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Abstract: Corallococcus sp. strain EGB is a Gram-negative myxobacteria isolated from saline soil,
and has considerable potential for the biocontrol of phytopathogenic fungi. However, the detailed
mechanisms related to development and predatory behavior are unclear. To obtain a comprehensive
overview of genetic features, the genome of strain EGB was sequenced, annotated, and compared
with 10 other Corallococcus species. The strain EGB genome was assembled as a single circular
chromosome of 9.4 Mb with 7916 coding genes. Phylogenomics analysis showed that strain EGB was
most closely related to Corallococcus interemptor AB047A, and it was inferred to be a novel species
within the Corallococcus genus. Comparative genomic analysis revealed that the pan-genome of
Corallococcus genus was large and open. Only a small proportion of genes were specific to strain
EGB, and most of them were annotated as hypothetical proteins. Subsequent analyses showed that
strain EGB produced abundant extracellular enzymes such as chitinases and β-(1,3)-glucanases, and
proteases to degrade the cell-wall components of phytopathogenic fungi. In addition, 35 biosynthetic
gene clusters potentially coding for antimicrobial compounds were identified in the strain EGB,
and the majority of them were present in the dispensable pan-genome with unexplored metabolites.
Other genes related to secretion and regulation were also explored for strain EGB. This study opens
new perspectives in the greater understanding of the predatory behavior of strain EGB, and facilitates
a potential application in the biocontrol of fungal plant diseases in the future.

Keywords: myxobacter; comparative genomics; taxonomy; predatory

1. Introduction

Myxobacteria are a type of Gram-negative deltaproteobacteria that are distributed all
over the world [1]. To date, hundreds of isolates of myxobacteria have been cultured from
various natural sources including soil, compost, or trees. Unlike other bacteria, Myxobacte-
ria exhibit several complex social behaviors, and one distinct trait is that their cells move
by swarming or gliding on surfaces for social communication [2]. Once nutrients are
depleted, fruiting bodies are born naked, followed by differentiation into myxospores.
Due to their complex lifecycle, Myxobacteria produce abundant proteins to participate in
signal transduction pathways, so as to coordinate cell–cell communication and regulate
social motility [3]. In addition, myxobacteria prey on other microorganisms including fungi
and bacteria, thus placing myxobacteria at the top of the microbial food chain [4,5]. The
effective predation ability of myxobacteria is thought to rely on macromolecule degradation

Genes 2021, 12, 1421. https://doi.org/10.3390/genes12091421 https://www.mdpi.com/journal/genes

https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes12091421
https://doi.org/10.3390/genes12091421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/genes12091421
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes12091421?type=check_update&version=2


Genes 2021, 12, 1421 2 of 13

enzymes and secondary metabolites [6]. Myxobacteria can produce abundant secondary
metabolites for potential applications as ecological weapons against living microorgan-
isms [7]. Therefore, predatory behavior could make some myxobacteria suitable for the
biological control of plant diseases. Five genera have been described within myxobacte-
ria, and Myxococcus and Corallococcus are the two dominant genera, which possess ten
and twelve species as of 2020 [8]. Among these, Myxococcus xanthus is the best-studied
myxobacterium, and is widely used as an exemplar for the investigation of myxobacterial
biology [9]. In contrast, species within the Corallococcus genus are poorly studied.

In our previous research, Corallococcus sp. strain EGB, a myxobacteria strain isolated
from the soil, exhibited efficient biological control of various phytopathogenic fungi such
as Fusarium oxysporum [10]. Several aspects, including hydrolytic activity and secondary
metabolite, have been investigated to help understand its developmental and antifungal
behaviors. A β-(1,3)-glucanase (lamC) derived from Corallococcus sp. strain EGB, displays
exo-mode activity toward β-(1,3)/(1,6)-linked glucan substrates and endo-mode activity on
β-(1,4)-linked glucan and xylan substrates, and shows lytic and antifungal activity against
the plant pathogen Magnaporthe oryzae [11,12]. Another chitin hydrolase CcCti1 is identified
from Corallococcus sp. strain EGB, and exhibits efficient antifungal activity against rice
blast fungus [13]. Moreover, 32 volatile organic compounds have been identified from
Corallococcus sp. strain EGB, and several compounds, such as isooctanol, could significantly
inhibit the mycelial growth of F. oxysporum f. sp. cucumerinum and Penicillium digitatum [14].
These studies reveal that Corallococcus sp. strain EGB has potential applications in the
control of plant pathogenic fungi; however, the detailed antifungal mechanism is still
poorly investigated.

