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ABSTRACT

Exploring new ways to represent and discover or-
ganic molecules is critical to the development of
new therapies. Fingerprinting algorithms are used to
encode or machine-read organic molecules. Molecu-
lar encodings facilitate the computation of distance
and similarity measurements to support tasks such
as similarity search or virtual screening. Motivated
by the ubiquity of carbon and the emerging struc-
tured patterns, we propose a parametric approach
for molecular encodings using carbon-based mul-
tilevel atomic neighborhoods. It implements a walk
along the carbon chain of a molecule to compute
different representations of the neighborhoods in
the form of a binary or numerical array that can
later be exported into an image. Applied to the task
of binary peptide classification, the evaluation was
performed by using forty-nine encodings of twenty-
nine data sets from various biomedical fields, re-
sulting in well over 1421 machine learning models.
By design, the parametric approach is domain- and
task-agnostic and scopes all organic molecules in-
cluding unnatural and exotic amino acids as well
as cyclic peptides. Applied to peptide classification,
our results point to a number of promising appli-
cations and extensions. The parametric approach
was developed as a Python package (cmangoes),
the source code and documentation of which can be
found at https://github.com/ghattab/cmangoes and
https://doi.org/10.5281/zenodo.7483771.

INTRODUCTION

Computational approaches to molecular analysis support
a range of biologically oriented applications and tasks that
are facilitated by the similar property principle (1). Tasks

range from but are not limited to identifying the interac-
tions between drugs and target proteins, to revealing quan-
titative relationships between structural properties of chem-
ical compounds and biological activities, to screening a
handful of membrane proteins for drug delivery (2–5). The
similarity principle states that similar molecules will also
tend to exhibit similar biophysical properties. For example,
the virtual screening task is primarily used in drug discov-
ery and allows researchers to find candidate treatments for
Alzheimer’s disease or HIV (6–8). Virtual screening is car-
ried out by calculating similarity measures of compounds
in a database to a reference compound. Using a similar-
ity search, compounds are ranked in descending order and
manual screening is performed on the highest ranked com-
pounds (9). Yet to support the growing number of machine-
related tasks, the structure of a molecule must be encoded
to a machine-readable format. Indeed, certain structural
information may be represented as a numeric feature by
means of mapping a large data item to a much shorter bit
string. In this context, different types of molecular finger-
prints have been proposed: Substructure key-based such as
MACCS (3), topological like FP2 OpenBabel (10), circular
like MNA (11), pharmacophore and hybrid. This process
leads to a molecular fingerprint, which uniquely identifies
each molecule through data encoding.

Given such a fingerprint, we can abstract task-specific in-
formation at different levels, from the atom, to the neigh-
borhood of an atom, to the amino acid of a protein or
even to the base of a DNA molecule. Thanks to this pro-
cess of abstraction, various biological and chemical aspects
may be characterized, similarities and differences may be
noted. In the similarity searching example, distances such
as Tanimoto or Dice coefficients are calculated between
the fingerprint of a certain molecule and its reference dur-
ing the search (5,12). Besides previously mentioned mea-
sures, researchers have examined many other distance mea-
sures and investigated their limitations (e.g. Manhattan, So-
ergel) (13,14). Machine learning (ML) has been used in
various domain applications (e.g. for predictions, cluster-
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ing, etc.). Different molecular properties can be used as in-
put for training of ML models in order to achieve the best
prediction performance. Different molecular properties will
have different descriptive power for the source molecule.
The molecular properties selected can define the similarity
or dissimilarity between molecules. Our proposed approach
starts from the question of whether neighborhoods are suf-
ficiently descriptive to characterize organic molecules.

With various bioinformatics tools implementing differ-
ent types of molecular fingerprints and fingerprinting al-
gorithms (15–17), there is an immediate need for adapt-
able molecular approaches that could accommodate differ-
ent tasks and specific user needs while respecting different
domain standards. That is to say, parametric approaches
where users can select and change the values of different pa-
rameters, thus adjusting the encoding method according to
the, e.g. task, domain or ML model. In this work, we present
a parametric approach to molecular encodings that we ap-
ply to the specific task of peptide classification. The idea is
to correctly classify peptides that possess certain features.
The concept of depending on the neighborhood hierarchy
has not, to our knowledge and despite the existence of sev-
eral fingerprinting algorithms, been considered.

