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In this paper, we proposed a deterministic model of pneumonia-meningitis coinfection. We used a system of seven ordinary
differential equations. Firstly, the qualitative behaviours of the model such as positivity of the solution, existence of the solution,
the equilibrium points, basic reproduction number, analysis of equilibrium points, and sensitivity analysis are studied. 'e
disease-free equilibrium is locally asymptotically stable if the basic reproduction number is kept less than unity, and conditions for
global stability are established. 'en, the basic model is extended to optimal control by incorporating four control interventions,
such as prevention of pneumonia as well as meningitis and also treatment of pneumonia and meningitis diseases. 'e optimality
system is obtained by using Pontryagin’s maximum principle. For simulation of the optimality system, we proposed five strategies
to check the effect of the controls. First, we consider prevention only for both diseases, and the result shows that applying
prevention control has a great impact in bringing down the expansion of pneumonia, meningitis, and their coinfection in the
specified period of time. 'e other strategies are prevention effort for pneumonia and treatment effort for meningitis, prevention
effort for meningitis and treatment effort for pneumonia, treatment effort for both diseases, and using all interventions. We
obtained that each of the listed strategies is effective in minimizing the expansion of pneumonia-only, meningitis-only, and
coinfectious population in the specified period of time.

1. Introduction

Pneumonia, which can be categorized as one of the air-
borne diseases, claims for the death of millions of human
beings through inhaling pathogenic organism, mainly
Streptococcus pneumoniae [1]. 'ese bacteria are also re-
sponsible for the cause of other diseases, such as menin-
gitis, ear infections, and sinus infections. Pneumonia can
affect human beings of all ages, from children to the elderly,
and it becomes dangerous when the immunity level is
lowered, as well as when it is coinfected with other diseases
like meningitis [2]. Meningitis, an infection which covers
the brain and spinal cord, is caused by both bacteria and
virus. Bacterial infection of meningitis is the most common
one, particularly, Streptococcus pneumoniae, Haemophilus
influenzae, and Neisseria meningitidis are responsible for
80% cause of meningitis [3]. To control these diseases, a lot

of scholars proposed different methods. In this aspect,
mathematical models played a great role in proposing
controlling strategies. Several scholars proposed different
models to describe the dynamics of infectious diseases in
the community. Some of them [4–8] proposed a mathe-
matical model of pneumonia only, and the others [9–11]
proposed a mathematical model of meningitis only. Few
scholars like Tilahun et al. [12] proposed a mathematical
model of pneumonia and typhoid fever coinfection using
optimal control strategies. Moreover, Onyinge et al. and
Akinyi et al. [13, 14] developed a mathematical model for
coinfection of pneumonia with malaria and HIV. More
recently, Tilahun [15] proposed a mathematical model of
pneumonia and meningitis and investigated their coin-
fection using an SIR approach. However, to the best of our
knowledge, no one has proposed a mathematical model by
incorporating optimal control strategies for coinfection of
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pneumonia and meningitis. 'erefore, this work is devoted
in fulfilling this gap.

'is paper is organized as follows. Section 2 presents the
description of the model. Qualitative behaviour of the model
is discussed in Section 3. In Section 4, the basic model is
extended to optimal control analysis. In Section 5, numerical
simulation of the optimality system is presented. A brief
discussion and conclusion are presented in Section 6.

2. Description of the Model

In this section, a deterministic mathematical model of
pneumonia-meningitis coinfection is presented. 'e model
is proposed using seven compartments with total pop-
ulation size denoted by N(t). 'e compartment that has
individuals who are healthy but able to be infected is
denoted by S(t). Individuals that are affected by pneumonia
and can transmit the disease to others are denoted by Ip(t).
Similarly, meningitis-infected individuals’ compartment is
denoted by Im(t), and coinfectious individuals’ compart-
ment is represented by Ipm(t). Additionally, recovered
/removed compartments from pneumonia, meningitis,
and coinfection of both diseases are denoted by
Rp(t), Rm(t), and Rpm(t), respectively. 'en, the total
population is N(t) � S(t) + Ip(t) + Im(t) + Ipm(t) + Rp(t) +

Rm(t) + Rpm(t). Susceptible compartment increase by re-
cruitment rate of π and also from Pneumonia recovered
compartment with rate of δ1, meningitis recovered com-
partment with rate of δ2 and from co-infectious recovered
compartment with rate of δ3. Force of infection of pneu-
monia and meningitis is f1 � (a(Ip(t) + Ipm(t)))/N and
f2 � (b(Im(t) + Ipm(t)))/N, respectively, where a is the
contact rate of pneumonia and b is the contact
rate of meningitis. Pneumonia-only recovered compart-
ment is increased due to the recovery rate of pneumonia
denoted by σ1, and meningitis-only and coinfectious re-
covered compartments increase their number with a
rate of recovery of σ2 and σ, respectively. In the coinfectious
recovered/removed compartment, individuals either re-
covered only from pneumonia, meningitis, or from both
diseases with a probability of σ(1 − e), σg(1 − e) or
σ(1 − g)(1 − e), respectively, where sigma, e, and g are any
number between zero and one. 'e natural death rate is
denoted by μ and pneumonia-causing death rate and
meningitis-causing death rate are represented by α1 and α2,
respectively. All parameters described in this model are
assumed as nonnegative. 'e above description of the
model is plotted in Figure 1.

