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Another model not for the learning of language
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It is laudable for Yang and Piantadosi (ref. 1, henceforth
YP) to tackle the important question of how language is
generated and learned. Their reported success in learning a
range of grammars from small amounts of data are striking,
especially since some of these grammars belong to classes
which are provably unlearnable under such conditions (2).
However, their project is severely undermined by their eval-
uation method and by their conception of language.

Following standard machine-learning practice, models
are trained and tested on disjoint sets of data so that
their generalization efficacy can be accurately assessed. YP,
however, tested their model on training data, and more-
over only on its top 25 most probable strings. This cuts
against the very heart of learning: A successful grammar
must extend to novel (and rare) sentences and must also
reject sentences not generated by the grammar. Under YP’s
scheme, a grammar that massively over/undergenerates
would nevertheless be deemed successful as long as its
25 most probable strings match the training target. Even
granting these unconventional methodological choices, YP’s
model fails to learn natural and artificial languages that
humans easily learn. Fig. 1 displays the results of an
n-gram model, a demonstrably inadequate model for
human language (3), on the same data. It can appear
successful—sometimes more successful than YP—under
their evaluation method: a reductio ad absurdum.

YP’s conception of language as strings fails to recognize
that language has internal structures not manifested by
the surface sequence of words. For example, the sentence
“They are flying airplanes” has two meanings: An English
speaker can assign two distinct structures and thus inter-
pretations to the same string (3). Some of the successful
grammars (by YP’s metric) accept a similar set of strings
but assign very different structures to them (see supporting
information in ref. 1). For example, the grammars obtained

by training on a set of toy English sentences (figure 5 of
ref. 1) show no consistency on sentences not used for
training. These results are strikingly at odds with human
language learning: Children form grammars with “a high
degree of uniformity in both the categorical and vari-
able aspects” (4) as revealed by the quantitative study of
language use.

YP’s model transforms candidate hypotheses into prob-
abilistic context-free grammars that are evaluated against
the training data via Bayesian inference. This method was
proposed by Horning over 50 y ago (5). However, as Horning
himself noted, the method is neither psychologically plausi-
ble nor computationally practical, as it needs to enumerate
and evaluate an astronomically large space of grammars.
What is novel to YP is the advancement in computing
hardware: Intractable solutions can now be approximated
even though the model still failed to learn a 35-sentence
fragment of English (6) after 7 d (supporting information in
ref. 1). Hence, we surmise, YP’s disclaimer that “we do not
claim that they [humans] necessarily use the same methods
as our implementation” (ref. 1, p. 9). But if a model for the
learning of language is not for understanding how language
is actually learned, what is it for?
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Fig. 1. The apparent success of an inadequate model: Performance of a trigram model on natural and artificial languages from the published literature; see
figure 2 of ref. 1 for references. Based on YP’s evaluation scheme, the trigram model performs well on several of the languages, even outperforming YP on
some (e.g., ref. 6). “Total P” measures performance of the model against the entire string set rather than just the top 25, which more accurately corresponds
to grammar learning. This is clearest for Saffran, which was designed to be learnable by a bigram model. The n-gram model learns it perfectly but is unfairly
penalized under YP’s evaluation because it generates strings that are in the language but outside the 25 most probable ones. All language data are from
https://github.com/piantado/Fleet.
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