With the boom in high-throughput sequencing, whole-genome sequencing has been
increasingly used in daily research. The availability of genome sequences not only allows
for the rapid and reliable taxonomic classification of new strains, but also provides deeper
insights into organismal evolution and gene functions [8]. Currently, more than 50 draft
genomes are available for Myxococcus and Corallococcus strains, and the relatively larger
genome size is a feature of Myxobacter [8,15]. These genomes possess several thousand
proteins, many of which are hypothetical proteins. Comparative genomics analyses of
organisms within the Myxococcaceae have clearly demonstrated many novel species, and
Corallococcus genomes could group into two major clades [8,15]. Both the Corallococcus
pan-genome and Myxococcus/Pyxidicoccus pan-genome are large and open, and Myxococ-
cus/Pyxidicoccus spp. genomes are more diverse than those of Corallococcus species [8]. In
both genera, a high number of biosynthetic gene clusters (BGCs) have been identified, and
they are enriched in accessory pan-genomes with potential selective advantages during
predation [8,15].

Here, we describe a novel Corallococcus genome, which displays efficient biological
control of various phytopathogenic fungi. We assembled the chromosome-level genome of
Corallococcus sp. strain EGB, and performed a comparative genome analysis with another
ten species in the genus Corallococcus. The phylogenomics approach was used to confirm the
taxonomic classification of strain EGB. Genes related to secretion, regulation, extracellular
enzymes, and biosynthetic gene clusters (BGCs) were further analyzed to expand the
understanding of the development and predatory behavior of strain EGB.

2. Materials and Methods
2.1. Culturing and DNA Isolation of Corallococcus sp. Strain EGB

Corallococcus sp. strain EGB (CCTCC No. M2012528) was previously isolated from
saline soil, and was cultivated in VY/4 medium (1% yeast cells and 1% CaCl2, PH 7.0, w/v).
Genomic DNA of Corallococcus sp. strain EGB was extracted using the methods described
previously with minor modifications [16].
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2.2. Genome Sequencing, Assembly, and Annotation

The genome of Corallococcus sp. strain EGB was sequenced using a hybrid strategy
that combined the PacBio RS II platform and Illumina HiSeq 4000 platform at the Beijing
Genomics Institute (BGI, Shenzhen, China). The PacBio subreads with lengths smaller than
1 kb were removed first, and the filtered subreads were used to perform self-correction using
the Pbdagcon software, which resulted in corrected reads. After that, the Falcon tool was
performed for genome assembly. To improve the accuracy of the genome assembly, GATK
and SOAP tool packages were used to make single-base corrections. The complete genome
sequence of Corallococcus sp. strain EGB was submitted to the NCBI GenBank with the
accession number CP079946. Gene prediction and functional annotation were performed
by the online platform Rapid Annotation using Subsystem Technology (RAST) [17]. To run
the Clusters of Orthologous Groups (COG) annotation, only the best blast hit was retained
for each protein [18].

2.3. Comparative Genomics Analysis

To conduct a comparative genomic analysis of Corallococcus sp. strain EGB with the
other related bacterial species, the genome sequences of ten species belonging to the genus
Corallococcus were retrieved from GenBank (Table 1). All the predicted protein sequences of
12 selected species were used to perform the all-versus-all blastp analysis with an E-value
of 1 × 10−5 as the cut-off value. Then blast scores were delivered to the MCL Markov
clustering program with an inflation parameter of 2, which resulted in rapid clustering
of orthologous groups [19]. The core proteome was defined as proteins conserved in all
the 11 Corallococcus genomes, and dispensable proteome consisted of proteins present in
2–10 Corallococcus genomes, while unique proteome was defined as proteins that only exist
in the individual genome.