To implement this concept, we depend on the element
carbon (C) to produce various encodings. As the center-
piece of organic life, C is ubiquitous and very good at form-
ing large and stable chains of various organic molecules.
Inspired by its central role, we introduce a parametric ap-
proach to molecular encodings of carbon-based multilevel
atomic neighborhoods as an open source standalone exe-
cutable and a GitHub source repository; namely cmangoes.
It takes as input positional and optional arguments allow-
ing the creation of user-defined molecular encodings. The
former include a path to one or more molecular sequences,
the type of encoding (binary or discretized), and a padding
parameter (centered or offset). The latter include, but are
not limited to, a parameter for the upper limit of neighbor-
hood levels to be considered, and whether or not images are
required.

This parametric approach paves the way for further ef-
forts to tailor molecular encodings to specific user require-
ments while taking into account the parameter space of fin-
gerprinting algorithms. Furthermore, since its implementa-
tion follows domain-specific standards, the parametric ap-
proach can be adopted to address different tasks in a variety
of domains. In the following, we introduce the methodology
of the proposed parametric approach and showcase its use-
fulness for the example task of peptide classification via an
evaluation on twenty-nine data sets and a comparison to
45 encodings in the biomedical domain.

MATERIALS AND METHODS

The presented work takes into account the ubiquity of the
carbon element and its central role in holding together the
structure of organic molecules and organizing their neigh-
borhoods. The parametric approach encodes the neighbor-
hoods around the carbon chain of a molecule in multiple
levels. Various design considerations are followed to meet
established domain standards and create compatible encod-
ings for common similarity measures and distances. This

section describes the parametric approach, design consider-
ations of the underlying algorithm to fit the domain speci-
ficity of molecular fingerprinting, the data sets used, and
the evaluation of the parametric approach: peptide classifi-
cation and benchmark.

The parametric approach

The parametric approach handles the input data, gener-
ates intermediate data representations as a graph, traverses
it to record the relevant neighborhoods according to user-
specified parameters, transforms the recorded features to
their final output format, and generates the corresponding
representations. The walk along the carbon chain iteratively
lists the neighboring atoms of each visited atom. The neigh-
borhood of an atom is defined by the neighbors found by
direct short paths around it. The hierarchies are multiple
levels of an atom’s neighborhood and are defined hierarchi-
cally based on their proximity to the carbon chain. By incor-
porating hierarchies into the encoding, molecules of vary-
ing lengths containing different substructures can be appro-
priately represented. An implementation of this approach
is provided as a Python package for easy reproducibility.
The core development of the algorithm was performed us-
ing Python programming language, version 3.8.5 (18,19).
The chosen language offers high compatibility with exist-
ing computational approaches commonly used in bioinfor-
matics and cheminformatics. All core-related dependencies
are listed on the official GitHub page. The package accepts
FASTA or SMILES file format specifications and follows
a seven-step encoding pipeline. Figure 1 depicts an exam-
ple workflow diagram for an input molecule as a SMILES
string.

The first step consists of parsing and processing the input
data, given in one of the two available formats. To ensure all
atoms of a given molecule are present for all following steps
of the parametric algorithm, hydrogen atoms (H) are added
upon data import.

Second, an intermediary molecular graph data structure
is employed to efficiently traverse the carbon chain and to
record the relevant neighborhoods. To generate the molecu-
lar graph, the input data is parsed into an adjacency matrix
which is then transformed into a graph. To create a robust
and deterministic encoding, all atoms of a given molecule
are represented by nodes in the molecular graph and are
numbered with a unique identifier. Each node in the molec-
ular graph stores the type of element they represent using
its element symbol from the periodic table. The element la-
bels are required in subsequent steps to generate the feature
vectors. To avoid redundancy, the edges of the molecular
graph do not store any additional information aside from
the nodes they connect, i.e. an unweighted graph.

