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Abstract

Numerous developmental genes have been linked to schizophrenia (SZ) by case-control

and genome-wide association studies, suggesting that neurodevelopmental disturbances

are major pathogenic mechanisms. However, no neurodevelopmental deficit has been

definitively linked to SZ occurrence, likely due to disease heterogeneity and the differential

effects of various gene variants across ethnicities. Hence, it is critical to examine linkages in

specific ethnic populations, such as Han Chinese. The newly identified RhoGAP ARH-

GAP18 is likely involved in neurodevelopment through regulation of RhoA/C. Here we

describe four single nucleotide polymorphisms (SNPs) in ARHGAP18 associated with SZ

across a cohort of >2000 cases and controls from the Han population. Two SNPs,

rs7758025 and rs9483050, displayed significant differences between case and control

groups both in genotype (P = 0.0002 and P = 7.54×10−6) and allelic frequencies (P =

4.36×10−5 and P = 5.98×10−7), respectively. The AG haplotype in rs7758025−rs9385502

was strongly associated with the occurrence of SZ (P = 0.0012, OR = 0.67, 95% CI = 0.48–

0.93), an association that still held following a 1000-times random permutation test (P =

0.022). In an independently collected validation cohort, rs9483050 was the SNP most

strongly associated with SZ. In addition, the allelic frequencies of rs12197901 remained

associated with SZ in the combined cohort (P = 0.021), although not in the validation cohort

alone (P = 0.251). Collectively, our data suggest the ARHGAP18 may confer vulnerability to

SZ in the Chinese Han population, providing additional evidence for the involvement of neu-

rodevelopmental dysfunction in the pathogenesis of schizophrenia.

Introduction

Schizophrenia (SZ) is among the most severe and difficult to treat psychiatric disorders due to

variable expression of psychotic symptoms, mood deregulation, and cognitive dysfunction[1].
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There is also considerable heterogeneity in disease heritability, implying that SZ arises from a

complex interaction of multiple genetic susceptibility factors; thus, there is no unified patho-

genic model [2]. Compelling evidence points to disturbances in neurodevelopment during the

prenatal and early postnatal periods that impact brain maturation during adolescence and

early adulthood, ultimately leading to the delayed emergence of psychiatric symptoms[3]. It is

thus believed that different allelic combinations of neurodevelopmental genes (haplotypes)

may predispose individuals to SZ and other major psychiatric disorders [4, 5].

Neurodevelopmental abnormalities may result from prenatal immune activation [6], ali-

mentary deficiency [7], and genetic factors. Indeed, multiple genetic factors have been linked

to schizophrenia susceptibility[8–10], including genes associated with Rho GTPase signaling

pathways[11]. Rho GTPase activating proteins (RhoGAPs) are a large protein family contain-

ing approximate 80 members that stimulate GTP hydrolysis, thereby turning the GTP-bound

active form of Rho into a inactive GDP-bound form[12, 13]. The Rho family GTPase play a

critical role in many aspects of neuronal development, including neurite outgrowth[14, 15],

neuronal differentiation [14], axon guidance[15–17], and synaptic formation and mainte-

nance[18,19]. Likewise, many RhoGAP proteins have been linked to neurodevelopmental pro-

cesses and related disabilities. For example, oligophrenin-1 encodes a RhoGAP involved in X-

linked mental retardation [20, 21]. Recently, dysfunction of RhoGAPX-1 and ARHGAP6 has

been implicated in a wide range of developmental defects seen in microphthalmia with linear

skin defects syndrome[22, 23], while srGAP1, srGAP2, and srGAP3 have been linked to men-

tal retardation, schizophrenia, and seizures[24]. Considering the functional redundancy of

many RhoGAP proteins, these findings suggest that additional family members are also

involved in pathological conditions related to aberrant neurodevelopment.

ARHGAP18 is a newly identified RhoGAP capable of regulating RhoA and RhoC activities

in a cell type-specific context [25, 26]. Although the functions of ARHGAP18 in the central

nervous system are presently unknown, recent studies have shown a potential correlation

between genetic polymorphisms of ARHGAP18 and the occurrence of schizophrenia.