Table 1. Genome properties of Corallococcus species.

Species Strain Genome Size (Mb) %GC Contigs CDS * Number Accession

Corallococcus sp. EGB 9.4 70.4 1 7916 CP079946
C. coralloides DSM 2259 10.08 69.9 1 7952 CP003389.1

C. exiguus NCCRE002 10.54 69.7 8 8283 GCA_017302975.1
C. interemptor AB047A 9.47 70 459 7569 GCA_003668875.1
C. praedator CA031B 10.51 69.7 1491 8176 GCA_003612125.1

C. aberystwythensis AB050A 9.98 70 625 8319 GCA_003612165.1
C. llansteffanensis CA051B 10.53 70.3 1244 8140 GCA_003612055.1

C. sicarius CA040B 10.39 70.2 802 8410 GCA_003611735.1
C. carmarthensis CA043D 10.79 69.9 530 8523 GCA_003611695.1

C. exercitus AB043B 10.26 70.2 690 8102 GCA_013116705.1
C. terminator CA054A 10.35 69.5 863 8454 GCA_003611635.1

* CDS: Coding sequence.

2.4. Phylogenetic Analysis

Whole-genome phylogeny was performed to confirm the taxonomic classification.
Based on the clustering results of orthologous proteins, we randomly selected 135 single-
copy genes, which were conserved in 12 analyzed species. Alignments of concatenated
sequences of 135 single-copy genes were generated by the Muscle algorithm [20], and
then the phylogenetic tree was constructed following the neighbor-joining algorithm with
1000 bootstrap replicates in MEGA7 [21]. The synteny of Corallococcus sp. strain EGB
genome and other bacterial genomes was determined using Blast and Artemis Comparison
Tool (ACT) [22]. The average nucleotide identity (ANI) between genomes was counted
using orthoANI software [23]. The digital DNA-DNA hybridization (dDDH) values were
calculated using the GGDC server with recommended formula 2 [24].
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2.5. Bioinformatics Analyses

Putative secreted proteins of strain EGB were predicted using the SignalP v5 server [25].
Glycoside hydrolases were predicted by running dbCAN tool scans against the Carbohydrate-
Active Enzymes (CAZy) database [26]. To identify peptidases, the protein sequences were
used to perform Blast against the MEROPS database with an E-value cut-off of 1 × 10−5,
and the produced peptidases were grouped based on peptidase family [27]. Biosynthetic
gene clusters (BGCs) of each bacterial genome were predicted using the AntiSMASH v6
server [28].

3. Results
3.1. Genomic Characterization of Corallococcus sp. Strain EGB

The genome of Corallococcus sp. strain EGB was sequenced using a hybrid strategy
that combined sequences from PacBio long reads and Illumina short reads. The genome
was assembled as a single circular chromosome of 9.4 Mb with a high GC content of 70.4%
(Figure 1; Table 1). In contrast to the genomes of 11 reported Corallococcus species, only
C. coralloides strain DSM 2259 had a chromosome level genome that was similar to strain
EGB, while the remaining 10 Corallococcus species only had draft genomes containing
from 8 to 1491 contigs in each genome (Table 1), suggesting that strain EGB had a high-
quality genome in genus Corallococcus. Subsequently, RAST-based annotation identified
7916 coding genes in the strain EGB genome, and 61.5% of the proteins were functionally
annotated, while the remaining 38.5% of the proteins were hypothetical proteins. The
nonrepetitive gene density in the strain EGB genome was 842 genes/Mb with an average
gene length of 1082 bp. By contrast, the genome size and gene number of strain EGB were
slightly smaller than the majority of other Corallococcus genomes (Table 1).

