group 3, respectively. The results were within the acceptable range, and the models
were found to be statistically robust with high external predictivity. Moreover, the models also gave
some insight on those characteristics of the structures that most affect the toxicity.

Keywords: substituted aromatic compounds; toxicity; quantitative structure–activity relationship (QSAR);
multiple linear regression (MLR); radial basis function neural network (RBFNN)

1. Introduction

With the rapid development of science and technology, tens of thousands of new chemicals are
synthesized and widely used in all walks of life every day. However, as we all know, if chemicals
are used or handled incorrectly, they may enter the aquatic environment or bio-accumulate in the
food chain, where they may adversely impact the people, ultimately. One of the current interests in
medicinal chemistry, environmental sciences, and especially for toxicology, is to rank and establish the
chemical substances with respect to their potential hazardous effects on humans, wildlife, and aquatic
flora and fauna [1]. Among the vast organic matter, it is noteworthy that the substituted aromatic
compounds [2–8] occupy important positions, since they are produced in large quantities and released
into the environment as a result of their wide use in agriculture and industry, and are widely distributed
in air, natural water, waste water, soil, sediment, and living organics [9,10]. In addition, recent studies
have proved that the substituted aromatic compounds are also a kind of biotoxic environmental
pollutant, and even have the effects of carcinogenesis and gene mutation on organisms [10,11].
Therefore, studies on the properties of substituted aromatics have important significance.

Up to now, both experimental [12–15] and theoretical methods [16,17] have been used to evaluate
kinds of substituted aromatic compounds for their different toxicities. Also, it is well known that
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the theoretical predictions of properties or activities by quantitative structure–activity relationship
(QSAR) studies have been widely adopted and applied since the 90s, because of their advantages,
such as rapidness, easiness, sensitiveness, and cheapness [11]. The QSAR method has been widely
applied in different fields, including physical chemistry, pharmaceutical chemistry, environmental
chemistry, toxicology, and other research fields [18]. It has been proven that the use of QSAR modeling
for toxicological predictions would help to determine the potential adverse effects of chemical entities
in risk assessment.

For a long time, a lot of meaningful research focusing on the toxicity of substituted aromatic
compounds by QSAR approach have been carried out. In 1982, Schultz et al. tried to perform the QSAR
study between the cellular response to Tetrahymena pyriformis and molecular connectivity indexes for
a series of 24 mono- and dinitrogen heterocyclic compounds. In this study, the authors established
a better model than before, and pointed out that toxicity increases with an increase in the number
of atoms and degree of methylation per compound, and that toxicity decreases with an increase
in nitrogen substitution [1]. In 1998, Cronin et al. established several QSAR models focusing on
a dataset of 42 alkyl- and halogen-substituted nitro- and dinitrobenzenes to Tetrahymena pyriformis [19].
They found that the nitrobenzenes were thought to elicit their toxic response through multiple
(and mixed) mechanisms by one or two molecule descriptor models. In 2001, in order to compare the
differences among kinds of QSAR model-building methods, Cronin and Schultz developed QSAR
studies for the toxicity of 268 aromatic compounds in the Tetrahymena pyriformis growth inhibition
assay [16]. In their study, they not only compared the influence of different descriptors on the models,
but also the Bayesian regularized neural network (BRANN) and partial least-squares (PLS) analysis
to build the models. In the following year, the same authors performed also the same study on
a dataset of phenolic toxicity data to Tetrahymena pyriformis [17]. The above works gave us some
guidelines or directions on how to build better models on the toxicities to this group of compounds.
Netzeva et al. developed relative simple QSARs models (one or two descriptors) for the acute
toxicity of a dataset of 77 aromatic aldehydes to the ciliate Tetrahymena pyriformis using mechanistically
interpretable descriptors [20]. They revealed that the octanol/water partition coefficient (log KOW)
is the most important descriptor, and the models would be improved by using another electronic
descriptor. Roy et al. performed a QSAR studies on the toxic potency to Tetrahymena pyriformis of
a dataset of 174 aromatic compounds (phenols, nitrobenzenes, and benzonitriles) using electrophilicity
index [21]. In this study, the compounds in the dataset were divided into the electron donor and
acceptor group, and they stated that electrophilicity indices, along with the total Hartree–Fock energy,
can be used to build the model perfectively. Later, the performances of the linear and nonlinear
models were estimated by Devillers et al. using a structurally heterogeneous set of 200 phenol
derivatives on Tetrahymena pyriformis. In this study, the authors pointed out the superiority of the
nonlinear methods over the linear ones to find complex structure–toxicity relationships among large
sets of structurally diverse chemicals [22]. Tetko et al. gave studies on the applicability domain
and the influence of the overfitting in the QSAR model building process by the toxicity dataset
against Tetrahymena pyriformis [23]. The hierarchical technology for QSAR was performed using
95 diverse nitroaromatic compounds against the ciliate Tetrahymena pyriformis [24]. Zarei et al.
developed a model for the prediction of the toxicity of 268 substituted benzene compounds including
phenols, monosubstituted nitrobenzenes, multiply substituted nitrobenzenes and benzonitriles to
T. pyriformis using bee algorithm (BA) for selecting descriptors and adaptive neuro-fuzzy inference
system (ANFIS) for building model [25]. A molecular structural characterization (MSC) method
named molecular vertexes correlative index (MVCI) was successfully used to describe the structures
of 30 substituted aromatic compounds, and the results suggested good stability and predictability of
the QSAR models [26]. Comparative molecular field (CoMFA), molecular similarity index analysis
(CoMSIA), and density functional theory (DFT) methods were used to establish QSAR models for
analyzing and predicting the toxicities of 31 substituted thiophenols [27]. And later, Salahinejad et
al. also used the CoMFA, CoMSIA, and VolSurf techniques to develop valid and predictive models
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able to estimate the toxicity of substituted benzenes toward T. pyriformis. In the paper, they confirmed
that in addition to hydrophobic effects, electrostatic and H-bonding interactions also play important
roles in the toxicity of substituted benzenes, as well as that the information obtained from CoMFA
and CoMSIA 3-D contour maps could be useful to explain the toxicity mechanism of substituted
benzenes [28]. The linear (MLR) and nonlinear statistical (RBFNN) methods were used by us to build
a reliable, credible, and fast QSAR model for the prediction of mixture toxicity of non-polar narcotic
chemicals, including 9 PFCAs, 12 alcohols, and 8 chlorobenzenes and bromobenzenes. The predictive
values are in good agreement with the experimental ones [18]. In the same way, recursive neural
networks (RNN) and multiple linear regression (MLR) methods were also employed to build models
for prediction of the toxicity values of 69 benzene derivatives, both methods provided good results
as compared to other studies available in the literature [29]. To build a reliable and predictive QSAR
model, a genetic algorithm along with partial least square (GA–PLS) was employed to select the
optimal subset of descriptors that significantly contribute to the toxicity of 45 nitrobenzene derivatives
to Tetrahymena pyriformis [30].