Third, to aid the identification of the optimal depth, the
molecular graph may be visualized. When a data set is used,
users select the molecule of their choice in the data set and
its intermediary graph is rendered.

Fourth, the walk along the carbon chain corresponds to
an iteration over a numbered list of carbon atoms. This list
is created by only retaining the nodes that correspond to the
carbon element symbol (C). Each carbon node is included
exactly once. The filtered nodes are then sorted in ascending
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Figure 1. Example workflow of the encoding pipeline for a given molecule. C: carbon. Corey–Pauling–Koltun discretization: CPK discret.

Figure 2. Visual demonstration of a computation for two-level hierarchies
of the phenol molecule (C6H6O). Each figure corresponds to one itera-
tion along the carbon chain. (Left) The algorithm reaches the highlighted
carbon atom C at an example iteration. (Center) It records the first-level
hierarchy: C, C, O. (Right) Then, the second-level hierarchy: C, H. The
resulting hierarchy is C, C, O, C, H. The algorithm iterates onto the next
carbon atom.

order by their unique node identifier. The immediate neigh-
bors include all nodes connected directly by an edge to the
respective carbon node. Aside from the immediate neigh-
bors, additional hierarchy levels of a neighborhood can be
saved. Figure 2 shows an illustrative iteration for the exam-
ple phenol molecule.

Fifth, neighborhoods along the previously mentioned
walk are saved. The additional hierarchy levels are defined
as the immediate neighbors of all nodes belonging to the
previous level. For instance, the second-level hierarchy in-
cludes all nodes with a direct connection to any node from
the first-level hierarchy. To avoid redundancy in the encoded
information, an additional filter is applied when recording
more than one hierarchy. Since neighborhoods are recorded
as part of the main iteration, this filter excludes nodes con-
taining carbon atoms. The number of recorded hierarchies
can be set using the level parameter. The data structure used
for saving the neighborhoods is a dictionary. Only the ele-
ment symbols belonging to the neighborhood’s nodes are
saved. The list of element symbols is, by nature of the it-
eration, automatically sorted according to the unique node
identifiers. This ensures that the feature vectors are deter-
ministic across multiple runs of the encoding. To simplify
subsequent steps of the algorithm and feature-based opera-
tions, such as transformation, the dictionary is transformed
to a data frame. Table 1 reports the resulting hierarchies for
the example phenol molecule.

Sixth, feature transformation (binary and discretization)
is applied on the hierarchies. Feature transformation en-

Table 1. The structural formula of the phenol molecule and its recorded
neighborhoods using one- and two-level hierarchies. Phenol or C6H6O
has the SMILES specification: C1=CC=C(C=C1)O. Canonical SMILES:
Oc1ccccc1. C0 is located at the bottom of the cycle. C3 is at the top and
is connected to the oxygen O element

ables numeric operations and image generation of the re-
sulting encodings. In the example of the binary encoding,
the feature vectors are represented as bit strings, 0 and 1 en-
code the absence or presence of an atom in the respective
neighborhood. The resulting categorical data frame may
include missing values depending on the structure of the
encoded compound. This can occur when recording more
than one hierarchical level, as shown above, when carbon
nodes are excluded. To preserve the integrity of the overall
data structure and avoid the occurrence of an uneven num-
ber of atoms recorded in neighborhoods along the carbon
chain, the data frame is automatically filled with missing
values in the relevant positions. Since the value 0 represents
the absence of information, this procedure does not distort
the resulting feature vector.

Seventh, the numerical encodings in the image space fol-
low either a 1-bit coding or the Corey Pauling Koltun
color coding (CPK). This optional step exports images with
either binary or discretized encodings (20). Tables 2 and 3
show the resulting output after feature transformation for
the example phenol molecule. Figure 3 depicts the image
representations of the resulting transformations.

Domain-specific standards

The created feature vectors are domain- and task-agnostic.
That is to say, they are compatible with various domain-
specific tasks such as database querying or virtual screen-
ing (3,5).