From the flow diagram (Figure 1) of the model, the
following system of differential equations is obtained:

dS(t)

dt
� π + δ1Rp(t) + δ2Rm(t) + δ3Rpm(t) − f1 + f2 + μ( 􏼁S(t),

dIp(t)

dt
� f1S(t) − f2 + σ1 + α1 + μ( 􏼁Ip(t),

dIm(t)

dt
� f2S(t) − f1 + σ2 + α2 + μ( 􏼁Im(t),

dIpm(t)

dt
� f2Ip(t) + f1Im(t) − σ + α1 + α2 + μ( 􏼁Ipm(t),

dRp(t)

dt
� σ1Ip(t) + σeIpm(t) − δ1 + μ( 􏼁Rp(t),

dRm(t)

dt
� σ2Im(t) + σg(1 − e)Ipm(t) − δ2 + μ( 􏼁Rm(t),

dRpm(t)

dt
� σ(1 − g)(1 − e)Ipm(t) − δ3 + μ( 􏼁Rpm(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)
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Initial conditions of system (1) are

S(0)≥ 0,

Ip(0)≥ 0,

Im(0)≥ 0,

Ipm(0)≥ 0,

Rp(0)≥ 0,

Rm(0)≥ 0,

Rpm(0)≥ 0.

(2)

3. Qualitative Analysis

In this section, the qualitative behaviours of the model such
as the invariant region, positivity of future solution, equi-
librium points and their stability analysis, basic reproduction
number, and sensitivity analysis are investigated.

3.1. Invariant Region. To get the invariant region in which the
solution of the model is bounded, we first consider N(t) �

S(t) + Ip(t) + Im(t) + Ipm(t) + Rp(t) + Rm(t) + Rpm(t).'en,

dN(t)

dt
� π − μN(t) − α1 Ip(t) + Ipm(t)􏼐 􏼑

− α2 Im(t) + Ipm(t)􏼐 􏼑.

(3)

If α1 � α2 � 0, then equation (3) becomes

dN(t)

dt
≤ π − μN(t). (4)

After solving equation (4), we get

Ω � S, Ip, Im, Ipm, Rp, Rm, Rpm􏼐 􏼑 ∈ R7: 0≤N≤
π
μ

􏼨 􏼩.

(5)

'erefore, the invariant region of the model becomes Ω.

3.2. Positivity of the Solution

Theorem 1. If S0 > 0, Ip0 > 0, Im0
> 0, Ipm0

> 0, Rp0 > 0, Rm0
> 0, Rpm0

> 0, then all the solution sets (S(t), Ip(t), Im(t),

Ipm(t), Rp(t), Rm(t), Rpm(t)) are positive for future time.

Proof. First, let us take t1 as

t1 � sup􏼨t> 0 : S(τ)> 0, Ip(τ)> 0, Im(τ)> 0, Ipm(τ)> 0,

· Rp(τ)> 0, Rm(τ)> 0, Rpm(τ)> 0, for all τ ∈ [0, t]􏼩.

(6)

Consider S0 ≥ 0, Ip0 ≥ 0, Im0
≥ 0, Ipm0

≥ 0, Rp0 ≥ 0, Rm0
≥ 0,

Rpm0
≥ 0; thus, t1 > 0. If t1 <∞, then necessarily S or Ip or Im

or Ipm or Rp or Rm or Rpm is equal to zero at t1. From
equation (1),

dS(t)

dt
� π + δ1Rp(t) + δ2Rm(t) + δ3Rpm(t) − f1 + f2 + μ( 􏼁S(t).

(7)

Using variation formula, equation (7) can be solved at t1:

S t1( 􏼁 � S(0)exp − 􏽚
t1

0
f1 + f2 + μ( 􏼁(s)ds􏼢 􏼣

+ 􏽚
t1

0
π + δ1Rp + δ2Rm + δ3Rpm􏼐 􏼑

· exp − 􏽚
t1

s
f1 + f2 + μ( 􏼁(τ)dτ􏼢 􏼣ds.

(8)

Accordingly, all the variables are nonnegative in [0, t1];
then, S(t1)> 0.

In a similar fashion, we can show Ip(t1)> 0, Im
(t1)> 0, Ipm(t1)> 0, Rp(t1)> 0, Rm(t1)> 0, and Rpm(t1)> 0
which is a contradiction. Hence, t1 �∞. □

3.3.Disease-FreeEquilibrium(DFE). Eliminating Ip(t), Im(t),
and Ipm(t) from equation (1) and solving for S(t) give
DFE:

E0 �
π
μ

, 0, 0, 0, 0, 0, 0􏼠 􏼡. (9)

3.4. Basic Reproduction Number (R0). Considering only the
infected compartment and applying the next generation
matrix give the following eigenvalues:

λ∗1 �
aπ

μ σ1 + α1 + μ( 􏼁
� R0p,

λ∗2 �
bπ

μ σ2 + α2 + μ( 􏼁
� R0m,

λ∗3 � 0.