The goal of present study was to develop reliable and predictive QSAR models using both MLR
and RBFNN methods to identify and predict the acute toxicity (the 50% growth inhibitory concentration
IGC50) of substituted aromatic compounds to the aquatic ciliate Tetrahymena pyriformis. For this purpose,
the whole dataset was divided into three groups with respect to the important function group of
the substituted aromatic compounds such as −NO2, −X etc. They were Group 1: Compounds with
NO2 group, etc. (46 compounds); Group 2: Compounds with –X, etc. (75 compounds); Group 3:
Compounds with both −NO2 and −X, etc. (39 compounds). In so doing, different accurate models
were built to evaluate the toxicities of these aromatic compounds.

2. Materials and Methods

2.1. Datasets

For the aromatic compounds, Wei et al. have mentioned that the order of the contribution of
the special substituents to the toxicity of the aromatic compound is: −NO2 > −Cl > −CH3 > −NH2

> −OH [31]. Based on the dataset given by Schultz et al. [32], we selected the typical compounds
containing the most influential functional groups (−NO2 and –X), and divided them into three
subgroups. Group 1 includes 46 compounds whose chemical structures have the functional group
−NO2 without −X. Among them, 36 compounds were substituted by a −NO2 and 10 compounds
were substituted by two −NO2. Group 2 contains 75 compounds which have functional groups –X
without −NO2. Among them, the 54, 16, and 5 compounds were replaced by one, two, or three
functional groups −X, respectively. Group 3 contains 39 compounds, in which both the −NO2 and −X
functional groups are included, and the total number of substituents for −NO2 and −X is not more
than 3.

In this study, compounds in each group were randomly divided into two subsets. One called
training set was used to build a model, and there were 36, 60, 31 compounds in the training set for
Group 1, 2, 3, respectively. The remaining compounds were used to verify the robustness and feasibility
of the model as a test set which includes 10, 15, and 8 for the corresponding groups, respectively.
The CAS number, name, and toxicity (−log IGC50) of the above compounds are all listed in Table 1.
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Table 1. The CAS number, name, experimental −log IGC50 values, predicted −log IGC50 values and
their corresponding residual for the three groups of compounds.

No. CAS Name
Experimental
−log IGC50

Predicted −log IGC50

MLR Residual RBFNN Residual Set

Group 1. Compounds with the functional group −NO2.

1 * 619-25-0 3-Nitrobenzyl alcohol −0.22 0.58 0.80 0.01 0.23 T
2 91-23-6 2-Nitroanisole −0.07 0.22 0.29 0.00 0.07 A
3 99-09-2 3-Nitroaniline 0.03 0.46 0.43 0.34 0.31 B
4 88-74-4 2-Nitroaniline 0.08 0.43 0.35 0.35 0.27 C
5 99-61-6 3-Nitrobenzaldehyde 0.11 0.27 0.16 0.16 0.05 D

6 * 98-95-3 Nitrobenzene 0.14 0.31 0.17 −0.10 −0.24 T
7 552-89-6 2-Nitrobenzaldehyde 0.17 0.25 0.08 0.19 0.02 A
8 555-16-8 4-Nitrobenzaldehyde 0.2 0.38 0.18 0.16 −0.04 B
9 88-72-2 2-Nitrotoluene 0.26 0.48 0.22 0.32 0.06 C

10 704-13-2 3-Hydroxy-4-nitrobenzaldehyde 0.27 0.57 0.30 0.39 0.12 D
11 * 121-89-1 30-Nitroacetophenone 0.32 0.47 0.15 −0.02 −0.34 T
12 42454-06-8 5-Hydroxy-2-nitrobenzaldehyde 0.33 0.54 0.21 0.42 0.09 A
13 89-62-3 4-Methyl-2-nitroaniline 0.37 0.62 0.25 0.55 0.18 B
14 619-50-1 Methyl-4-nitrobenzoate 0.39 0.70 0.31 0.46 0.07 C
15 99-08-1 3-Nitrotoluene 0.42 0.53 0.11 0.43 0.01 D

16 * 5292-45-5 Dimethyl nitroterephthalate 0.43 1.51 1.08 0.09 −0.34 T
17 619-24-9 3-Nitrobenzonitrile 0.45 0.70 0.25 0.67 0.22 A
18 554-84-7 3-Nitrophenol 0.51 0.58 0.07 0.49 −0.02 B
19 83-41-0 1,2-Dimethyl-3-nitrobenzene 0.56 0.67 0.11 0.66 0.10 C
20 119-33-5 4-Methyl-2-nitrophenol 0.57 0.63 0.06 0.62 0.05 D

21 * 99-51-4 1,2-Dimethyl-4-nitrobenzene 0.59 0.74 0.15 0.31 −0.28 T
22 700-38-9 5-Methyl-2-nitrophenol 0.59 0.78 0.19 0.76 0.17 A
23 4920-77-8 3-Methyl-2-nitrophenol 0.61 0.64 0.03 0.51 −0.10 B
24 3011-34-5 4-Hydroxy-3-nitrobenzaldehyde 0.61 0.47 −0.14 0.45 −0.16 C
25 99-99-0 4-Nitrotoluene 0.65 0.54 −0.11 0.52 −0.13 D

26 * 5428-54-6 2-Methyl-5-nitrophenol 0.66 0.84 0.18 0.60 −0.06 T
27 601-89-8 2-Nitroresorcinol 0.66 0.63 −0.03 0.55 −0.11 A
28 88-75-5 2-Nitrophenol 0.67 0.43 −0.24 0.32 −0.35 B
29 99-77-4 Ethyl-4-nitrobenzoate 0.7 0.76 0.06 0.67 −0.03 C
30 555-03-3 3-Nitroanisole 0.71 0.66 −0.05 0.48 −0.23 D

31 * 97-02-9 2,4-Dinitroaniline 0.72 1.33 0.61 0.97 0.25 T
32 616-86-4 4-Ethoxy-2-nitroaniline 0.76 1.09 0.33 0.84 0.08 A
33 99-65-0 1,3-Dinitrobenzene 0.76 1.07 0.31 0.94 0.18 B
34 100-29-8 4-Nitrophenetole 0.83 0.98 0.15 0.84 0.01 C
35 573-56-8 2,6-Dinitrophenol 0.83 1.25 0.42 1.30 0.47 D

36 * 606-22-4 2,6-Dinitroaniline 0.84 1.30 0.46 0.80 −0.04 T
37 603-71-4 1,3,5-Trimethyl-2-nitrobenzene 0.86 0.92 0.06 0.73 −0.13 A
38 121-14-2 2,4-Dinitrotoluene 0.87 1.30 0.43 1.07 0.20 B
39 329-71-5 2,5-Dinitrophenol 1.04 1.50 0.46 0.94 −0.10 C
40 528-29-0 1,2-Dinitrobenzene 1.25 1.06 −0.19 0.89 −0.36 D

41 * 100-25-4 1,4-Dinitrobenzene 1.3 1.23 −0.07 1.33 0.03 T
42 86-00-0 2-Nitrobiphenyl 1.3 1.20 −0.10 1.03 −0.27 A
43 620-88-2 4-Nitrophenyl phenyl ether 1.58 1.71 0.13 1.59 0.01 B
44 69212-31-3 2-(Benzylthio)-3-nitropyridine 1.72 1.98 0.26 1.71 −0.01 C
45 534-52-1 4,6-Dinitro-2-methylphenol 1.73 1.61 −0.12 1.70 −0.03 D

46 * 4097-49-8 4-(tert)-Butyl-2,6-dinitrophenol 1.8 2.00 0.20 1.71 −0.09 T

Group 2. Compounds with the functional group −X.