In the special case of cyclic molecules, for example aro-
matic cycles in proteins or cyclic peptides, the unique
node identifiers and the sorted filtered list permit the al-
gorithm to bypass cyclical substructures. In turn, this ex-
pands the application scope of the proposed approach to
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Table 2. Recorded neighborhoods of the phenol molecule using one- and two-level hierarchies after binary transformation. To enable distance-based,
similarity searching and machine learning tasks, the categorical encoding is transformed using dummy encoding

C0C C0 H C1C C1 H C2C C2 H C3C C3 H C3 O C4C C4 H C5C C5 H

1 0 1 0 1 0 1 0 0 1 0 1 0
1 0 1 0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0 1 0 1
1 0 1 0 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0

Table 3. Recorded neighborhoods for the phenol molecule using one- and two-level hierarchies after CPK-based discretization. The parametric approach
transforms the features to integers ranging from 0 to 16 as per the CPK coloring system

C0C C0 H C1C C1 H C2C C2 H C3C C3 H C3 O C4C C4 H C5C C5 H

3 0 3 0 3 0 3 0 0 3 0 3 0
3 0 3 0 3 0 3 0 0 3 0 3 0
0 2 0 2 0 2 0 0 5 0 2 0 2
3 0 3 0 3 0 3 0 0 3 0 3 0
0 0 0 0 0 0 0 2 0 0 0 0 0

Figure 3. Image representations of the encoding for the phenol molecule.
(Left) Binary encoding. (Right) CPK-color encoding. The images are cre-
ated based on the feature vectors found in Tables 2 and 3, respectively.

include cyclic molecules; such as cyclic peptides often used
in therapeutics (21). Table 1 reports the resulting hierar-
chies. Figure 2 shows an example iteration for the phenol
molecule.

The image representations complement the mathemati-
cal feature vectors to provide an accessible way to under-
stand the resulting encodings and enable additional oper-
ations in the image space (22). Figure 3 depicts the im-
age representations of the resulting transformations for the
phenol molecule. To avoid dimensional mismatches in the
output feature vector and avoid bit collision for differ-
ent molecule sizes, a padding step is included in the en-
coding pipeline when applying the encoding to more than
one molecule. It includes two padding strategies to either
offset (top-left shift) or center the image representation
by introducing new empty pixels around the edges of an
image.

Data sets

Twenty-nine data sets comprising peptides and small pro-
teins from various biomedical domains are employed. These
include immuno-modulatory and cell-penetrating peptides,
but also peptides specifically targeting cancer, fungi, mi-
crobes, tuberculosis and viruses. Figure 4 lists all the data
sets included in this work and reports their class imbalance
or imbalance ratio for the evaluation. The properties en-

coded in the target vectors are represented by ones and ze-
ros, corresponding to the presence or absence of the rele-
vant property, respectively. For example, six data sets are
cell-penetrating peptides. Used in research and medicine,
they are also known as protein transduction domains and
carry a variety of cargoes across the cellular membranes
in an intact and functional form (23). The property en-
coded in the target vector is whether or not the peptide is
cell-penetrating.

Peptide classification

To evaluate the parametric approach, we adopt the task of
peptide classification and rely on the state-of-the-art tool
PEPTIDE REACToR (16). We run a high-throughput com-
parison of forty-nine encodings on the aforementioned data
sets (15). Based on this work, the Random Forest classifier
is used with default parameters as the ML model to address
the task of peptide classification. For reproducibility, the
complete study details, such as hyperparameter values, data
set split sizes, etc., are taken from PEPTIDE REACToR.

To ascertain whether the class-imbalance and the data
set size has an effect on the prediction quality, both
the class distribution of the respective target vectors and
the number of observations contained in each data set
vary.

To minimize bias based on the data set choice, the twenty-
nine data sets are encoded with four different encodings
with the parametric approach. They comprise the first- and
second-level hierarchies, with a centered or shifted (offset)
padding and are binary or discretized, respectively.

The evaluation is carried out by adding the four encod-
ings to the aforementioned tool. This totals forty-nine en-
codings. The effective comparison of the classification re-
sults relies on the F� Score metric with � = 1. It corre-
sponds to the weighted harmonic mean of precision and
recall, reaching its optimal value at 1 and its worst value
at 0.