(10)
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Figure 1: Flow diagram of the model.
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Since the basic reproduction number is the dominant
eigenvalue of the next generation matrix,

R0 � max R0p,R0m􏽮 􏽯. (11)

3.5. Local Stability of Disease-Free Equilibrium. After
obtaining the Jacobian matrix of the system at the disease-
free equilibrium point, we obtained the following theorem.

Theorem 2. 8e disease-free equilibrium point is locally
asymptotically stable if R0 < 1, otherwise unstable.

3.6. Global Asymptotic Stability of Disease-Free Equilibrium.
To investigate the global stability of disease-free equilibrium,
we used the technique implemented in [9]. First, full
pneumonia-meningitis model (1) can be re-written as

dX

dt
� F(X, Z),

dZ

dt
� G(X, Z),

G(X, 0) � 0,

(12)

where X stands for the uninfected population, that is
X � (S, Rp, Rm, Rpm), and Z stands for the infected pop-
ulation, that is Z � (Ip, Im, Ipm). 'e disease-free equilib-
rium point of the model is denoted by U � (X∗, 0).

For the point U � (X∗, 0) to be globally asymptotically
stable equilibrium for the model provided that R0 < 1
(which is locally asymptotically stable) and the following
conditions must be met:

(H1): for (dX/dt) � F(X, 0), X∗ is globally asymp-
totically stable.
(H2): G(X, Z) � AZ − 􏽥G(X, Z), 􏽥G(X, Z)≥ 0 for
(X, Z) ∈ Ω

If model (1) met the aforementioned two criteria, then
the following theorem holds.

Theorem 3. 8e pointU � (X∗, 0) is globally asymptotically
stable equilibrium provided that R0 < 1 and the conditions
(H1) and (H2) are satisfied.

Proof. From system (1), we can get F(X, Z) and G(X, Z):

F(X, Z) �

π + δ1Rp + δ2Rm + δ3Rpm − f1 + f2 + μ( 􏼁S

σ1Ip + σeIpm − δ1 + μ( 􏼁Rp

σ2Im + σg(1 − e)Ipm − δ2 + μ( 􏼁Rm

σ(1 − g)(1 − e)Ipm − δ3 + μ( 􏼁Rpm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

G(X, Z) �

f1S − f2 + σ1 + α1 + μ( 􏼁Ip

f2S − f1 + σ2 + α2 + μ( 􏼁Im

f2Ip + f1Im − σ + α1 + α2 + μ( 􏼁Ipm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(13)

Consider the reduced system:

dX

dt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌Z�0
�

π − μS

0

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

From equation (14), it is obvious that X∗ � ((π/μ), 0) is
the global asymptotic point. 'is can be verified from the
solution, namely, S � (π/μ) + (S(0) − (π/μ))e− μt. As
t⟶∞, the solution (S)⟶ (π/μ), implying the global
convergence of (14) in Ω.

Let

A �

a − sigma1 + α1 + μ( 􏼁 0 a

0 − σ2 + α2 + μ( 􏼁 0

0 0 − σ + α1 + α2 + μ( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (15)

'en, G(X, Z) can be written as G(X, Z) � AZ −
􏽥G(X, Z), where

􏽥G(X, Z) �

􏽥G1(X, Z)

􏽥G2(X, Z)

􏽥G3(X, Z)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

a Im + Ipm􏼐 􏼑 1 −
S

N
􏼒 􏼓 + f2Ip

f1Im

− f2Ip + f1Im􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

where 􏽥G2(X, Z)< 0 which leads to 􏽥G(X, Z)< 0, which
means the second condition (H2) is not satisfied, so

U � (X∗, 0) may not be globally asymptotically stable
when R0 < 1. □

3.7. Sensitivity Analysis. Here we performed sensitivity
analysis in order to check the effect of each parameter in the
expansion as well in controlling pneumonia and meningitis
infection as well as their coinfection. To perform sensitiv-
ity analysis, we used a method outlined in [7]. Sensitiv-
ity index of R0 with respect to parameter, say y, is given by
ΛR0

y � (zR0/zy)(y/R0). Since R0 � max R0p,R0m􏽮 􏽯, we
obtained sensitivity analysis of R0p and R0m separately in
the following way:
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ΛR0p
a �

zR0p

za

a

R0p
�

π
μ σ1 + α1 + μ( 􏼁

aμ σ1 + α1 + μ( 􏼁

aπ
� 1> 0,

ΛR0p
α1 �

zR0p

zα1

α1
R0p

� −
α1

σ1 + α1 + μ( 􏼁
< 0,

ΛR0p
σ1 �

zR0p

zσ1

σ1
R0p

� −
σ1

σ1 + α1 + μ( 􏼁
< 0,

ΛR0p
μ �

zR0p

zμ
μ

R0p
� −

σ1 + α1 + 2μ( 􏼁

σ1 + α1 + μ( 􏼁
< 0,

ΛR0m
b �

zR0m

zb

b

R0m
�

π
μ σ2 + α2 + μ( 􏼁

bμ σ2 + α2 + μ( 􏼁

bπ
� 1> 0,

ΛR0m
α2 �

zR0m

zα2

α2
R0m

� −
α2

σ2 + α2 + μ( 􏼁
< 0,

ΛR02
σ2 �

zR0m

zσ2

σ2
R0m

� −
σ2

σ2 + α2 + μ( 􏼁
< 0,

ΛR0m
μ �

zR0m

zμ
μ

R0m
� −

σ2 + α2 + 2μ( 􏼁

σ2 + α2 + μ( 􏼁
< 0.

(17)

'e above computation shows that pneumonia, men-
ingitis, and their coinfection will be expanded if these pa-
rameters have a positive index, which is increased by keeping
the other parameters constant. However, those parameters
whose indices are negative have a great role in decreasing the
diseases if their values are increased by keeping other pa-
rameters constant. From this result, we took prevention and
treatment for both diseases to be considered in optimal
control analysis in the next section.

4. Optimal Control Analysis

In this section, we extended the basic model in equation (1)
to optimal control by incorporating five controls which have

a significant effect in controlling the expansion of coepi-
demics of pneumonia and meningitis. 'e interventions are
as follows:

(1) u1: pneumonia prevention effort
(2) u2: meningitis prevention effort
(3) u3: pneumonia treating effort
(4) u4: meningitis treating effort

After incorporating the above controls, the extended
model becomes

dS(t)

dt
� π + δ1Rp(t) + δ2Rm(t) + δ3Rpm(t) − 1 − u1( 􏼁f1 + 1 − u2( 􏼁f2 + μ( 􏼁S(t),

dIp(t)

dt
� 1 − u1( 􏼁f1S(t) − 1 − u2( 􏼁f2Ip(t) − σ1 + u3( 􏼁Ip(t) − α1 + μ( 􏼁Ip(t),

dIm(t)

dt
� 1 − u2( 􏼁f2S(t) − 1 − u1( 􏼁f1Im(t) − σ2 + u4( 􏼁Im(t) − α2 + μ( 􏼁Im(t),

dIpm(t)

dt
� 1 − u2( 􏼁f2Ip(t) + 1 − u1( 􏼁f1Im(t) − σ + u3 + u4( 􏼁Ipm(t) − α1 + α2 + μ( 􏼁Ipm(t),

dRp(t)

dt
� σ1 + u3( 􏼁Ip(t) + σe + u3( 􏼁Ipm(t) − δ1 + μ( 􏼁Rp(t),

dRm(t)

dt
� σ2 + u4( 􏼁Im(t) + σg(1 − e) + u4( 􏼁Ipm(t) − δ2 + μ( 􏼁Rm(t),

dRpm(t)

dt
� σ(1 − g)(1 − e) + u3 + u4( 􏼁Ipm(t) − δ3 + μ( 􏼁Rpm(t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)
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Being Lebesgue measurable of U is crucial for studying
the optimal levels of U � (u1(t), u2􏼈 (t), u3(t), u4(t)) : 0≤
u1 < 1, 0≤ u2 < 1, 0≤ u3 < 1, 0≤ u4 < 1, 0≤ t≤T}. 'e main
target is to get U and Ip(t), Im(t), and Ipm(t), which
minimize the objective function J, given by

J � min
u1,u2,u3,u4

􏽚
tf

0
c1Ip(t) + c2Im(t) + c3Ipm(t) +

1
2

􏽘

4

i�1
wiu

2
i

⎛⎝ ⎞⎠dt,

(19)

where c1, c2, c3, and wi are positive. 'e expression
(1/2)wiu

2
i represents costs. Our aim is to minimize in-

fectious compartments and costs. 'erefore, we want to get
optimal controls (u∗1 , u∗2 , u∗3 , u∗4 ) in which

J u
∗
1 , u
∗
2 , u
∗
3 , u
∗
4( 􏼁 � min J u1, u2, u3, u4( 􏼁/ui( 􏼁 ∈ U􏼈 􏼉. (20)

4.1. 8e Hamiltonian and Optimality System. Here, Hamil-
tonian (H) is derived by applying Pontryagin’s maximum
principle in the same way as described in [11], which is
defined as

H S(t), Ip(t), Im(t), Ipm(t), Rp(t), Rm(t), Rpm(t)􏼐 􏼑

� L Ip(t), Im(t), Ipm(t), u1, u2, u3, u4, t􏼐 􏼑 + λ1
ds(t)

dt

+ λ2(t)
dIp(t)

dt
+ λ3(t)

dIm(t)

dt
+ λ4(t)

dIpm(t)

dt

+ λ5(t)
dRp(t)

dt
+ λ6(t)

dRm(t)

dt
+ λ7(t)

dRpm(t)

dt
,

(21)

where L(Ip(t), Im(t), Ipm(t), u1, u2, u3, u4, t) � c1Ip(t) + c2

Im(t) + c3Ipm(t) + 1/2􏽐
4
i�1wiu

2
i , λi, i � 1, 2, 3, 4, 5, 6, 7 are

the adjoint variable functions.