1 * 348-54-9 2-Fluoroaniline −0.37 -0.20 0.17 −0.17 0.20 T
2 95-51-2 2-Chloroaniline −0.17 0.03 0.20 −0.04 0.13 A
3 108-90-7 Chlorobenzene −0.13 0.11 0.24 0.05 0.18 B
4 372-19-0 3-Fluoroaniline −0.1 −0.27 −0.17 −0.23 −0.13 C
5 371-41-5 4-Fluorophenol 0.02 −0.12 −0.14 −0.14 −0.16 D

6 * 106-47-8 4-Chloroaniline 0.05 −0.01 −0.06 0.06 0.01 T
7 100-44-7 Benzyl chloride 0.06 0.31 0.25 0.24 0.18 A
8 108-86-1 Bromobenzene 0.08 0.18 0.10 0.15 0.07 B
9 18982-54-2 2-Bromobenzyl alcohol 0.1 0.32 0.22 0.24 0.14 C

10 95-88-5 4-Chlororesorcinol 0.13 0.50 0.37 0.48 0.35 D
11 * 156-41-2 2-(4-Chlorophenyl)-ethylamine 0.14 0.43 0.29 0.46 0.32 T
12 873-63-2 3-Chlorobenzyl alcohol 0.15 0.56 0.41 0.55 0.40 A
13 104-86-9 4-Chlorobenzylamine 0.16 0.28 0.12 0.27 0.11 B
14 615-65-6 2-Chloro-4-methylaniline 0.18 0.46 0.28 0.41 0.23 C
15 367-12-4 2-Fluorophenol 0.19 0.17 −0.02 0.09 −0.10 D

16 * 108-42-9 3-Chloroaniline 0.22 −0.07 −0.29 0.04 −0.18 T
17 873-76-7 4-Chlorobenzyl alcohol 0.25 0.33 0.08 0.26 0.01 A
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Table 1. Cont.

No. CAS Name
Experimental
−log IGC50

Predicted −log IGC50

MLR Residual RBFNN Residual Set

18 1875-88-3 4-Chlorophenethyl alcohol 0.32 0.48 0.16 0.43 0.11 B
19 95-56-7 2-Bromophenol 0.33 0.50 0.17 0.45 0.12 C
20 95-69-2 4-Chloro-2-methylaniline 0.35 0.45 0.10 0.39 0.04 D

21 * 615-43-0 2-Iodoaniline 0.35 0.40 0.05 0.48 0.13 T
22 591-50-4 Iodobenzene 0.36 0.30 −0.06 0.32 −0.04 A
23 87-60-5 3-Chloro-2-methylaniline 0.38 0.35 −0.03 0.30 −0.08 B
24 95-74-9 3-Chloro-4-methylaniline 0.39 0.39 0.00 0.38 −0.01 C
25 104-88-1 4-Chlorobenzaldehyde 0.4 0.48 0.08 0.41 0.01 D

26 * 103-63-9 (2-Bromoethyl)-benzene 0.42 0.51 0.09 0.65 0.23 T
27 5922-60-1 2-Amino-5-chlorobenzonitrile 0.44 0.28 −0.16 0.22 −0.22 A
28 106-38-7 4-Bromotoluene 0.47 0.48 0.01 0.42 −0.05 B
29 95-79-4 5-Chloro-2-methylaniline 0.5 0.44 −0.06 0.40 −0.10 C
30 95-50-1 1,2-Dichlorobenzene 0.53 0.53 0.00 0.49 −0.04 D

31 * 106-48-9 4-Chlorophenol 0.54 0.06 −0.48 0.27 −0.27 T
32 615-74-7 2-Chloro-5-methylphenol 0.54 0.59 0.05 0.59 0.05 A
33 554-00-7 2,4-Dichloroaniline 0.56 0.49 −0.07 0.44 −0.12 B
34 95-82-9 2,5-Dichloroaniline 0.58 0.36 −0.22 0.29 −0.29 C
35 7120-43-6 5-Chloro-2-hydroxybenzamide 0.59 0.39 −0.20 0.43 −0.16 D

36 * 623-12-1 4-Chloroanisole 0.6 0.27 −0.33 0.36 −0.24 T
37 6627-55-0 2-Bromo-4-methylphenol 0.6 0.96 0.36 0.84 0.24 A
38 16532-79-9 4-Bromophenyl acetonitrile 0.6 0.66 0.06 0.63 0.03 B
39 2973-76-4 5-Bromovanillin 0.62 0.85 0.23 0.87 0.25 C
40 626-01-7 3-Iodoaniline 0.65 0.40 −0.25 0.35 −0.30 D

41 * 140-53-4 4-Chlorobenzyl cyanide 0.66 0.57 −0.09 0.72 0.06 T
42 1585-07-5 1-Bromo-4-ethylbenzene 0.67 0.92 0.25 0.94 0.27 A
43 106-37-6 1,4-Dibromobenzene 0.68 0.61 −0.07 0.58 −0.10 B
44 106-41-2 4-Bromophenol 0.68 0.48 −0.20 0.42 −0.26 C
45 1124-04-5 2-Chloro-4,5-dimethylphenol 0.69 0.90 0.21 0.83 0.14 D

46 * 1570-64-5 4-Chloro-2-methylphenol 0.7 0.54 −0.16 0.52 −0.18 T
47 626-43-7 3,5-Dichloroaniline 0.71 0.52 −0.19 0.49 −0.22 A
48 65262-96-6 3-Chloro-5-methoxyphenol 0.76 0.54 −0.22 0.49 −0.27 B
49 59-50-7 4-Chloro-3-methylphenol 0.8 0.49 −0.31 0.49 −0.31 C
50 2905-69-3 Methyl-2,5-dichlorobenzoate 0.81 1.13 0.32 1.13 0.32 D

51 * 14548-45-9 4-Bromophenyl-3-pyridyl
ketone 0.82 1.25 0.43 1.20 0.38 T

52 540-38-5 4-Iodophenol 0.85 0.59 −0.26 0.56 −0.29 A
53 108-43-0 3-Chlorophenol 0.87 0.43 −0.44 0.37 −0.50 B
54 108-70-3 1,3,5-Trichlorobenzene 0.87 1.13 0.26 1.14 0.27 C
55 120-83-2 2,4-Dichlorophenol 1.04 0.89 −0.15 0.95 −0.09 D