The evaluation of the peptide classification task com-
prises training 1421 ML models which result from forty-
nine encodings applied to 29 data sets. The evaluation was
carried out using cloud computing. We relied on the de.NBI
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Figure 4. Evaluation results of the peptide classification task. The four encodings obtained using the parametric approach are shown on the left versus the
45 sequence- and structure-based encodings. Results are sorted by class imbalance and encoding type. Color coding corresponds to the maximum F1 Score
of the bootstrapped medians for a group. The abscissa is organized by sequence- and structure-based encodings. The ordinate is sorted by class imbalance
(cut-off 0.35). Groups are separated by white bars.

Cloud within the German Network for Bioinformatics
Infrastructure.

Benchmark

To report the performance results of the proposed param-
eter approach, it is benchmarked as a fingerprinting algo-
rithm. We consider two parameters for benchmarking the
creation of an encoding: the elapsed time in seconds and
the amount of encoded data in bytes. Benchmarking is per-
formed for all four encodings on all data sets. For each en-
coding, six runs are performed and benchmarked.

Benchmarking is conducted using multi-threading on a
Linux machine. Kernel: 5.17.5-76051705-generic, CPU: In-
tel i7-10700 (16) @ 2.90GHz (Turbo 4.90GHz), Thread(s)
per core: 2, Core(s) per socket: 8, Memory: 16GB.

RESULTS

The parametric approach provided a simplified set of pa-
rameters to adapt the encoding step to user-specific needs. It
is available as a standalone Linux executable and the source
code GitHub repository to create encodings, explore their
parameter space, and generate hypotheses and design ML
experiments.

By relying on the F1 score, we found that the four en-
codings were consistently providing equivalent results with
marginal differences. By conducting a one-way ANOVA
test, we did not find statistically significant differences

among the four encodings. At P < 0.05 and three de-
grees of freedom (df) between-groups and 112 df within-
groups, the F-statistic value was 0.084 and the P-value
was 0.969. While the F-statistic informed us whether there
is an overall difference between the sample mean, the
Tukey’s range test or Tukey HSD allowed us to deter-
mine that there is no significant difference between the
various pairs of means. In other words, we found that
there is no significant difference in performance if the user
chooses a binary or discretized encoding type, and in the
padding strategy (center or shifted) for the peptide clas-
sification task. Results of the Tukey HSD are reported in
Table 4.

The evaluation of the classification task showed that the
first- and second-level hierarchies carry enough information
to reach acceptable and good classification results. How-
ever, the results are fairly sparse across the different data
sets and follows the general trend of other existing encod-
ings. A complete overview of the evaluation results using
the F1 score are reported in Figure 4. A Jupyter Notebook
(Code/visualize.ipynb) is made available on GitHub
to reproduce all figures and provide interactive visualiza-
tions.

The benchmarking of the parametric approach permitted
us to report its performance on different data sets. Bench-
marking results are visualized and complemented with the
imbalance ratio of the twenty-nine data sets in Figure 5.
Overall, the elapsed time (s) shows a linear dependency with
the data set size (bytes). Our results indicate that a data size
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Figure 5. Benchmark performance of the four encodings created using the parametric approach. Median values are reported and were calculated for all
six runs and encodings. Faceted views of the elapsed time (s), the size of the encoded data (byte), and the imbalance ratio of the data set.
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Table 4. Tukey’s range test results. E1, E2, E3, E4 are the four encodings
bin cen, bin shi, dis cen, dis shi, respectively. M1 to M4 are the
means of each encoding group results of the F1 score. Q refers to the fact
that Tukey’s range test is based on a studentized range distribution (q)

Pairwise comparisons HSD0.05 = 0.098 Q0.05 = 3.688
HSD0.01 = 0.119 Q0.01 = 4.504

E1:E2 M1 = 0.62 0.00 Q = 0.08 (P = 0.99993)
M2 = 0.62

E1:E3 M1 = 0.62 0.01 Q = 0.52 (P = 0.98262)
M3 = 0.63

E1:E4 M1 = 0.62 0.01 Q = 0.36 (P = 0.99430)
M4 = 0.63

E2:E3 M2 = 0.62 0.02 Q = 0.61 (P = 0.97347)
M3 = 0.63

E2:E4 M2 = 0.62 0.01 Q = 0.44 (P = 0.98948)
M4 = 0.63

E3:E4 M3 = 0.63 0.00 Q = 0.17 (P = 0.99942)
M4 = 0.63

of 1 MB required 2245 median seconds. That is to say, the
encoding of 1 byte requires 2.141 median ms.