Through the combinatorial use of a genome-wide screening and neuroimaging, single nucleo-

tide polymorphisms (SNPs) within ARHGAP18 were associated with schizophrenia [27, 28].

However, these studies were based on Western populations and not validated in an indepen-

dent case−control study. Herein, we evaluated the association of ARHGAP18 polymorphisms

and schizophrenia in a large Chinese Han population of SZ patients and matched controls.

Materials and methods

Subjects

All participants were recruited from northern Henan Province and had four biological grand-

parents of Han Chinese ancestry. The Structured Clinical Interview for Diagnostic and Statisti-

cal Manual of Mental Disorders-Fourth Edition IV (DSM-IV) (1994) Axis I Disorders was

used to exclude individuals with a history of severe medical complications (such as diabetes,

cardiovascular disease, hypertension), organic brain diseases, concomitant major psychiatric

disorders, and/or substance dependence. The discovery cohort consisted of 528 patients (264

males and 264 females; mean age: 27.32 ± 8.03 years old) and 528 healthy controls matched for

sex ratio, age, and ethnicity (264 males and 264 females; mean age: 27.73 ± 8.01 years old). The

validation cohort consisted of 860 patients (430 males and 430 females; mean age: 28.34 ± 9.25

years old) and 860 healthy matched controls (430 males and 430 females; mean age: 29.58 ±
7.29 years old). For each patient, the diagnosis of SZ was confirmed by at least two psychiatrists

according to the DSM-IV criteria for paranoid SZ. All healthy volunteers were recruited from

Xinxiang Medical University, Xinxiang city, and surrounding communities and villages by
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posters in Physical Examination Center and hospitals in towns and counties. Any individual

with a personal or family history of mental or neurological diseases was excluded. The controls

were well matched to the patient group for gender ratio (1:1 for both groups), age (F = 0.621,

P = 0.464), and ethnicity (all unrelated, living in North Henan Province, and with all biological

grandparents of Chinese-Han ancestry).

Written informed consent was obtained for all participants. The study was approved by the

ethics committee of the Second Affiliated Hospital of Xinxiang Medical University.

Genotyping

A peripheral blood sample was drawn from each subject into vacutainer tubes containing the

anticoagulant ethylenediaminetetraacetic acid. Genomic DNA was extracted from leukocytes

using the RelaxGene Blood DNA System (Tiangen Biotech., Beijing, China). In the discovery

stage, the genotypes of 35 SNPs in ARHGAP18 were evaluated using the Illumina GoldenGate

assay on a BeadStation 500G Genotyping System (Illumina, Inc., San Diego, CA, USA) accord-

ing to the manufacturer’s instructions.

Validation of specific SNPs, including rs9483050, rs7758025, rs12197901, and rs9492347,

was performed using the TaqMan genotyping method according to the manufacturer’s proto-

col, with allelic discrimination and analysis performed on an ABI Prism 7900 Sequence Detec-

tion System (Applied Biosystems, Foster City, CA, USA). The ABI Taqman probe sequences

are listed in S1 Table. To evaluate the quality of genotyping, 5% of the samples were randomly

selected and re-genotyped. The genotyping consistency rate was more than 98%.

Bioinformatics analyses

All genotype data were examined for cluster separation using Illumina quality scores generated

by the software. Poorly performing SNPs as defined by a GenTrain score< 0.4 or a cluster sep-

aration score < 0.6 were excluded. SNPs were further excluded if controls were not in Hardy

—Weinberg equilibrium. As a genotyping quality control, four SNPs were genotyped in dupli-

cate in 100 samples by DNA sequencing.

Genotypes and allele frequencies in SZ and control subjects were compared using the Hap-

loview V4.1 program with Bonferroni correction to exclude type I errors (including from

other SNPs in the same GoldenGate 384 assay relevant to a different experimental design).

Hardy—Weinberg equilibrium was also evaluated using this program,. The standardized mea-

sures of linkage disequilibrium (LD) coefficients (D0), haplotype frequency, haplotype block,

and haplotype association were assessed using Haploview V4.1.