56 * 874-42-0 2,4-Dichlorobenzaldehyde 1.04 0.97 −0.07 1.08 0.04 T
57 95-75-0 3,4-Dichlorotoluene 1.07 1.02 −0.05 0.95 −0.12 A
58 120-82-1 1,2,4-Trichlorobenzene 1.08 1.10 0.02 1.16 0.08 B
59 14143-32-9 4-Chloro-3-ethylphenol 1.08 0.70 −0.38 0.74 −0.34 C
60 2374-05-2 4-Bromo-2,6-dimethylphenol 1.16 1.04 −0.12 0.95 −0.21 D

61 * 1689-84-5 3,5-Dibromo-4-hydroxybenzonitrile 1.16 1.54 0.38 1.29 0.13 T
62 88-04-0 4-Chloro-3,5-dimethylphenol 1.2 0.70 −0.50 0.74 −0.46 A
63 90-90-4 4-Bromobenzophenone 1.26 1.37 0.11 1.36 0.10 B
64 7530-27-0 4-Bromo-6-chloro-2-cresol 1.28 1.37 0.09 1.34 0.06 C
65 636-30-6 2,4,5-Trichloroaniline 1.3 1.18 −0.12 1.31 0.01 D

66 * 5798-75-4 Ethyl-4-bromobenzoate 1.33 1.16 −0.17 1.23 −0.10 T
67 13608-87-2 20,30,40-Trichloroacetophenone 1.34 1.44 0.10 1.31 −0.03 A
68 615-58-7 2,4-Dibromophenol 1.4 1.07 −0.33 1.15 −0.25 B
69 88-06-2 2,4,6-Trichlorophenol 1.41 1.62 0.21 1.47 0.06 C
70 134-85-0 4-Chlorobenzophenone 1.5 1.30 −0.20 1.34 −0.16 D

71 * 1016-78-0 3-Chlorobenzophenone 1.55 1.27 −0.28 1.20 −0.35 T
72 90-60-8 3,5-Dichlorosalicylaldehyde 1.55 1.49 −0.06 1.52 −0.03 A
73 591-35-5 3,5-Dichlorophenol 1.56 1.28 −0.28 1.22 −0.34 B
74 90-59-5 3,5-Dibromosalicylaldehyde 1.65 1.55 −0.10 1.61 −0.04 C
75 456-47-3 3-Fluorobenzyl alcohol −0.39 −0.05 0.34 −0.09 0.30 D

Group 3. Compounds with both −NO2 and −X.

1 * 89-59-8 4-Chloro-2-nitrotoluene 0.43 1.08 0.65 0.75 0.32 T
2 585-79-5 1-Bromo-3-nitrobenzene 0.53 0.48 −0.05 0.54 0.01 A
3 7149-70-4 2-Bromo-5-nitrotoluene 0.68 0.99 0.31 1.09 0.41 B
4 100-14-1 4-Nitrobenzyl chloride 0.68 0.70 0.02 0.71 0.03 C
5 610-78-6 4-Chloro-3-nitrophenol 0.73 1.08 0.35 1.03 0.30 D

6 * 7147-89-9 4-Chloro-6-nitro-3-cresol 0.73 1.20 0.47 1.12 0.39 T
7 364-74-9 2,5-Difluoronitrobenzene 0.75 0.66 −0.09 0.85 0.10 A
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Table 1. Cont.

No. CAS Name
Experimental
−log IGC50

Predicted −log IGC50

MLR Residual RBFNN Residual Set

8 6361-21-3 2-Chloro-5-nitrobenzaldehyde 0.75 0.86 0.11 0.75 0.00 B
9 83-42-1 2-Chloro-6-nitrotoluene 0.75 0.55 −0.20 0.53 −0.22 C

10 88-73-3 1-Chloro-2-nitrobenzene 0.75 0.69 −0.06 0.72 −0.03 D
11 * 121-73-3 1-Chloro-3-nitrobenzene 0.8 0.69 −0.11 0.83 0.03 T
12 87-65-0 2,6-Dichlorophenol 0.82 0.83 0.01 0.81 −0.01 A
13 121-87-9 2-Chloro-4-nitroaniline 0.82 0.79 −0.03 0.77 −0.05 B
14 577-19-5 1-Bromo-2-nitrobenzene 0.99 0.71 −0.28 0.80 −0.19 C
15 2973-19-5 2-Chloromethyl-4-nitrophenol 1.03 1.03 0.00 1.00 −0.03 D

16 * 78056-39-0 4,5-Difluoro-2-nitroaniline 1.06 1.13 0.07 0.86 −0.20 T
17 350-30-1 3-Chloro-4-fluoronitrobenzene 1.07 0.86 −0.21 0.93 −0.14 A
18 42087-80-9 Methyl-4-chloro-2-nitrobenzoate 1.09 1.25 0.16 1.30 0.21 B
19 611-06-3 2,4-Dichloronitrobenzene 1.12 1.23 0.11 1.27 0.15 C
20 51-28-5 2,4-Dinitrophenol 1.13 1.17 0.04 1.12 −0.01 D

21 * 3209-22-1 2,3-Dichloronitrobenzene 1.13 0.83 −0.30 1.04 −0.09 T
22 3819-88-3 1-Fluoro-3-iodo-5-nitrobenzene 1.16 0.90 −0.26 0.97 −0.19 A
23 618-62-2 3,5-Dichloronitrobenzene 1.16 0.96 −0.20 1.08 −0.08 B
24 89-61-2 2.5-Dichloronitrobenzene 1.18 1.19 0.01 1.24 0.06 C
25 99-54-7 3,4-Dichloronitrobenzene 1.24 0.87 −0.37 0.92 −0.32 D

26 * 2683-43-4 2,4-Dichloro-6-nitroaniline 1.26 1.28 0.02 1.14 −0.12 T
27 3460-18-2 2,5-Dibromonitrobenzene 1.27 1.27 0.00 1.31 0.04 A
28 827-23-6 2,4-Dibromo-6-nitroaniline 1.37 1.40 0.03 1.45 0.08 B
29 6641-64-1 4,5-Dichloro-2-nitroaniline 1.62 1.31 −0.31 1.38 −0.24 C
30 609-89-2 2,4-Chloro-6-nitrophenol 1.63 1.46 −0.17 1.50 −0.13 D

31 * 305-85-1 2,6-Iodo-4-nitrophenol 1.66 1.40 −0.26 1.47 −0.19 T
32 3531-19-9 6-Chloro-2,4-dinitroaniline 1.71 1.53 −0.18 1.64 −0.07 A
33 1817-73-8 2-Bromo-4,6-dinitroaniline 1.75 1.63 −0.12 1.73 −0.02 B
34 97-00-7 1-Chloro-2,4-dinitrobenzene 1.81 1.82 0.01 1.88 0.07 C
35 709-49-9 2,4-Dinitro-1-iodobenzene 2.12 1.78 −0.34 2.02 −0.10 D

36 * 70-34-8 2,4-Dinitro-1-fluorobenzene 2.16 1.67 −0.49 0.67 −1.49 T
37 350-46-9 1-Fluoro-4-nitrobenzene 0.1 0.21 0.11 0.32 0.22 A
38 1493-27-2 1-Fluoro-2-nitrobenzene 0.23 -0.07 −0.30 0.23 0.00 B
39 100-00-5 1-Chloro-4-nitrobenzene 0.33 0.46 0.13 0.51 0.18 C

* represents the compound in the test set.