Theorem 4. For an optimal control set u1, u2, u3, u4 that
minimizes J over U, there are adjoint variables, λ1, . . . , λ7
such that

dλ1
dt

� λ1 1 − u1( 􏼁f1 + 1 − u2( 􏼁f2 + μ( 􏼁 − λ2 1 − u1( 􏼁f1 − λ3 1 − u2( 􏼁f2,

dλ2
dt

� − c1 − λ1 1 − u1( 􏼁
aS

N
− λ2 1 − u1( 􏼁

aS

N
+ 1 − u2( 􏼁f2 + σ1 + u3 + α1 + μ( 􏼁􏼒 􏼓

− λ4 1 − u2( 􏼁f2 + 1 − u1( 􏼁
aIm
N

􏼒 􏼓 − λ5 σ1 + u3( 􏼁,

dλ3
dt

� − c2 + λ1 1 − u2( 􏼁
bS

N
+ λ2 1 − u2( 􏼁

bIp

N
− λ3 σ2 + α2 + u4 + 1 − u1( 􏼁f1 + 1 − u1( 􏼁f1 − 1 − u2( 􏼁

bS

N
􏼠 􏼡

− λ4 1 − u2( 􏼁
bIp

N
+ 1 − u1( 􏼁f1􏼠 􏼡 − λ6 σ2 + u4( 􏼁,

dλ4
dt

� − c3 + λ1 1 − u1( 􏼁
aS

N
+ 1 − u2( 􏼁

bS

N
􏼠 􏼡 − λ2 1 − u2( 􏼁

bIp

N
− 1 − u1( 􏼁

aS

N
􏼠 􏼡

− λ3 1 − u1( 􏼁
aIm

N
− 1 − u2( 􏼁

bS

N
􏼠 􏼡 − λ4 σ + α1 + α2 + μ + u3 + u4 − 1 − u2( 􏼁

bIp

N
− 1 − u1( 􏼁

aIm

N
􏼠 􏼡

− λ5 σe + u3( 􏼁 − λ6 σg(1 − e) + u4( 􏼁 − λ7 σ(1 − g)(1 − e) + u3 + u4( 􏼁,

dλ5
dt

� λ5 δ1 + μ( 􏼁 − λ1δ1,

dλ6
dt

� λ6 δ2 + μ( 􏼁 − λ1δ2,

dλ7
dt

� λ7 δ3 + μ( 􏼁 − λ1δ3,

(22)

with the condition λi(tf) � 0, i � 1, . . . , 7.
8e characterized control sets are:

u
∗
1(t) � max 0, min 1,Φ1( 􏼁􏼈 􏼉,

u
∗
2(t) � max 0, min 1,Φ2( 􏼁􏼈 􏼉,

u
∗
3(t) � max 0, min 1,Φ3( 􏼁􏼈 􏼉,

u
∗
4(t) � max 0, min 1,Φ4( 􏼁􏼈 􏼉,

(23)
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where

Φ1 �
f1S λ2 − λ1( 􏼁 + f1Ip λ4 − λ3( 􏼁

w1
,

Φ2 �
f2S λ3 − λ1( 􏼁 + f2Ip λ4 − λ2( 􏼁

w2
,

Φ3 �
λ2Ip + Ipm λ4 − λ7( 􏼁 − λ5 Ip + Ipm􏼐 􏼑

w3
,

Φ4 �
λ3Im + Ipm λ4 − λ7( 􏼁 − λ6 Im + Ipm􏼐 􏼑

w4
.

(24)