Allele and genotype counts were compared by the Pearson chi-square test. A power analy-

sis was performed using the Genetic Power Calculator[29]. Genotyping data (include other

SNPs in the same GoldenGate 384 assay relevant to a different experimental design) were

analyzed using the Markov chain Monte Carlo algorithm in Structure 2.3 [30] to generate

population stratification assignments for all individuals. Odds ratios (ORs) and 95% confi-

dence intervals (95% CIs) were calculated to evaluate the effect of different alleles and

haplotypes on SZ risk. The haplotype frequencies were estimated using the expectation

maximization (EM) algorithm.

Results

We selected a total of thirty-five SNPs in ARHGAP18 for genotypic distribution analysis in 528

patients with schizophrenia and 528 healthy controls. All SNPs evaluated demonstrated a

minor allele frequency greater than 5% in the studied samples. Power analysis revealed that the

total sample size (n = 1056) had the power (0.86) to detect a small (r = 0.1–0.23) effects and the

ARHGAP18 SNP in schizophrenia
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power (1.00) to detect both medium(r = 0.24–0.36) and large(r> 0.37) effects on genotype dis-

tributions. The genotype and allele frequencies of these SNPs in patients and controls are

shown in Table 1.

The genotype and allelic frequencies of two SNPs, rs7758025 and rs9483050 displayed sig-

nificant differences between the case and control groups (rs7758025: genotype P = 0.0002;

Table 1. Genotype and allele frequencies of thirty-two SNPs in the ARHGAP18 gene of schizophrenia patients and controls.

SNP# dbSNP ID Allele(D/d)a Patients Controls P-value

nb HWE(P) Genotype MAF nb HWE(P) Genotype MAF

DD Dd dd DD Dd dd Genotype Allele

1 rs6569610 A/T 527 0.931 304 193 30 0.240 527 0.109 293 209 25 0.246 0.524 0.761

2 rs9492347 A/G 528 <0.001 480 41 7 0.052 528 0.821 460 66 2 0.066 0.011 0.167

3 rs6923483 A/G 527 0.451 262 214 51 0.300 527 0.646 279 206 42 0.275 0.458 0.211

4 rs4895852 G/A 527 0.719 178 260 89 0.416 527 0.908 163 259 105 0.445 0.371 0.172

5 rs7758025 G/A 528 0.041 417 99 12 0.116 528 0.213 463 61 4 0.065 0.0002 4.36×10−5

6 rs9385502 G/A 527 0.203 277 218 32 0.268 527 0.305 270 221 36 0.278 0.841 0.591

7 rs9402145 A/G 528 0.445 390 130 8 0.138 528 0.708 388 128 12 0.144 0.663 0.708

8 rs3813366 A/G 527 0.950 139 264 124 0.486 527 0.436 164 252 111 0.450 0.216 0.097

9 rs17057516 A/G 514 <0.001 383 94 37 0.163 512 <0.001 375 106 31 0.164 0.514 0.969

10 rs9483048 A/T 525 0.970 207 245 73 0.372 528 0.671 218 246 64 0.354 0.647 0.385

11 rs11753915 C/A 528 0.852 359 152 17 0.176 528 0.364 338 173 17 0.196 0.370 0.240

12 rs9483050 A/G 528 0.194 379 132 17 0.157 528 0.551 442 81 5 0.086 7.54×10−6 5.98×10−7

13 rs12216321 A/G 525 <0.001 429 72 24 0.114 525 <0.001 428 81 16 0.108 0.344 0.627

14 rs13193932 C/G 528 <0.001 97 388 43 0.449 528 <0.001 80 417 31 0.454 0.099 0.827

15 rs12197901 A/G 528 0.339 364 145 19 0.173 528 0.452 395 121 12 0.137 0.082 0.022

16 rs9388722 A/G 527 0.336 158 251 118 0.462 528 0.296 155 273 100 0.448 0.296 0.514

17 rs10499164 G/A 528 0.011 456 65 7 0.075 528 0.447 445 78 5 0.083 0.438 0.468

18 rs9388723 A/G 527 0.889 288 204 35 0.260 528 0.169 262 229 37 0.287 0.256 0.164

19 rs7765511 A/G 528 0.378 489 39 0 0.037 526 0.924 479 46 1 0.046 0.433 0.316

20 rs12202304 C/A 526 0.995 481 44 1 0.044 528 0.224 475 53 0 0.050 0.393 0.483

21 rs6928167 G/A 527 0.050 160 240 127 0.469 528 0.427 166 252 110 0.447 0.445 0.317