2.2. Molecular Descriptors’ Generation and Selection

To calculate the molecular descriptors of each compound, their structures were drawn using
ISIS Draw 2.3 (MDL Information Systems, Inc., San Ramon, CA, USA) [33]. The MM+ molecular
mechanics forcefield in the HyperChem 6.0 program (Hypercube, Inc.: Waterloo, ON, Canada) was
then used to carry out the preliminary molecular geometry optimization [34]. The further optimization
of the compound structure was done by semi-empirical PM3 method utilizing the Polak–Ribiere
algorithm until the root mean square gradient was 0.01 kcal/mol [35]. Finally, a more precise
optimization was achieved by MOPAC 6.0 software package (Indiana University: Bloomington,
IN, USA) [36]. Afterwards, the final optimized structures were converted to the CODESSA 2.63
program (University of Florida, Gainesville, FL, USA) for calculating the five classes of descriptors,
namely constitutional, topological, geometrical, electrostatic, and quantum-chemical descriptors [37].
It was necessary to explain that the logP descriptor, which cannot be calculated by the CODESSA
2.63, but can be obtained by Hyperchem, was then added to the descriptors pool [34]. Through doing
these, 494, 597, and 611 descriptors were gained for each of the studied compounds in Group 1, 2,
and 3, respectively.

Before establishing the QSAR models, it is necessary to remove the insignificant descriptors,
and the constant and highly intercorrelated descriptors (the intercorrelation of the descriptors should
be lower than 0.8). In this paper, the heuristic method (HM) was used to achieve a thorough search
for the best multilinear correlations with the computed descriptors in the framework of the program
CODESSA 2.63 [37].
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2.3. Multiple Linear Regressions (MLR)

Multiple linear regressions (MLR) are often accepted as a classical method for solving linear
problems when there are two or more than two independent variables in QSAR modeling. The purpose
of MLR is to find a mathematical function which best depicts the desired activity Y (here, −log IGC50

values) as a linear combination of the X-variables (the molecular descriptors), with the regression
coefficients bn. The equation is as follows:

Y = b0 + b1x1 +b2x2 + . . . +bnxn.

Usually, the good fit alone does not guarantee that the model is useful for prediction purposes by
the R2 (coefficient of determination), LOOq2 (leave-one-out correlation coefficient), RMS (root mean
square error), F (Fisher’s statistics), etc. [38]. Some statistical characteristics of the test set are also
needed to be considered: R2 (coefficient of determination), R2

0 (the coefficients of determination,
predicted vs observed activities, when the Y-intercept b0 is set to zero), as well as by their corresponding
slopes k and k′. The following conditions need to be fulfilled to adequately estimate the predictive
ability of a model [39]:

q2 > 0.5

R2 > 0.6(
R2 − R2

0
)

R2 < 0.1 or
(

R2 − R′20
)

R2 < 0.1

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k′ ≤ 1.15

2.4. Radial Basis Function Neural Networks (RBFNN)

In general, RBFNN may have a better result than MLR, because it can take into account some
nonlinear behavior between the molecular descriptors and the desired activities values (−log IGC50).
The detailed introduction of RBFNN has been stated in previous studies [40,41], so we only make
a simple statement of the key parts here.

The RBFNN is a typical feed forward neural network which is composed of three layers, which are
the input layer, the hidden layer, and the output layer. The first layer is linear, and distributes the
input values, while the next layer is nonlinear, and uses radial basis function. The third layer linearly
combines the outputs. Each neuron in each layer is adequately linked to the next layer. However,
there is no connection between neurons in a given layer. Each hidden layer unit stands for a single
radial basis function, which is characterized by a center and a width. In this layer, each neuron uses
a radial basis function as nonlinear transfer function to handle the input information from the previous
layer. The most common use of RBF is the Gauss function, characterized by the center (cj) and width
(rj) [42]. It is used to measure the Euclidean distance between the input vector (x) and the radial basis
function center (cj), and gain the nonlinear transformation within the hidden layer, defined as

hj = exp
(
−‖x− cj‖2/r2

j

)
,

where hj is the output of the jth RBF unit, while cj and rj are the center and width of such a unit,
respectively. And the operation of the output layer is linear and is given by

yk(x) =
nh

∑
j=1

wkjhj(x) + bk

where yk is the kth output unit for the input vector X, wkj is the weight connection between the kth
output unit and the jth hidden layer unit, and bk is the respective bias.
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In the present study, we used the MATLAB package (MathWorks, Natick, MA, USA)
(www.mathworks.com/products/matlab/) to accomplish all the RBFNN calculations. The total
functions of the RBFNN model can be evaluated by the same statistical parameters as the MLR
method together with its reliability and robustness.

2.5. Applicability Domain (AD) of the Model

It is necessary to give the application domain (AD) of the model. The applicability domain (AD)
of a QSAR model refers to a theoretical region in the space defined by the compounds in the training
set. It demonstrates the nature of the compound molecules that can be utilized in the built model.
That is to say, AD restricts a theoretical region, also for unknown chemicals without experimental data,
with the lowest number of bad predictions (Y-outliers) and chemicals far from the training structural
domain [43]. In this study, a William’s plot, i.e., a plot of standardized residuals (R) vs leverages was
used [44]. Here, a simple measure of a chemical being too far from the applicability domain of the
model is its leverage, hi [43], as follows:

hi = xT
i

(
xTx

)−1
xi(i = 1, 2, · · · , n).

In the above equation, xi represents the descriptor row vector of the studied compound, while x
represents the n × k − 1 matrix of k model descriptor values for the n training set compounds.
The superscript “T” refers to the transpose of the matrix/vector. hi characterizes the leverage of a compound,
and is one of the coordinates of the William’s plot (standardized residuals versus leverage).

3. Results and Discussion

3.1. MLR Results

As mentioned above, based on the structural differences among the molecules which are caused
by the influential functional groups (−NO2 and −X), Group 1, 2, and 3 have 46, 75, 39 compounds,
respectively. The models of each group were established by the training sets. Before doing this,
the heuristic method (HM) was used to conduct the descriptor selection. After the preselection of the
descriptors, 178, 203, and 160 descriptors were left for each group by removing of the descriptors not
obeyed the thumb rules [45].

Multilinear regression models were then developed in a stepwise procedure, that is,
the descriptors and correlations were sorted by the values of the F-test and the correlation coefficients.
Beginning with the top descriptor from the list, two-parameter correlations were calculated. Later,
the descriptors were added one by one, until the preselected number of descriptors in the model is
fulfilled. Finally, three descriptors were used to describe the relationship between molecule structure
and toxicity for each group of compounds. The selected descriptors and their chemical meaning, along
with the statistical parameters, are listed in Tables 2–4.

Table 2. Descriptors, Coefficients, Standard Error, and t-Test Values for the Best MLR Model of Group 1.