Proof. Applying Pontryagin’s maximum principle gives the
adjoint systems:
dλ1
dt

� −
dH

dS
� λ1 1 − u1( 􏼁f1 + 1 − u2( 􏼁f2 + μ( 􏼁 − λ2 1 − u1( 􏼁f1

− λ3 1 − u2( 􏼁f2,

dλ2
dt

� −
dH

dIp
� − c1 − λ1 1 − u1( 􏼁

aS

N
− λ2􏼒 1 − u1( 􏼁

aS

N

+ 1 − u2( 􏼁f2 + σ1 + u3 + α1 + μ( 􏼁􏼓

− λ4 1 − u2( 􏼁f2 + 1 − u1( 􏼁
aIm

N
􏼒 􏼓 − λ5 σ1 + u3( 􏼁,

dλ3
dt

� −
dH

dIm
� − c2 + λ1 1 − u2( 􏼁

bS

N
+ λ2 1 − u2( 􏼁

bIp

N

− λ3 σ2 + α2 + u4 + 1 − u1( 􏼁f1 − 1 − u2( 􏼁
bS

N
􏼠 􏼡

− λ4 1 − u2( 􏼁
bIp

N
+ 1 − u1( 􏼁f1􏼠 􏼡 − λ6 σ2 + u4( 􏼁,

dλ4
dt

� −
dH

dIpm
� − c3 + λ1 1 − u1( 􏼁

aS

N
+ 1 − u2( 􏼁

bS

N
􏼠 􏼡

− λ2 1 − u2( 􏼁
bIp

N
− 1 − u1( 􏼁

aS

N
􏼠 􏼡 − λ3􏼠 1 − u1( 􏼁

aIm

N

− 1 − u2( 􏼁
bS

N
􏼡 − λ4􏼠σ + α1 + α2 + μ + u3 + u4

− 1 − u2( 􏼁
bIp

N
− 1 − u1( 􏼁

aIm
N

􏼡

− λ5 σe + u3( 􏼁 − λ6 σg(1 − e) + u4( 􏼁

− λ7 σ(1 − g)(1 − e) + u3 + u4( 􏼁,

dλ5
dt

� −
dH

dRp
� λ5 δ1 + μ( 􏼁 − λ1δ1,

dλ6
dt

� −
dH

dRm
� λ6 δ2 + μ( 􏼁 − λ1δ2,

dλ7
dt

� −
dH

dRpm
� λ7 δ3 + μ( 􏼁 − λ1δ3.

(25)

Now to obtain the time varying controls, we used the
equation, (zH/zui) � 0 at u∗i , for i � 1, . . . , 4 and obtained
the following:

u
∗
1 �

f1S λ2 − λ1( 􏼁 + f1Ip λ4 − λ3( 􏼁

w1
,

u
∗
2 �

f2S λ3 − λ1( 􏼁 + f2Ip λ4 − λ2( 􏼁

w2
,

u
∗
3 �

λ2Ip + Ipm λ4 − λ7( 􏼁 − λ5 Ip + Ipm􏼐 􏼑

w3
,

u
∗
4 �

λ3Im + Ipm λ4 − λ7( 􏼁 − λ6 Im + Ipm􏼐 􏼑

w4
.

(26)

'e controls can be written as

u
∗
1 �

Φ1, if 0<Φ1 < 1,

0, if Φ1 ≤ 0,

1, if Φ1 ≥ 1,

⎧⎪⎪⎨

⎪⎪⎩

u
∗
2 �

Φ2, if 0<Φ2 < 1,

0, if Φ2 ≤ 0,

1, if Φ2 ≥ 1,

⎧⎪⎪⎨

⎪⎪⎩

u
∗
3 �

Φ3, if 0<Φ3 < 1,

0, if Φ3 ≤ 0,

1, if Φ3 ≥ 1,

⎧⎪⎪⎨

⎪⎪⎩

u
∗
4 �

Φ4, if 0<Φ4 < 1,

0, if Φ4 ≤ 0,

1, if Φ4 ≥ 1,

⎧⎪⎪⎨

⎪⎪⎩

u
∗
5 �

Φ5, if 0<Φ5 < 1,

0, if Φ5 ≤ 0,

1, if Φ5 ≥ 1.

⎧⎪⎪⎨

⎪⎪⎩

(27)

'e compact representation of the controls:

u
∗
1(t) � max 0, min 1,Φ1( 􏼁􏼈 􏼉,

u
∗
2(t) � max 0, min 1,Φ2( 􏼁􏼈 􏼉,

u
∗
3(t) � max 0, min 1,Φ3( 􏼁􏼈 􏼉,

u
∗
4(t) � max 0, min 1,Φ4( 􏼁􏼈 􏼉,

u
∗
5(t) � max 0, min 1,Φ5( 􏼁􏼈 􏼉,

Φ1 �
f1S λ2 − λ1( 􏼁 + f1Ip λ4 − λ3( 􏼁

w1
,

Φ2 �
f2S λ3 − λ1( 􏼁 + f2Ip λ4 − λ2( 􏼁

w2
,

Φ3 �
λ2Ip + Ipm λ4 − λ7( 􏼁 − λ5 Ip + Ipm􏼐 􏼑

w3
,

Φ4 �
λ3Im + Ipm λ4 − λ7( 􏼁 − λ6 Im + Ipm􏼐 􏼑

w4
.