DISCUSSION

First, further computational improvements can be made for
both the parametric approach and the evaluation pipeline.
On one hand, very large data sets can be batched encoded
and as such parallel processing of the input molecules is rel-
evant. On the other hand, the large number of training it-
erations makes computational optimizations especially im-
portant. Although we rely on two-dimensional multilevel
neighborhoods alone, this work provides a proof of con-
cept and the evaluation of other fingerprinting algorithms
for binary classification should be considered, as reported
in previous work (16). Both sequence and structure encod-
ings were included in the evaluation. Indeed, our results can
be directly compared to the classification results reported in
the PEPTIDE REACToR tool. We hope this effort enables a
fair and direct comparison across encodings and data sets.

Second, compared to results reported in the related work,
our results were found to be consistent which made the
parametric approach a dependable one. Results using the
F1 score showed an acceptable to good separation of the
two classes, i.e. robustness. In the example of the six cell-
penetrating peptides data sets (cpp), it is important to note
that in the majority of the original works, both the accu-
racy and the Matthews Correlation Coefficient (MCC) per-
formance metrics were used and this is in discordance with
good practices for binary classification. The AUC usually
provides robustness of the resulting classifier and is more
discriminative than the MCC, while the accuracy is the mea-
sure of the closeness to a specific value and the AUC is the
measure across all the possible thresholds (24–26). We chose
the F1 score because it is applicable to any particular point
on the ROC curve. While the AUC is the area under the
ROC curve, the F1 score is a measure of precision and re-
call at a particular threshold value. To maximize this score,
both precision and recall must be high. In this ideal case,
the model returns many results, all correctly labeled.

Third, we found no significant difference in performance
if the user chooses a binary or discretized encoding type
as well as in the padding strategy (center or shifted). This

may imply that the strongest signal comes from the main
positional parameter: the levels to be considered. Although
other explanations are possible such as the domain of pep-
tides or the length of a molecule, results portray the robust-
ness of the parametric approach. In this case, the different
possible combinations of the feature vector representation
(via the optional parameters) did not affect the classifica-
tion results. In addition, we have discovered that employing
only the first or second level leads to subpar performance,
albeit this is not covered in this study. In fact, this point has
not been addressed because looking at just one level con-
tradicts the logic behind the parametric approach method-
ology.

Fourth, the image representation of the resulting encod-
ings constitutes an interesting research starting point. It
opens up a new space of representation by using the im-
age domain. For example, convolutional neural networks
may be used for the same task of classification yet by re-
lying on the images of the resulting encodings. Since such
neural networks convolve learned features with input data,
and use two-dimensional convolutional layers, their archi-
tecture is suited to processing two-dimensional data, such
as images. Such methodology would eliminate the need for
manual feature extraction required to classify the images.

Fifth, the molecular complexity field is noteworthy.
It provides fundamental concepts that underly current
fragment-based lead discovery. It considers the general in-
dex of molecular complexity, where features that make
a molecule more or less complex are taken into ac-
count (27,28). For example, size, symmetry, branching,
rings, multiple bonds and heterogeneity in the atoms. Such
concepts have been used in various application domains
such as chromatography analysis and synthesis pathways. It
would be very useful to rely on such features to improve the
proposed approach and introduce further parameters such
as symmetry, the presence of a cycle, or even the distances
among atoms. Such additions may be made at the second
step of the parametric approach to enrich the resulting en-
codings, increase the user-settable parameters, and further
vary the resulting performance of an encoding for a specific
task or domain.