Coefficients Standard Errors t-Test Descriptors

0 73.123 20.547 3.559 Intercept
1 0.002 0.000 10.075 Gravitation index (all bonds) (G2)
2 −1.016 0.188 −5.394 Max bond order of a O atom (Po)
3 −1.082 0.510 −3.568 Max n–n repulsion for a C–H bond (Enn(C–H))

N = 36, R2 = 0.829, LOOq2 = 0.813, F = 51.697, RMS = 0.192

www.mathworks.com/products/matlab/
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Table 3. Descriptors, Coefficients, Standard Errors, and t-Test Values for the Best MLR Model of Group 2.

Coefficients Standard Errors t-Test Descriptors

0 −18.030 3.703 −4.869 Intercept
1 0.438 0.045 9.808 LogP

2 −6.605 0.605 −10.918 FNSA-2 Fractional PNSA (PNSA-2/TMSA)
[Zefirov’s PC] (PNSA-2/TMSA)

3 17.066 3.794 4.498 Max SIGMA–SIGMA bond order(PSIGMA)

N = 60, R2 = 0.803, LOOq2 = 0.792, F = 76.016, RMS = 0.222

Table 4. Descriptors, Coefficients, Standard Errors, and t-Test Values for the Best MLR Model of Group 3.

Coefficients Standard Errors t-Test Descriptors

0 −16.640 3.092 −5.382 Intercept
1 −2.141 0.322 −6.650 Principal moment of inertia C (Ic)
2 0.151 0.024 6.292 Max e–e repulsion for a C–C bond (Enn(C–C))

3 −51.290 7.493 −6.845 RPCG Relative positive charge (QMPOS/QTPLUS)
[Quantum-Chemical PC] (QMPOS/QTPLUS)

N = 31, R2 = 0.852, LOOq2 = 0.835, F = 51.678, RMS = 0.193

The external test set was also used to further evaluate the three models. The statistical parameters
obtained are as follows: Next = 10, R2 = 0.917, q2

ext = 0.851, F = 13.820, RMS = 0.222 for group 1;
Next = 15, R2 = 0.789, q2

ext = 0.732, F = 13.720, RMS = 0.266 for group 2; Next = 8, R2 = 0.733, q2
ext = 0.730,

F = 260.404, RMS = 0.380 for Group 3. Figures 1, 2 and 3a show the predicted vs observed −log IGC50

values for all the training and test set compounds. Thus, it can be seen that the model is reasonable in
both statistical significance and predictive ability.

Figure 1. Plot of the predicted versus experimental −log IGC50 including the training and the test set
compounds of Group 1 by MLR model (a) and by RBFNN model (b).
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Figure 2. Plot of the predicted versus experimental −log IGC50 including the training and the test set
compounds of Group 2 by MLR model (a) and by RBFNN model (b).

Figure 3. Plot of the predicted versus experimental −log IGC50 including the training and the test set
compounds of Group 3 by MLR model (a) and by RBFNN model (b).

3.2. Model Applicability Domain Analysis and Improved MLR Model

It is also an important step to consider the possible outliers of the models. In order to visualize the
AD, the plot of standardized cross-validated residuals versus leverage (the William’s plot), which can
provide an immediate and simple graphical detection, was used to find out the outliers from the
models. In this plot, the horizontal and vertical straight lines represent the normal control values of
Y-outliers and X-outliers, respectively. The limit of X-coordinate is 3m/n, where m is the number of
model parameters, and n is the number of samples belonging to the training set. In the present study,
the normal control value for Y-outliers (RES) was set as ±3σ. Figures 4–6 show the William’s plot
based on the MLR models for the whole dataset compounds of group 1, 2, 3, respectively.

As can be judged from Figure 4, in the model for Group 1, there is one X-outlier (for Group 1:
compound 2), which is 2-nitroanisole. In its structure, there are two functional groups, −NO2

and methoxy. The former is in all of the compounds belonging to this group as a strong
electron-withdrawing group. However, the methoxy group has oxygen lone pair electrons which
are a strong electron donor moiety, compared to other ones in the group. Therefore, care should
be taken when using the compounds with methoxy, since they can activate the benzene ring and
exert an unusual influence on the toxicity. And from Figure 6, it can also be seen that there is
a X-outlier (for group 3: compound 15), that is, 2-chloromethyl-4-nitrophenol. This compound has
three electron-withdrawing moieties, including—Cl, −OH, and −NO2, which has almost the strongest
induction effect of the compounds in this group. Also, there seem to be another outlier (for Group 3:
compound 36), which belongs to the test set. This may be due to variability in the measurement, or it
may indicate experimental error.
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Figure 4. The William’s plot for the training and test set compounds of Group 1 by MLR model.

Figure 5. The William’s plot for the training and test set compounds of Group 2 by MLR model.

Figure 6. The William’s plot for the training and test set compounds of Group 3 by MLR model.

If the handling of the outliers is unreasonable, the accuracy of the model will be affected. Thus,
the quality and ability of the model prediction will be affected. Therefore, we removed the outliers
from Group 1 and Group 3, set up the models anew, and the results were as follows: for the training
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set of Group 1 (removing compound 2 in Group 1): N = 35, R2 = 0.926, LOOq2 = 0.916, F = 94.266,
RMS = 0.125. For the training set of Group 3 (removing compound 15 in Group 3): N = 30, R2 = 0.852,
LOOq2 = 0.834, F = 49.710, RMS = 0.196. The statistical parameters of the model are better after
removing the escape values.

To further assess the predictive powers of the model established by the MLR method, parameters

such as (R2−R2
0)

R2 , k, k′, etc., were also calculated, and the results were shown in Table 5. From the table,
we can see the statistical results were all within the acceptable ranges for the methods of MLR.

Table 5. The statistical results of the external test set for the three models of each group.

Group 1 Group 2 Group 3

MLR RBFNN MLR RBFNN MLR RBFNN

R2 0.83 0.84 0.80 0.82 0.85 0.89
q2

ext 0.92 0.88 0.79 0.81 0.73 0.63
R2

0 0.81 0.84 0.79 0.82 0.84 0.88
(R2−R2

0)
R2

0.024 0.00 0.012 0.00 0.012 0.011
k 0.88 0.86 0.80 0.83 0.85 0.87
k′ 1.11 0.97 0.93 0.91 0.93 0.98

3.3. Validation Results of the Models

Further, a fivefold cross-validation algorithm was applied for validation of the stability of the
three models. The members selected for each group (i.e., groups A, B, C, D, and T) were shown in
Table 1. The R2, F, and RMS values for each validation along with their average values were shown in
Table 6 for the MLR models. As can be seen, both models are stable, judging from the obtained values
for the average training quality and for the average predicting quality.

Table 6. Validation of the MLR models.