(28)
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'en, the obtained optimality system is
dS

dt
� π + δ1Rp + δ2Rm + δ3Rpm − 1 − u1( 􏼁f1 + 1 − u2( 􏼁f2 + μ( 􏼁S,

dIp

dt
� 1 − u1( 􏼁f1S − 1 − u2( 􏼁f2Ip − σ1 + u3( 􏼁Ip − α1 + μ( 􏼁Ip,

dIm

dt
� 1 − u2( 􏼁f2S − 1 − u1( 􏼁f1Im − σ2 + u4( 􏼁Im − α2 + μ( 􏼁Im,

dIpm

dt
� 1 − u2( 􏼁f2Ip + 1 − u1( 􏼁f1Im − σ + u3 + u4( 􏼁Ipm − α1 + α2 + μ( 􏼁Ipm,

dRp

dt
� σ1 + u3( 􏼁Ip + σe + u3( 􏼁Ipm − δ1 + μ( 􏼁Rp,

dRm

dt
� σ2 + u4( 􏼁Im + σg(1 − e) + u4( 􏼁Ipm − δ2 + μ( 􏼁Rm,

dRpm

dt
� σ(1 − g)(1 − e) + u3 + u4( 􏼁Ipm − δ3 + μ( 􏼁Rpm,

dλ1
dt

� λ1 1 − u1( 􏼁f1 + 1 − u2( 􏼁f2 + μ( 􏼁 − λ2 1 − u1( 􏼁f1 − λ3 1 − u2( 􏼁f2,

dλ2
dt

� − c1 − λ1 1 − u1( 􏼁
aS

N
− λ2 1 − u1( 􏼁

aS

N
+ 1 − u2( 􏼁f2 + σ1 + u3 + α1 + μ( 􏼁􏼒 􏼓 − λ4 1 − u2( 􏼁f2 + 1 − u1( 􏼁

aIm

N
􏼒 􏼓 − λ5 σ1 + u3( 􏼁,

dλ3
dt

� − c2 + λ1 1 − u2( 􏼁
bS

N
+ λ2 1 − u2( 􏼁

bIp

N
− λ3 σ2 + α2 + u4 + 1 − u1( 􏼁f1 − 1 − u2( 􏼁

bS

N
􏼠 􏼡

− λ4 1 − u2( 􏼁
bIp

N
+ 1 − u1( 􏼁f1􏼠 􏼡 − λ6 σ2 + u4( 􏼁,

dλ4
dt

� − c3 + λ1 1 − u1( 􏼁
aS

N
+ 1 − u2( 􏼁

bS

N
􏼠 􏼡 − λ2 1 − u2( 􏼁

bIp

N
− 1 − u1( 􏼁

aS

N
􏼠 􏼡 − λ3 1 − u1( 􏼁

aIm

N
− 1 − u2( 􏼁

bS

N
􏼠 􏼡

− λ4 σ + α1 + α2 + μ + u3 + u4 − 1 − u2( 􏼁
bIp

N
− 1 − u1( 􏼁

aIm

N
􏼠 􏼡 − λ5 σe + u3( 􏼁 − λ6 σg(1 − e) + u4( 􏼁

− λ7 σ(1 − g)(1 − e) + u3 + u4( 􏼁,

dλ5
dt

� λ5 δ1 + μ( 􏼁 − λ1δ1,

dλ6
dt

� λ6 δ2 + μ( 􏼁 − λ1δ2,

dλ7
dt

� λ7 δ3 + μ( 􏼁 − λ1δ3.

(29)

λi tf􏼐 􏼑 � 0, i � 1, . . . , 7,

S(0) � S0,

Ip(0) � Ip0,

Im(0) � Im0
,

Ipm(0) � Ipm0
,

Rp(0) � Rp0,

Rm(0) � Rm0
,

Rpm(0) � Rpm0
.

(30)

□
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5. Numerical Simulation

In this section, we performed numerical simulation of the
optimality system. To simulate the system, we used the
forward fourth-order Runge–Kutta method to solve the state
system and the backward fourth-order Runge–Kutta
method for solving the costate system. We have used Maple
18, for simulation.

We proposed the following five strategies for numerical
simulation of the optimality system:

(i) Using prevention effort for both diseases
(u1 ≠ 0, u2 ≠ 0, u3 � 0, u4 � 0)

(ii) Prevention effort for pneumonia disease and treat-
ment effort for meningitis disease (u1 ≠ 0, u4 ≠ 0,

u2 � u3 � 0)

(iii) Using prevention effort for meningitis disease and
treatment effort for pneumonia disease (u2 ≠ 0, u3 ≠ 0,

u1 � 0, u4 � 0)

(iv) Using treatment effort for both diseases (u3 ≠ 0,

u4 ≠ 0, u1 � u2 � 0)
(v) Using all the intervention efforts (u1 ≠ 0, u2 ≠ 0,

u3 ≠ 0, u4 ≠ 0)

For simulation, we used parameter values listed in
Table 1, and we assumed c1 � 35, c2 � 45, c3 � 26, w1 � 4,

w2 � 3, w3 � 5, and w4 � 6 for simulation. Initial conditions
that are used are S(0) � 1500, Ip(0) � 456, Im(0) � 564, Ipm
(0) � 250, Rp(0) � 123, Rm(0) � 248, and Rpm(0) � 346.

5.1. Control with Prevention for Both Diseases. Here we
applied prevention of both pneumonia and meningitis
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Figure 2: Simulations of optimality system with prevention only.