Sixth, although this parametric approach proved useful
for cell-penetrating peptides and achieved acceptable clas-
sification results for different data sets, it is important to
extend its usage to include larger molecules and more het-
erogeneous data sets such as membrane proteins (29,30).
For comparability, we successfully evaluated additional
data sets, including imbalanced and large data sets that
broadened the application scope. Furthermore, it would
be valuable to consider correlation results among vary-
ing encodings. This could open up the way to build upon
the parametric approach and bypass computationally de-
manding algorithms and move directly to the design of ML
experiments.

Seventh, by default the parametric approach produces
very sparse encodings. This is especially the case when the
encodings are padded or centered. Hence, it is important to
develop specialized methods to address sparsity and evalu-
ate its effects. This relates to the problem of representation
and has potential links to data compression. Further con-
siderations are warranted for a more faithful space of rep-
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resentation so to reduce the data and preserve its relevant
structure.

Eighth, this work started with the question of whether
atomic neighborhoods are descriptive enough to character-
ize organic molecules. Although this is a naive question, it
is related to the basic idea that the neighborhoods created
by the carbon atom are not only important but may be suf-
ficient to obtain good classification results. To potentially
achieve very good or perfect classification results, the para-
metric approach can be complemented by the molecular
complexity concepts mentioned above. Moreover, the first
version of the parametric approach cannot handle other
atoms than the carbon atom as the backbone of a molecule.
However, heterocyclic compounds can be encoded and the
bonds between the different atoms are respected.

Ninth, although the parametric approach is focused on
organic compounds or molecules, it is possible to adapt the
underlying algorithm to create multilevel atomic neighbor-
hoods of molecules that lack C–H bonds. That is, consid-
ering inorganic polymers whose backbone structure does
not include carbon atoms, further expanding the applica-
tion domains and tasks for which the parametric approach
could be used.

Tenth and last, evaluating all models using good prac-
tices in ML is a standard approach to optimize the predic-
tion performance of the models. Since the parametric ap-
proach provides a parameter space, researchers may also
move upstream and consider a sensitivity analysis to better
fine-tune resulting ML models. Moreover, geometrical deep
learning tools, like graph neural networks (GNNs), could
be incorporated to further improve the overall ML aspect.
This method would exploit the underlying machine repre-
sentation of molecules using graphs (i.e. adjacency matri-
ces). Work in this direction is already underway and can be
seen in (31,32).

CONCLUSION

The presented parametric approach is created as an easy-
to-use and easy-to-install solution that includes the neces-
sary operations to create custom multilevel encodings of
molecular data. Results for the binary peptide classifica-
tion task were produced by using the PEPTIDE REACToR
tool. The F1 score reached 0.86 even with a class imbalance
of 0.76 and 0.77. The best performance reached 0.93 for
the antimicrobial activity prediction in Cysteine-Stabilized
peptides (data set: amp csamp) (33). Moreover, the perfor-
mance evaluation showed that the first two-level hierarchies
carry the most meaningful information for the classification
task. Overall, the classification results of the four encodings
were consistent with and comparable to the general trend
of the state-of-the-art results. Benchmark results indicated
that the parametric approach is not computationally inten-
sive and linearly increases with the data set size. Since fin-
gerprint representations decrease computational expenses
and enable rapid comparison of different molecules, fu-
ture work could extend the application of this approach be-
yond the task of binary classification and peptides. Unlike
other fingerprinting algorithms and methods, the interme-
diate graph data structure makes the parametric approach
versatile and permits the usage of organic molecules such as

unnatural and exotic amino acids and cyclic peptides. More-
over, we foresee that the proposed work will be a valuable
tool to complement and enhance current molecular finger-
printing algorithms and offer further insights into the pa-
rameters and the use of hierarchies and their potential com-
bination.
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Garcia-Vallvé,S. and Pujadas,G. (2015) Molecular fingerprint
similarity search in virtual screening. Methods, 71, 58–63.

4. Neves,B.J., Braga,R.C., Melo-Filho,C.C., Moreira-Filho,J.T.,
Muratov,E.N. and Andrade,C.H. (2018) QSAR-based virtual
screening: advances and applications in drug discovery. Front.
Pharmacol., 9, 1275.
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