Training Set R2 F RMS Test Set R2 F RMS

Group 1
A + B + C + D 0.829 51.697 0.192 T 0.917 13.820 0.222
A + B + C + T 0.735 30.457 0.261 D 0.874 48.592 0.153
B + C + D + T 0.742 31.565 0.255 A 0.795 27.199 0.217
A + C + D + T 0.723 28.775 0.259 B 0.889 55.784 0.173
A + B + D + T 0.744 31.912 0.247 C 0.835 35.501 0.217

Average 0.755 34.881 0.243 0.862 36.180 0.196

Group 2
A + B + C + D 0.803 76.016 0.222 T 0.852 51.678 0.193
A + B + C + T 0.802 75.661 0.225 D 0.748 38.559 0.256
B + C + D + T 0.784 67.805 0.235 A 0.857 78.133 0.193
A + C + D + T 0.786 68.459 0.233 B 0.818 58.416 0.221
A + B + D + T 0.780 66.184 0.235 C 0.831 63.981 0.218

Average 0.791 70.834 0.230 0.821 58.153 0.216

Group 3
A + B + C + D 0.789 13.720 0.260 T 0.733 260.404 0.380
A + B + C + T 0.760 29.502 0.263 D 0.927 63.850 0.115
B + C + D + T 0.755 27.787 0.254 A 0.899 53.612 0.170
A + C + D + T 0.762 28.869 0.250 B 0.917 66.385 0.159
A + B + D + T 0.754 27.573 0.248 C 0.846 32.957 0.237

Average 0.764 25.490 0.255 0.864 95.442 0.212
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3.4. RBFNN Results

In the field of QSAR research, RBFNN often shows better results than MLR because of its ability
to consider some nonlinear relationships between the molecular structure and its activity. In order to
confirm this view, RBFNN was utilized to build nonlinear predictive models using the same descriptors
selected by the MLR models. The RBFNN can be traced as i-nk-1 net to indicate the number of units in
the three layers, respectively. Meanwhile, the width (r) of RBF was computed by systemically changing
its value in the training step from 0.1 to 4.0 with increments of 0.1. For the three groups of compounds
belonging to training sets in this study, the RBFNN models were 3-10-1, 3-9-1, and 3-9-1, along with
widths of 0.8, 2.0, and 1.7, respectively.

Their statistical results of the training and the test set are as follows. Group1: for training set,
N = 36, R2 = 0.843, LOOq2 = 0.838, F = 182.306, RMS = 0.167, and for the test set, Next = 10, R2 = 0.881,
q2

ext = 0.867, F = 59.483, RMS = 0.210; Group 2: for training set, N = 60, R2 = 0.821, LOOq2 = 0.818,
F = 265.898, RMS = 0.192, and for the test set, Next = 15, R2 = 0.810, q2

ext = 0.796, F = 55.506, RMS = 0.232;
Group 3: for training set, N = 31, R2 = 0.885, LOOq2 = 0.882, F = 224.261, RMS = 0.163, and for the
test set, Next = 8, R2 = 0.632, q2

ext = 0.622, F = 63.660, RMS = 0.298. The corresponding predicted
endpoint values of each compound in each group were shown in Table 1, and the plot of the predicted
and experimental values of both training and test set were displayed in Figures 1b, 2b and 3b.
Different from the original literature, [35], we selected and classified the original compounds according
to the structural characteristics and further modeled, analyzed, and predicted the corresponding
toxicity values. The models, thus established, are also more targeted for the particular compounds,

and the statistical results of (R2−R2
0)

R2 , k, k′, etc., as shown in Table 5 by RBFNN, also indicated the
models to be statistically robust with high external predictivity.

3.5. Interpretation of Model Descriptors

In order to deepen the understanding of this study, more detailed explanations of the descriptors
selected in each group were performed. For group 1, three descriptors were selected in the QSAR
model, namely: G2, PAB, and Enn(C-H). The positive sign of them indicated that the −log IGC50 values
increased with its increase, and vice versa. G2 refers to gravitation indexes for all bonded pairs of atoms,
and it is defined as G2 = ∑NB

(i>j)
mimj

r2
ij

[46], where mi and mj are the atomic weights of atoms i and j, rij is

the interatomic distance, Nb is the number of bonds in the molecule. Po belongs to the valency-related
descriptors, which relate to the strength of intermolecular bonding interactions and characterize the
stability of the molecules, their conformational flexibility and other valency-related properties [47].
Enn(C-H) is Max n–n repulsion for a C–H bond, calculated as follows: Enn(CH) = ZCZH

RCH
, where ZC and

ZH are the nuclear (core) charges of atoms C and H, respectively, and RCH is the distance between them.
This energy describes the nuclear repulsion driven processes in the molecule, and may be related to
the conformational (rotational, inversional) changes or atomic reactivity in the molecule [46].

For Group 2, focusing on the compounds without the functional group −NO2, but with −X,
three descriptors were chosen. That is, Log P, PNSA-2/TMSA, and PSIGMA. PNSA-2/TMSA is FNSA-2
fractional PNSA (PNSA-2/TMSA) [Zefirov’s PC], which contributes to the calculation of atomic partial
charges to the total molecular solvent-accessible surface area [46]. PSIGMA represents the maximum
bond order for a given pair of atomic species in the molecule, its values for a given pair of atomic
species in the molecule with the lower limit PSIGMA (min) > 0.1. LogP stands for the solvational
characteristic (hydrophobicity of chemicals) because it is closely related to the change in the Gibbs
energy of solvation of a solute between two solvents.

For Group 3, three descriptors were selected to build the model, that is Ic, Enn(C-C), and RPCG.
The chemical meaning of them can be seen in Table 4. Ic is a geometrical descriptor which relates to the
atomic masses, the distance of the atomic nucleus from the main rotational axes, which characterizes
the mass distribution in the molecule. Enn(C−C) = ZCZC/RC–C, where ZC and ZC are the nuclear
(core) charges of atoms C, and RC–C is the distance between them. This energy describes the nuclear
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expulsion driven processes in the molecule, and may be related to the conformational (rotational,
inversional) changes or atomic reactivity in the molecule [48]. RPCG, relative positive charge, belongs
to electrostatic descriptors. From its coefficient, we can find that the relative positive charge of the
molecule is negatively related to the endpoint values (−log IGC50).

In summary, we found that the repulsion between the two bonds and the local charge on the
surface of the molecule appeared in different models, indicating that these two factors have a greater
influence on the structure of the compound and should be relatively valued.

4. Conclusions

In the present study, the QSAR models were performed on the study of the acute toxicity of
substituted aromatic compounds to the aquatic ciliate Tetrahymena pyriformis using the MLR and
RBFNN methods, and by dividing the whole dataset into three groups based on the most influential
functional group (−NO2 and −X). Acceptable statistical results for each model indicated their good
stability and good predictability. We can also see from the results of the MLR and RBFNN models that
the MLR method can establish reasonable models for evaluating the activity of compounds, and the
RBFNN method can provide better statistical parameters. Also, the selected descriptors are effective
and feasible for evaluating the toxicity of this group of compounds. Lastly, the results of this study
provided useful insights on the characteristics of the structures that most affect the toxicity.
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acute toxicity of benzene derivatives by complementary QSAR methods. Match-Commun. Math. Comput. Chem.
2013, 70, 1005–1021.