3.2. Strain EGB was Inferred as A Novel Species

In genus Corallococcus, more than ten species were reported. To establish the phyloge-
netic relationship of strain EGB with other related Corallococcus species, the phylogenetic
tree was constructed using the concatenated sequences of 135 single-copy genes, which
were conserved in all the analyzed genomes. The tree clearly showed that Corallococcus
species grouped into two major clades, Group A and Group B (Figure 2A), which was
consistent with previous taxonomy [15]. The strain EGB was located in the larger clade
Group A, and clustered closely with C. interemptor AB047A (Figure 2A). Furthermore, the
alignment of three chromosomal sequences of strain EGB, C. coralloides DSM 2259, and
M. xanthus DK1622 was analyzed using ACT software. The results showed that strain EGB
exhibited high synteny with C. coralloides DSM 2259; however, a relatively poor synteny
with significant rearrangements was clearly observed between the genomes of strain EGB
and M. xanthus DK1622 (Figure 2B).

The average nucleotide identity (ANI) and dDDH values between the above genomes
were calculated. The results showed that ANI values ranged from 85.82% to 94.32% between
the Corallococcus genomes. Notably, strain EGB had higher ANI values (90.79–91.51%) and
dDDH values (41.2–43.7%) with C. interemptor AB047A, C. exercitus AB043B, C. carmarthensis
CA043D, C. aberystwythensis AB050A, C. exiguus NCCRE002, and C. coralloides DSM 2259
(Table 2), which was consistent with the relationship obtained by the phylogenetic tree.
Strains with dDDH values below 70% and ANI values below 95% were considered to be
members of different species [29]. All comparisons of strain EGB and other Corallococcus
genomes gave ANI values below 95% and dDDH values below 70% (Table 2), indicating
that strain EGB was a novel species within Group A of Corallococcus genus.
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Figure 1. Circular representation of the complete genome of Corallococcus sp. strain EGB. The
outermost circle is the coordinate of the genome position. From the outside to the inside, the first
circle represents COG annotation gene distribution of the forwarding strand, colored according to
cluster; the second circle illustrates COG annotation of the reverse strand; the third circle depicts the
ncRNA distribution of the forwarding strand; the fourth circle represents the ncRNA distribution of
the reverse strand; the fifth circle illustrates the repeat; the sixth circle depicts the GC content; the
seventh circle denotes the GC skew.
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M. xanthus DK1622. The red lines in between the genomes represent matching regions, and blue lines
denote inverted matching regions.
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Table 2. ANI and dDDH values for pairwise comparisons between Corallococcus species and M. xanthus DK1622.

dDDH\ANI EGB Cint Cexe Ccar Cabe Cexi Ccor Clla Csic Cpra Cter Mxan

EGB 100 91.19 91.11 90.88 90.79 91.34 91.51 86.63 86.21 86.17 85.83 78.37
Cint 42.4 100 91.29 91.12 91.31 91.72 92.27 86.53 86.3 86.18 85.9 78.35
Cexe 41.9 42.7 100 92.73 92.6 91.56 91.83 87.37 87.03 86.87 86.52 78.43
Ccar 41.5 42.1 47.5 100 92.57 91.62 91.78 87.18 86.87 86.81 86.38 78.41
Cabe 41.2 42.7 47.1 47.6 100 91.55 91.84 87.04 86.73 86.7 86.2 78.41
Cexi 42.4 43.1 43.1 43.6 43.2 100 94.32 86.61 86.13 86.12 85.82 78.15
Ccor 43.7 46.1 43.9 44.4 44.3 54.1 100 86.82 86.46 86.38 85.95 78.25
Clla 30.9 30.8 32.4 32.1 31.7 30.7 31.1 100 93.42 89.27 88.82 78.78
Csic 29.9 30 31.6 31.3 31 29.8 30.2 50.4 100 88.87 88.45 78.65
Cpra 29.9 30.1 31.5 31.4 31 30 30.5 36.6 35.9 100 93.23 78.68
Cter 29.3 29.7 30.8 30.6 30.2 29.4 29.8 35.2 35 49.6 100 78.27

Mxan 21.2 21.3 21.6 21.6 21.5 21.2 21.2 21.7 21.5 21.6 21.2 100

Average nucleotide identity (ANI) values were shown above the diagonal and the digital DNA-DNA hybridization (dDDH) values were
present below the diagonal. Cint, C. interemptor AB047A; Cexe, C. exercitus AB043B; Ccar, C. carmarthensis CA043D; Cabe, C. aberystwythensis
AB050A; Cexi, C. exiguus NCCRE002; Ccor, C. coralloides DSM2259; Clla, C. llansteffanensis CA051B; Csic, C. sicarius CA040B; Cpra,
C. praedator CA031B; Cter, C. terminator CA054A; Mxan, M. xanthus DK1622.