22 rs11968342 G/C 528 0.165 418 107 3 0.107 527 0.863 409 111 7 0.119 0.413 0.400

23 rs10872345 A/G 528 0.507 236 239 53 0.327 528 0.325 251 233 44 0.304 0.503 0.261

24 rs9398917 G/A 528 0.832 323 181 24 0.217 528 0.385 348 165 15 0.185 0.153 0.064

25 rs1476042 C/A 528 0.160 175 244 109 0.438 528 0.524 185 261 82 0.402 0.097 0.103

26 rs11962358 A/G 527 0.417 211 238 78 0.374 527 0.783 191 250 86 0.400 0.432 0.211

27 rs17467757 G/A 527 0.452 400 116 11 0.131 528 0.481 400 117 11 0.132 0.998 0.962

28 rs763132 A/C 527 0.783 191 250 86 0.400 528 0.143 189 240 99 0.415 0.569 0.501

29 rs17057659 G/A 527 0.408 285 200 42 0.269 528 0.396 276 206 46 0.282 0.813 0.512

30 rs6917887 G/A 527 0.924 183 256 88 0.410 528 0.106 173 274 81 0.413 0.554 0.888

31 rs11154495 C/A 527 0.274 242 222 63 0.330 528 0.647 241 228 59 0.328 0.899 0.902

32 rs3752536 G/A 521 0.052 324 164 33 0.221 525 0.859 325 177 23 0.212 0.322 0.643

33 rs17057685 C/A 528 0.323 291 196 41 0.263 528 0.453 272 209 47 0.287 0.480 0.223

34 rs11154496 G/A 528 0.425 446 80 2 0.080 528 0.020 453 68 7 0.078 0.149 0.871

35 rs9402163 C/G 527 0.231 351 153 23 0.189 528 0.676 368 144 16 0.167 0.381 0.183

a Major/minor allele, major and minor alleles are denoted by D and d, respectively.
b Number of samples which are well genotyped.
c the significance of bold values is p<0.05.

https://doi.org/10.1371/journal.pone.0175209.t001
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allele P = 4.36×10-5; rs9483050: genotype P = 7.54×10-6; allele P = 5.98×10-7). In addition,

rs9492347 genotype frequency was associated with schizophrenia (P = 0.011) as was

rs12197901 allelic frequency (P = 0.022). The genotypic distribution of these four SNPs did not

demonstrate significant deviations from Hardy−Weinberg equilibrium in the control group.

We next performed LD analysis using pairs of SNPs to further analyze the haplotype struc-

ture. As shown in Fig 1, Table 2, the LD plot consisted of thrity-five SNPs. Haplotypes GG and

GA in the LD block rs7758025−rs9385502 showed minimal difference between the case and

control groups (P = 0.175 and P = 0.232, respectively), while haplotype AG was strongly associ-

ated with schizophrenia (P = 0.0012, OR = 0.67, 95% CI = 0.48−0.93). These associations

Fig 1. LD structure and the D0 values for the 31 Single Nucleotide Polymorphisms (SNPs).

https://doi.org/10.1371/journal.pone.0175209.g001

Table 2. Haplotype analysis among SZ and controls.

Haplotypea Haplotype frequenciesb χ2 P-valuec OR (95% CI)

Patients Controls

rs7758025–rs9385502

GG 666.6(63.1) 696.4(65.9) 1.837 0.175 1.00

GA 266.4(25.2) 290.6 (27.5) 1.429 0.232 1.06 (0.86–1.30)

AG 106.8(10.1) 66.0(6.3) 10.489 0.0012(0.022) 0.67 (0.48–0.93)

rs11753915–rs9483050

CA 716.8(67.9) 760.6(72.0) 4.323 0.038 1.00

AA 173.2(16.4) 204.4(19.4) 3.138 0.077 1.12 (0.88–1.41)