Table 1: Parameter values of the model.

Parameter symbol Value Source
δ1 0.003–0.1 [7]
δ2 0.00904–0.99 [3]
δ3 0.01 Assumed
a 0.007–0.6 [9]
b 0.9 [3]
α1 0.006–0.5 Estimated
α2 0.002–0.2 Estimated
σ 0.1 [7]
g 0.5–1 [9]
e 0.5–1 [9]
μ 0.01 Assumed
σ1 0.9 Assumed
σ2 0.8 Assumed
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diseases as the intervention strategy. From the simulation
results of Figures 2 and 3, we see that prevention has a great
impact in controlling pneumonia-only and meningitis-only
infectious population and also in eradicating coinfection of
pneumonia and meningitis diseases in the specified time.

5.2. Control with Prevention Effort for Pneumonia and
Treatment Effort for Meningitis. Here we investigated the
effect of combination of prevention and treatment as the
intervention strategy. Figures 4 and 5 show that prevention
for pneumonia only and treatment for meningitis only
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Figure 4: Simulations of optimality system with prevention of pneumonia and treatment of meningitis.
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Figure 3: Effect of prevention on coinfectious populations.
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contribute in controlling pneumonia-only infectious pop-
ulation, meningitis-only infectious population, and coin-
fectious population.

5.3. Control with Prevention Effort for Meningitis and
Treatment Effort for Pneumonia. In this section, we used
prevention of meningitis and treatment of pneumonia as the
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Figure 6: Simulations of optimality system with prevention of meningitis and treatment of pneumonia.
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Figure 5: Effect of prevention of pneumonia and treatment of meningitis on coinfectious populations.
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controlling mechanism. Figures 6 and 7 show that pneu-
monia andmeningitis infectious populations and coinfectious
populations are found to increase due to lack of intervention,

but when meningitis prevention and pneumonia treatment
are used as the intervention mechanism, the infectious
population is found to decreaseat the specified time.
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Figure 8: Simulations of optimality system with treatment effort.
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Figure 7: Effect of prevention of meningitis and treatment of pneumonia on coinfectious populations.
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5.4. Control with Treatment Effort for Both Diseases. In this
section, treatment of pneumonia and meningitis diseases is
used as the controlling strategy. 'e results of the appli-
cations of the strategies are shown in Figures 8 and 9. From

the figures, we see that the infectious population due to
pneumonia and meningitis diseases as well as the coinfec-
tious population is found to decrease due to treatment
strategy for both diseases.

Pn
eu

m
on

ia
 in

fe
ct

io
us

 p
op

ul
at

io
n

100

200

300

400

500

0 1
Time (months)

u1 = 0, u2 = 0, u3 = 0, u4 = 0
u1 ≠ 0, u2 ≠ 0, u3 ≠ 0, u4 ≠ 0

2 3

(a)

250

200

150

100

50

M
en

in
gi

tis
 in

fe
ct

io
us

 p
op

ul
at

io
n

u1 = u2 = u3 = u4 = 0
u1 ≠ 0, u2 ≠ 0, u3 ≠ 0, u4 ≠ 0

0 1
Time (months)

2 3

(b)

Figure 10: Simulations of optimality system with all interventions.
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Figure 9: Effect of treating both diseases on coinfectious populations.
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5.5. Control with All Intervention Strategies. In this section,
we used all the four controlling strategies to tackle pneu-
monia, meningitis, and their coinfection. 'e results from
Figures 10 and 11 show that the proposed intervention
strategies are effective in bringing down the infectious
population in the specified period of time.

6. Discussion and Conclusion

In Section 2, the basic model is described. 'e total system is
subdivided into seven compartments by using ordinary
differential equations. 'e qualitative behaviours including
the invariant region, the positivity of solution, the disease-
free equilibrium, basic reproduction number, analysis of
disease-free equilibrium points, and checking the sensitivity
of each parameter are presented in Section 3. In Section 4,
the basic model is extended to optimal control by in-
corporating four controls such as prevention of pneumonia,
prevention of meningitis, treatment of pneumonia, and
treatment of meningitis. In this section, we characterized the
optimal controls in terms of optimality system solutions. In
Section 5, the optimality system is simulated by applying the
Runge–Kutta forward-backward sweep method. For simu-
lation of the optimality system, we proposed five strategies to
check the effect of the controls. First, we considered pre-
vention only for both diseases, and the result shows that
applying prevention control has a great impact in bringing
down the expansion of pneumonia, meningitis, and their
coinfection in the specified period of time. 'e other
strategies are prevention effort for pneumonia and treatment
effort for meningitis, prevention effort for meningitis and
treatment effort for pneumonia, treatment effort for both
diseases, and using all interventions. We obtained that each

of the listed strategies is effective in minimizing the ex-
pansion of pneumonia-only infectious population, menin-
gitis-only infectious population, and coinfectious population
in the specified period of time.
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