3.3. Corallococcus Pan-Genome Was Large and Open

In order to explore the pan-genome of Corallococcus sp. strain EGB and ten other Coral-
lococcus species, the predicted protein sequences of all these genomes were used to perform
all-against-all Blastp analysis and subsequent ortholog clustering using MCL software.
A total of 10,546 orthologous protein clusters were identified (Supplementary Table S1).
Among these, 4086 clusters were found to be conserved in all the detected Corallococcus
genomes, and were treated as the core proteome for the Corallococcus genus. The core
proteome accounted for 68.9–74.1% of the total proteins in each genome, while 70.5% of
strain EGB proteins belonged to the core proteome (Figure 3A, Supplementary Table S1).
Based on the COG annotation, 10.6% of the core proteome participated in signal transduc-
tion, and 43.4% of the core proteome were responsible for essential biological functions
such as transcription (category K), cell wall/membrane/envelope biogenesis (category M),
amino acid transport and metabolism (category E), translation, ribosomal structure and
biogenesis (category J), lipid transport and metabolism (category I), posttranslational mod-
ification (category O), energy production and conversion (category C), coenzyme transport
and metabolism (category H), and carbohydrate transport and metabolism (category G)
(Figure 3B). Notably, 15.9% of the core proteome could not be attributed to any known
function. Despite the core proteome, around one quarter of the proteins in each Corallococ-
cus genome were defined as the dispensable proteome, which shared an orthology with
two or more genomes, but not in all genomes. These dispensable proteins were enriched
in transcription (category K), mobilome: prophages and transposons (category X), and
cell-wall/membrane/envelope biogenesis (category M) (Figure 3B). Moreover, from 157 to
495 unique proteins were found only in one genome, with no homology in other genomes
(Supplementary Table S1). Of these genomes, EGB contained the largest number of unique
proteins (Figure 3A), and only 18 of the 495 unique proteins could map to diverse COG
categories, while the remaining unique proteins were annotated as hypothetical proteins
with unknown functions, which might be related to adaptation to the specific ecological
niche of strain EGB.
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3.4. Genes Involved in Secretion

Protein secretion has not been well-studied in the Corallococcus genus. To explore the
genomic potential in strain EGB for extracellular functions, the genome-wide identification
of protein secretion systems was undertaken. The Sec and twin-arginine translocation
(Tat) pathways are the most commonly used secretion systems for bacteria to transport
unfolded and folded proteins across the cytoplasmic membrane [30]. In the Sec system,
strain EGB contained all the key proteins except the chaperone SecB, which was dispensable
(Supplementary Table S2). The Tat pathway consisted of three components: TatA, TatB, and
TatC, and all of them were present in the strain EGB genome. Additionally, many other
proteins are secreted through secretion systems numbered Type I through Type VI, with
each system transporting specific proteins [31]. Genome mining showed that the primary
proteins constituting the intact Type I and Type II secretion systems existed in the strain EGB
genome (Figure 4, Supplementary Table S2). We also found two degenerated gene clusters
encoding the Type III secretion system in the strain EGB (Supplementary Table S2), which
was similar to that in M. xanthus. In contrast, the majority of proteins making up Type IV,
Type V, and Type VI secretion systems were lost in strain EGB (Figure 4). An investigation
of other Corallococcus genomes revealed that their distributions of the above secretion
systems were consistent with strain EGB, except for the Type VI secretion system, which
was present in C. llansteffanensis, C. sicarius, C. praedator, and C. terminator, whereas it was
absent in the remaining Corallococcus species. A SignalP analysis showed that strain EGB
possessed 1361 proteins for secretion via the Sec pathway, while 93 proteins were secreted
by the Tat pathway (Figure 4, Supplementary Table S3). In contrast, other Corallococcus
species contained more secreted proteins. These results suggested that strain EGB may
utilize distinct secretion systems for protein transport compared to other Gram-negative
bacteria.
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3.5. Expansion of Microorganism Surface Degrading Enzymes