CG 153.2(14.5) 88.4(8.4) 19.628 9.6×10−6(0.0001) 0.58 (0.44–0.78)

a Haplotypes were omitted from analysis if the estimated haplotype probabilities were less than 5%.
b Frequencies are shown in parenthesis (%).
c P values in the parenthesis were analyzed with 1000 random permutations, Global haplotype association P-value all <0.0001.

https://doi.org/10.1371/journal.pone.0175209.t002

ARHGAP18 SNP in schizophrenia

PLOS ONE | https://doi.org/10.1371/journal.pone.0175209 April 6, 2017 5 / 11

https://doi.org/10.1371/journal.pone.0175209.g001
https://doi.org/10.1371/journal.pone.0175209.t002
https://doi.org/10.1371/journal.pone.0175209


remained following a 1000-times random permutation test (P = 0.022). Haplotype CG in the

LD block rs11753915−rs9483050 was also associated with schizophrenia (P = 9.6×10−6,

OR = 0.58, 95% CI = 0.44−0.78) even after Bonferroni correction (P = 0.0001).

We then re-tested the four ARHGAP18 SNPs associated with schizophrenia in an indepen-

dent validation cohort of 860 patients and 860 controls. In stage 2, the ample size gets a high

power (0.93). As shown in Table 3, both genotype and allelic frequencies of rs7758025 and

rs9483050 SNPs displayed strong associations with schizophrenia in the validation cohort. Of

note, rs9483050 appeared most strongly associated with the disease state across the two

cohorts. In addition, the allelic frequency of rs12197901 remained associated with schizophre-

nia in the combined analysis (P = 0.021), although not in the validation cohort alone

(P = 0.251). The trends observed for the association of rs9492347 with SZ were not confirmed

in the validation cohort or combined analysis.

Discussion

Herein, we describe associations between ARHGAP18 polymorphisms and schizophrenia in a

Chinese Han population. In stage one, we screened SNPs in ARHGAP18 from GWAS data,

and discovered four SNPs, rs7758025, rs9483050, rs9492347 and rs12197901, associated with

schizophrenia. In stage two, we validated our findings in an independent cohort and demon-

strated that rs9483050 is strongly associated with schizophrenia. Our data suggest that allelic

variation in the ARHGAP18 gene may confer vulnerability to SZ in the Chinese Han popula-

tion, providing additional evidence for the involvement of disrupted neurodevelopmental sig-

nals in disease pathogenesis.

Although the detailed molecular events during SZ progression remain elusive, it is widely

accepted that abnormalities in early brain development caused by inherited genetic variants

alter critical developmental and maturational processes, resulting in eventual emergence of

disabling psychoses[31–33]. A plethora of genes have polymorphisms associated with SZ [9,

34–38]. Nevertheless, due to complexity of epidemiology, including ethnicity and disease

Table 3. SNP association analysis for ARHGAP18 in stage 2 and combined sample set.

Stage dbSNP ID Allele(D/d)a Patients Controls P-value

nb HWE(P) Genotype MAF nb HWE(P) Genotype MAF

DD Dd dd DD Dd dd Genotype Allele

1 rs9492347 A/G 528 <0.001 480 41 7 0.052 528 0.821 460 66 2 0.066 0.011 0.167

2 855 0.001 733 110 12 0.078 860 0.009 742 108 10 0.074 0.886 0.664

1&2 1383 <0.001 1213 151 19 0.068 1388 0.045 1202 174 12 0.071 0.196 0.662

1 rs7758025 G/A 528 0.041 417 99 12 0.116 528 0.213 463 61 4 0.065 2.00×10−4 4.36×10−5

2 860 0.006 679 161 20 0.117 860 0.935 714 139 7 0.089 0.013 0.007

1&2 1388 <0.001 1096 260 32 0.117 1388 0.439 1177 200 11 0.080 2.79×10−5 4.28×10−6

1 rs9483050 A/G 528 0.194 379 132 17 0.157 528 0.551 442 81 5 0.086 7.54×10−6 5.98×10−7

2 860 0.002 646 186 28 0.141 860 0.529 709 142 9 0.093 9.20×10−5 1.35×10−5

1&2 1388 0.001 1025 318 45 0.147 1388 0.387 1151 223 14 0.090 1.80×10−9 7.28×10−11

1 rs12197901 A/G 528 0.339 364 145 19 0.173 528 0.452 395 121 12 0.137 0.082 0.022

2 860 0.217 593 236 31 0.173 860 0.67 607 233 20 0.159 0.845 0.251

1&2 1388 0.119 957 381 50 0.173 1388 0.911 1002 354 32 0.151 0.050 0.021

a Major/minor allele, major and minor alleles are denoted by D and d, respectively.
b Number of samples which are well genotyped.

https://doi.org/10.1371/journal.pone.0175209.t003
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subtype, our understanding of disease heritability remains limited and it is likely that many

more SZ susceptibility genes remain to be identified.