30. Wang, D.D.; Feng, L.L.; He, G.Y.; Chen, H.Q. QSAR studies for assessing the acute toxicity of nitrobenzenes
to Tetrahymena pyriformis. J. Serb. Chem. Soc. 2014, 79, 1111–1125. [CrossRef]

http://dx.doi.org/10.1016/S0968-0896(02)00055-X
http://dx.doi.org/10.1007/BF01769970
http://www.ncbi.nlm.nih.gov/pubmed/519043
http://dx.doi.org/10.1007/BF01055760
http://dx.doi.org/10.1016/S0045-6535(03)00584-8
http://dx.doi.org/10.1016/j.ecoenv.2008.01.019
http://www.ncbi.nlm.nih.gov/pubmed/18367247
http://dx.doi.org/10.1021/tx0155202
http://www.ncbi.nlm.nih.gov/pubmed/11559045
http://dx.doi.org/10.1016/S0045-6535(02)00508-8
http://dx.doi.org/10.1016/j.chemosphere.2012.10.065
http://www.ncbi.nlm.nih.gov/pubmed/23177708
http://dx.doi.org/10.1021/tx970166m
http://www.ncbi.nlm.nih.gov/pubmed/9705752
http://dx.doi.org/10.1016/j.chemosphere.2005.04.040
http://www.ncbi.nlm.nih.gov/pubmed/15950260
http://dx.doi.org/10.1080/10629360410001724905
http://www.ncbi.nlm.nih.gov/pubmed/15370415
http://dx.doi.org/10.1021/ci800151m
http://www.ncbi.nlm.nih.gov/pubmed/18729318
http://dx.doi.org/10.1080/1062936X.2011.569950
http://www.ncbi.nlm.nih.gov/pubmed/21714735
http://dx.doi.org/10.1007/s00128-014-1253-2
http://www.ncbi.nlm.nih.gov/pubmed/24638918
http://dx.doi.org/10.1002/cjoc.201390011
http://dx.doi.org/10.1016/j.ecoenv.2011.11.024
http://www.ncbi.nlm.nih.gov/pubmed/22154146
http://dx.doi.org/10.1016/j.ecoenv.2013.11.019
http://www.ncbi.nlm.nih.gov/pubmed/24636479
http://dx.doi.org/10.2298/JSC130910025W


Molecules 2018, 23, 1002 16 of 16

31. Wei, D.B.; Zhai, L.H.; Dong, C.H.; Hu, H.Y. Determination and prediction of the acute toxicity of substituted
benzene compounds to luminescent bacteria. Chin. J. Environ. Sci. 2002, S1, 3–7.

32. Schultz, T.W.; Netzeva, T.I.; Cronin, M.T. Selection of data sets for QSARs: Analyses of tetrahymena toxicity
from aromatic compounds. SAR QSAR Environ. Res. 2003, 14, 59–81. [CrossRef] [PubMed]

33. ISIS Draw2.3, MDL Information Systems, Inc.: San Ramon, CA, USA, 1990–2000.
34. HyperChem 6.01, Hypercube, Inc.: Waterloo, ON, Canada, 2000.
35. Dewar, M.J.; Storch, D.M. Development and use of quantum molecular models. 75. Comparative tests of

theoretical procedures for studying chemical reactions. J. Am. Chem. Soc. 1985, 107, 3898–3902. [CrossRef]
36. Stewart, J.P.P. MOPAC 6.0, Quantum Chemistry Program Exchange, No. 455; Indiana University:

Bloomington, IN, USA, 1989.
37. Katritzky, A.R.; Lobanov, V.S.; Karelson, M. CODESSA 2.63: Training Manual; University of Florida:

Gainesville, FL, USA, 1995.
38. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [CrossRef]
39. Tropsha, A.; Gramatica, P.; Gombar, V. The importance of being earnest: Validation is the absolute essential

for successful application and interpretation of QSPR models. QSAR Comb. Sci. 2003, 22, 69–77. [CrossRef]
40. Xiang, Y.H.; Liu, M.C.; Zhang, X.Y.; Zhang, R.S.; Hu, Z.D.; Fan, B.T.; Doucet, J.P.; Panaye, A.

Quantitative prediction of liquid chromatography retention of N-benzylideneanilines based on quantum
chemical parameters and radial basis function neural network. J. Chem. Inf. Comput. Sci. 2002, 42, 592–597.
[CrossRef] [PubMed]

41. Gharagheizi, F. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN.
Comput. Mater. Sci. 2007, 40, 159–167. [CrossRef]

42. Shahlaei, M.; Madadkar-Sobhani, A.; Fassihi, A.; Saghaie, L.; Arkan, E. QSAR study of some CCR5
antagonists as anti-HIV agents using radial basis function neural network and general regression neural
network on the basis of principal components. Med. Chem. Res. 2012, 21, 3246–3262. [CrossRef]

43. Atkinson, A.C. Plots, transformations, and regression. An introduction to graphical methods of diagnostic
regression analysis. J. R. Stat. Soc. 1985, 152, 1927–1934.

44. Gadaleta, D.; Mangiatordi, G.F.; Catto, M.; Carotti, A.; Nicolotti, O. Applicability domain for QSAR models:
Where theory meets reality. Int. J. QSPR 2016, 1, 45–63. [CrossRef]

45. Luan, F.; Tang, L.L.; Zhang, L.H.; Zhang, S.; Monteagudo, M.C.; Cordeiro, M.N.D.S. A further development of the
QNAR model to predict the cellular uptake of nanoparticles by pancreatic cancer cells. Food Chem. Toxicol. 2018,
112, 571–580. [CrossRef] [PubMed]

46. Katritzky, A.R.; Lobanov, V.S.; Karelson, M. Comprehensive Descriptors for Structural and Statistical Analysis;
Reference Manual, Version 2.0; University of Florida: Gainsville, FL, USA, 1994.

47. Sannigrahi, A.B. AB initio molecular orbital calculations of bond index and valency. Adv. Quantum Chem.
1992, 23, 301–351.

48. Štrouf, O. Chemical Pattern Recognition; Research Studies Press: Baldock, UK, 1986; Volume 11.

Sample Availability: Samples of the compounds are available from the authors.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/1062936021000058782
http://www.ncbi.nlm.nih.gov/pubmed/12688416
http://dx.doi.org/10.1021/ja00299a023
http://dx.doi.org/10.1016/S1093-3263(01)00123-1
http://dx.doi.org/10.1002/qsar.200390007
http://dx.doi.org/10.1021/ci010067l
http://www.ncbi.nlm.nih.gov/pubmed/12086519
http://dx.doi.org/10.1016/j.commatsci.2006.11.010
http://dx.doi.org/10.1007/s00044-011-9863-2
http://dx.doi.org/10.4018/IJQSPR.2016010102
http://dx.doi.org/10.1016/j.fct.2017.04.010
http://www.ncbi.nlm.nih.gov/pubmed/28412403
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Datasets 
	Molecular Descriptors’ Generation and Selection 
	Multiple Linear Regressions (MLR) 
	Radial Basis Function Neural Networks (RBFNN) 
	Applicability Domain (AD) of the Model 

	Results and Discussion 
	MLR Results 
	Model Applicability Domain Analysis and Improved MLR Model 
	Validation Results of the Models 
	RBFNN Results 
	Interpretation of Model Descriptors 

	Conclusions 
	References