Corallococcus sp. strain EGB is known to exhibit antifungal activity against numerous
phytopathogenic fungi and, as expected, it would produce various biochemically distinct
extracellular enzymes such as chitinases, glucanases, and proteases to lyse other fungi.
Based on the CAZy annotation, the strain EGB genome contained 62 genes encoding
glycoside hydrolases (Supplementary Table S4), while other Corallococcus species possessed
67–80 glycoside hydrolases. We further focused on specific glycoside hydrolases known
to degrade chitin and glucan, which were the main components of the fungal cell wall.
Strain EGB was reported to show chitinase activity and β-(1,3)-glucanase activity. A total
of 10 chitinases were identified in strain EGB, and they were divided into the two glycoside
hydrolase (GH) families 18 and 19 (Supplementary Table S4). GH18 is a well-known
chitinase family and strain EGB contained six GH18 chitinases, which was similar to the
number in other Corallococcus genomes. Interestingly, we found four GH19 chitinases in
strain EGB, whereas three such chitinases at most were predicted in other Corallococcus
genomes. Phylogenetic analysis showed that one GH18 chitinase and two GH19 chitinases
derived from strain EGB were species specifically expanded (Figure 5A). In addition, the
strain EGB genome contained four β-(1,3)-glucanase-encoding genes belonging to the
GH16 family (Supplementary Table S4), which resemble other Corallococcus species. Nearly
all the identified chitinases and β-(1,3)-glucanases were distributed in the core proteome of
the Corallococcus genus, suggesting that Corallococcus spp. had universal antifungal activity.

Protease is a large family of extracellular enzymes that participate in degrading
components on the surface of the microorganisms. A total of 4.9–5.5% of the total genes
were predicted to encode proteases in the Corallococcus genomes. The strain EGB genome
contained 391 proteases, a slightly fewer than other Corallococcus species. The majority of
identified proteases belonged to serine proteases, followed by metallo proteases (Figure 5B).
These proteases of strain EGB were further classified into 70 families according to the
MEROPS database (Supplementary Table S5). The three largest families, S09, S33, and S01,
comprised 30% of the total proteases. We also identified an M36 metalloprotease with high
similarity to M. xanthus MepA, which enables the extracellular digestion of proteins during
predatory behavior [32].
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3.6. Secondary Metabolite Gene Clusters Are Enriched in the Genome

Corallococcus sp. strain EGB and other Corallococcus species exhibited different antibac-
terial and antifungal activities, indicating that they have different or multiple biosynthetic
gene clusters (BGCs) coding for antimicrobial compounds. A survey of the 11 Corallococ-
cus genomes produced 654 BGCs, and each genome possessed an average of 57 BGCs.
C. llansteffanensis CA051B contained the largest number of 97 BGCs, while strain EGB
had the smallest number of 35 BGCs (Supplementary Table S6). It was noteworthy that
nonribosomal peptide synthetases (NRPS) were the most prevalent BGCs, and each Coral-
lococcus genome possessed an average of 25 NRPS gene clusters. There were also, on
average, 10 hybrid NRPS-T1PKS gene clusters per genome. Compared to other Corallo-
coccus genomes, strain EGB had fewer NRPS (9 BGCs) and NRPS-T1PKS (8 BGCs) gene
clusters (Supplementary Table S6).