ARHGAP18 (6q22.33) lies within a previously reported SZ candidate region (SCR) identi-

fied by Lerer et al [39], in an ethnically homogeneous family-based Arab—Israeli sample [27,

28]. There are 134 genes in this risk region, of which several contain SNPs enriched in sporadic

SZ cases, such as dystrobrevin-binding protein 1 (DTNBP1) and laminin alpha-2 (LAMA2).

Given the large genomic distance spanned and the difference in localization of linkage peaks,

it is possible that this region harbors additional SZ susceptibility genes, one of which may be

ARHGAP18. In fact, there are several reports on the involvement of ARHGAP18 SNPs in

human diseases, including SZ. Recurrent chromosomal imbalances affecting the ARHGAP18
locus were observed in six of nine patients with neurofibromatosis type 1[40]. Also, Potkin

et al. used brain activation pattern during a working memory task as a quantitative trait to

interpret GWAS data and identified ARHGAP18 as a SZ risk gene [27]. Specifically, they found

six SNPs within ARHGAP18, rs12664247, rs4509146, rs11154490, rs2051632, rs17469847 and

rs10484284, with statistically significant relationships in both the discovery and validation

cohorts.

Herein, we used large discovery and validation cohorts to identify the rs9492347,

rs7758025, and rs9483050 SNPs of ARHGAP18 as susceptibility loci for SZ. Our results are

intriguing in several ways. First, these SNPs were not associated with SZ in GWASs interrogat-

ing ARHGAP18, although those studies did not use the sample SNP panel studied here. Also,

the number of included samples in our study is much higher than previous studies on ARH-
GAP18 SNPs. Moreover, our study extends the risk of SZ conferred by ARHGAP18 SNPs from

Western populations to the Eastern Han population.

ARHGAP18 encodes one of approximately 80 RhoGAP proteins [12, 13]. As a RhoGAP,

ARHGAP18 mainly serves as a molecular switch for controlling the balance between active

and inactive Rho proteins to regulate Rho-mediated signaling pathways. Rho GTPases, a pro-

tein family composed of 22 members in mammals, are known as important modulators of the

actin cytoskeleton influencing neuronal morphology and migration [41, 42]. In addition,

Rho GTPases are also reportedly involved in the regulation of growth factor-linked signal

pathways.

Among members of the Rho GTPase family, RhoA is the main molecule responding to

ARHGAP18 regulation. ARHGAP18-knockdown cells demonstrated impaired cell spreading,

premature formation of stress fibers, and sustained activation of RhoA upon cell attachment,

resulting in inhibition of cell migration [25, 26]. Although the neurodevelopmental function

of ARHGAP18 has not been elucidated, numerous studies have suggested a critical role for

RhoA in neurogenesis and maturation [43–46]. Abolishing RhoA activity in the postnatal

stage led to major changes in density and absolute number of neurons in the somatosensory

cortex [47]. Also, deletion of RhoA from neural progenitor cells in mice resulted in abnormal

locomotor behavior [48, 49]. Of note, all three identified SNPs are located in the intron region,

which is common for most top hit SZ-associated SNPs revealed by GWASs. The presence of

these intronic SNPs may regulate ARHGAP18 mRNA splicing in a trans-acting manner,

thereby leading to malfunction of the ARHGAP18−RhoA axis in neurodevelopment.

Conclusion

In summary, our study provides novel data suggesting an association between ARHGAP18

and SZ susceptibility. Replication studies in different ethnic populations, particularly in

patients with defined SZ phenotypes, and more samples, are required to confirm the role of

ARHGAP18 variants in SZ.
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