Of the 654 predicted BGCs in the Corallococcus genomes, 119 possessed sequence simi-
larities ≥ 50% with annotated BGCs in the antiSMASH database by KnownClusterBlast
analysis, indicating that many predicted BGCs were similar to BGCs producing known
metabolites. All of the 11 Corallococcus contained the BGCs with high similarity to the
carotenoid biosynthetic gene cluster from M. xanthus [33], the BGCs associated with VEPE
biosynthetic pathway from M. xanthus DK1622 [34], the BGCs homologous to the myxoche-
lin A biosynthetic gene cluster from Stigmatella aurantiaca Sg a15 [35], the BGCs similar to
the geosmin biosynthetic gene cluster from Nostoc punctiforme PCC 73102 [36], and BGCs as-
sociated with alkylpyrone-407 biosynthetic gene cluster from Cystobacterineae bacterium [7].
These known metabolites exhibited potent antibacterial or antifungal activities. As well as
the BGCs encoding known metabolites, there was also a high number of unknown BGCs
present in each Corallococcus genome. Of the 35 BGCs identified in the genome of strain
EGB, 28 BGCs were present in part of 10 other Corallococcus genomes, suggesting that a
vast number of BGCs were restricted to specific Corallococcus species. These gene clusters
could be new resources for novel metabolites with antifungal or antibacterial activity, and
an in-depth functional analysis was required to investigate this.

3.7. Genomic Evidence for Signal Transduction and Regulation

Signaling proteins regulate diverse and complex developmental and predatory behav-
iors of Myxobacteria. The main regulatory proteins include serine/threonine (Ser/Thr)
kinases, one-component systems (OCSs), two-component systems (TCSs), and transcrip-
tion factors (TFs). Based on genome mining, a large number of regulatory proteins were
identified in strain EGB and other Corallococcus species (Table 3). The strain EGB contained



Genes 2021, 12, 1421 10 of 13

96 Ser/Thr kinases, which was smaller than other Corallococcus genomes. Interestingly,
22 of the 96 Ser/Thr kinases were predicted to be integral membrane proteins, indicating
that they were involved in sensing external signals. TCS, consisting of a histidine kinase
sensor (HK) and a response regulator (RR), is the dominant sense–response mechanism
to regulate a wide array of physiological pathways. We identified 78 HKs, 139 RRs, and
36 hybrid HKs in the strain EGB. The strain EGB also possessed 60 OCS proteins, which
linked environmental signals to cellular responses. In addition, strain EGB genome en-
coded numerous TFs, including DNA-binding transcriptional regulators and alternative
sigma factors. A total of 51 response regulators, 53 sigma factors, and 156 transcriptional
regulators were identified in the strain EGB, while more TFs were predicted in the majority
of other Corallococcus genomes (Table 3).

Table 3. Variability in the numbers of regulatory genes per genome.

EGB Cabe Ccar Ccor Cexe Cexi Cint Clla Cpra Csic Cter

Ser/Thr kinases 96 106 123 103 112 105 108 113 101 116 106
Two-component
system proteins 289 299 307 303 318 297 284 322 323 312 311

Histidine kinases 146 156 157 160 167 153 151 170 162 167 163
Phosphotransfer

proteins 5 5 3 2 4 2 2 5 7 4 4

Response
regulators 138 138 147 141 147 142 131 147 154 141 144

Transcription
factors 320 322 380 351 353 378 306 344 352 303 334

One-component
system proteins 60 68 86 79 78 84 61 75 69 61 68

Response
regulators 51 42 54 48 47 52 42 46 51 44 50

sigma factors 53 58 58 56 57 56 51 58 56 53 50
Transcriptional

regulators 156 154 182 168 171 186 152 165 176 145 166

4. Discussion

Corallococcus sp. strain EGB has a complex life-cycle, characterized by some social
behaviors, particularly predatory activity. Strain EGB shows excellent biocontrol activity
against various phytopathogenic fungi; however, the underlying mechanisms of these
behaviors are still unclear. The popularization of genome sequencing allows us to uncover
the potential mechanisms for a better understanding of adaptative evolution. In this
study, we reported the complete genome sequence and functional annotation of strain EGB.
Notably, the quality of the chromosome-level genome of strain EGB was significantly better
than that of other Corallococcus genomes.

Due to the similar morphologies and behaviors of Myxobacteria, the taxonomic status
of many Myxobacteria species is unclear. 16S rRNA gene is the most commonly used
method for bacterial taxonomic classification [37]. C. macrosporus was recently reassigned
to the Myxococcus genus. The type strains of C. coralloides and C. exiguus represented only
one species, which was supported by 16S rDNA similarity [38]. Recently, the whole-genome
sequence has been proved to be more reliable and have a greater discriminatory power
than the 16S rRNA gene for taxonomic assignment. Nine species have been verified in
Corallococcus using such a method [15]. Here, we applied three genome-based methods to
confirm the taxonomic status of strain EGB. The phylogenetic tree based on 135 single-copy
genes showed that strain EGB belonged to Group A of Corallococcus genus, and it was
closer to C. interemptor AB047A. A further analysis of dDDH and ANI values revealed that
strain EGB did not exhibit sufficient genomic similarity with existing Corallococcus species.
Thus, strain EGB is supposed to be a novel species, and further phenotypic and biochemical
analyses are required to support this. In general, phylogenomics has surpassed the 16S
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rRNA gene-based method in the field of clarifying the accurate taxonomic classification of
bacteria [39].

As a predatory member, strain EGB is known to produce a vast number of extracellular
enzymes to degrade the cell-wall components of phytopathogenic fungi. Accordingly, the
strain EGB genome contained a repertoire of genes encoding glycoside hydrolases and
proteases. Chitinase is the most commonly reported extracellular enzyme that is widely
distributed in many biocontrol bacteria, such as Pseudomonas and Bacillus species, and
is involved in the biocontrol activity against diver fungi. The strain EGB genome has
10 genes encoding for chitinases. Notably, one chitinase gene CcCti1 was cloned from
strain EGB and exhibited obvious antifungal activity against rice blast fungus. In addition,
five β-(1,3)-glucanase-encoding genes belonging to the GH6 and GH16 families were
identified in the strain EGB genome. One β-(1,3)-glucanase gene lamC deriving from strain
EGB showed degradation activity toward a broad range of β-linked polysaccharides, and
was confirmed to inhibit the growth of M. oryzae [12]. The presence of both chitinases
and β-(1,3)-glucanases in the strain EGB genome supports the antifungal activity of this
myxobacter to attack and degrade the cell wall of plant pathogenic fungi.

In contrast with extracellular enzymes, secondary metabolites have received more
attention. Myxobacter are known to produce abundant secondary metabolites, and some of
these have shown toxic activity to phytopathogenic fungi. In the Corallococcus genus, each
genome possessed an average of 57 BGCs, and strain EGB contained the smallest number of
35 BGCs. Even so, stain EGB had a larger number of BGCs than M. xanthus DK1622. Within
the Corallococcus genus, only a small proportion of BGCs were found to be conserved in
all the analyzed Coralloccus genomes, and most BGCs were present in part of the selected
species. Notably, 28 of 35 strain EGB BGCs were relatively enriched in the dispensable
pan-genome, implying the presence of selective pressures for the evolutionary retention
of BGCs. In contrast to previously characterized BGCs producing named metabolites,
the strain EGB had five BGCs with high similarity to BGCs producing carotenoid, VEPE,
myxochelin A, geosmin, and alkylpyrone-407. Some of these known metabolites have
exhibited potent antimicrobial properties. Most BGCs of strain EGB were not found to be
similar to annotated BGCs, indicating that there is considerable BGC diversity that remains
unexplored. Such BGCs could be new resources for novel metabolites with antifungal
activity, and more experiments are required for further investigation.

In summary, this study describes the genome of Corallococcus sp. strain EGB. Phy-
logenomic analysis exhibits a phylogenetic relationship and the diversity of strain EGB
compared to other Corallococcus species. Further comparative genomic analyses provided
diverse evidence that supported strain EGB as a predatory member. These results should
encourage the further investigation of detailed mechanisms related to complex social
behaviors, especially for predatory activity.
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Glycoside hydrolases encoded by the strain EGB genome. Table S5: Classificaton of the strain
EGB genes encoding proteases by MEROPS database. Table S6: List of secondary metabolite gene
clusters in the strain EGB genome.
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