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ABSTRACT Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen repre-
sents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use
different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to
multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae
multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify
new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of
165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources
and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To
complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting
extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially
expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate
ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between
strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly
shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.
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Alcoholic fermentation is exclusively carried out by yeasts and the
process transforms sugar within the grape must into ethanol and
CO,. In this context, a large number of studies have exploited a large
panel of Saccharomyces cerevisiae strains and classified them into two
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groups: domesticated and wild populations (Querol et al. 2003; Legras
et al. 2007; Sicard and Legras 2011; Cubillos et al. 2011). Thorough
phylogenetic analysis revealed four evolutionary lineages (Liti et al.
2009), with many other lineages recently found (G. Liti and J. Schacherer,
personal communication). S. cerevisiae strains show the greatest fermen-
tation capacity in wine-making environments (Torija et al. 2001; Beltran
et al. 2002), mostly because of their high tolerance to ethanol (Arroyo-
Lopez et al. 2010) and production of secondary-end metabolites that
positively contribute to wine character. Yeast needs various nutrients
to perform these complex biochemical transformations, predominantly
nitrogen and carbon sources, which are found in variable concentrations.
Nitrogen represents 6-10% of cellular biomass and is primarily used by
yeast for growth and protein synthesis through a wide variety of
nitrogen-containing compounds. These compounds are present
in natural must and the main examples are ammonium ions (NHJ)
and amino acids. The availability of assimilable nitrogen in musts
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influences the fermentation performance of yeast cells. For example,
musts with low nitrogen concentrations are problematic and gener-
ally lead to sluggish fermentations (Salmon 1989) and the production
of undesirable volatile compounds. Thus, to avoid problematic fer-
mentations due to nitrogen deficiency, winemakers add di-ammonium
phosphate to musts to counterbalance this nitrogen deficit. However, in
winemaking this practice is not systematic, since poor control of the pro-
cedure may cause microbial instability and undesirable effects on the final
sensory profile.

Nitrogen sources can have different impacts on cell development
depending on their classification as preferred or not-preferred sources.
Ammonium, glutamine, glutamate, and asparagine are preferred nitro-
gen sources whereas urea, proline, and allantion are not-preferred
(Magasanik and Kaiser 2002; ter Schure et al. 2000). Yeast preferentially
uses substrates that allow the best growth through a regulation mech-
anism called nitrogen catabolite repression (NCR). This system pro-
motes the expression of permeases for the preferred nitrogen source
and the degradation of permeases of those not-preferred sources
(Magasanik and Kaiser 2002). Thus, during the fermentation process,
yeast cells adjust their metabolism depending on the nitrogen sources
available (Rossignol et al. 2003; Gasch et al. 2000), mostly through TOR
pathway regulation. Indeed, TOR is able to sense the quantity and
quality of available nitrogen sources and, thus, adapt cell metabolism
by regulating the activity of certain systems such as NCR (Pedruzzi et al.
2003; Swinnen et al. 2006).

Previous studies have shown that nitrogen assimilation profiles vary
between strains (Gutierrez et al. 2013; Crepin et al. 2012; Jara et al. 2014;
Brice et al. 2014a; Ibstedt et al. 2015). These different phenotypes result
from the high genetic diversity that exists between strains involving a
large number of allelic variants (Salinas et al. 2016). These variants can
be dissected through QTL approaches (Cubillos 2016). In S. cerevisiae,
several QTL analyses have already focused on identifying the genetic
bases for specific physiological traits such as cell morphology (Nogami
et al. 2007), sporulation (Ben-Ari et al. 2006; Katou et al. 2009), drug
sensitivity (Kim and Fay 2007), flocculation (Brauer et al. 2006), wine
aroma production (Steyer et al. 2012), ethanol tolerance, and growth
(Katou et al. 2009; Nogami et al. 2007; Hu et al. 2007; Marullo et al.
2007; Smith and Kruglyak 2008), together with sulfur assimilation
(Noble et al. 2015). Because of the importance of nitrogen in fermen-
tation processes, preliminary research has been carried out on nitrogen
consumption (Jara et al. 2014; Brice et al. 2014b; Yang et al. 2016). For
oenological strains, variation in nitrogen assimilation profiles are
explained by polymorphisms in genes involved in mechanisms related
to nitrogen signaling (Brice et al. 2014b). Our group previously dem-
onstrated that these variations in nitrogen signaling mechanisms
can also be observed between strains from different lineages [Wine/
European (WE) and Sake (SA)], identifying three genes for which
allelic variation resulted in differences in nitrogen assimilation (Jara
et al. 2014). Two of these genes, GLTI and GDH?2 (a glutamate syn-
thetase and a glutamate dehydrogenase, respectively), belong to the
central nitrogen metabolism pathway. Nevertheless, this study
only involved two different genetic backgrounds and omitted a
larger number of strains derived from different origins that may
have developed independent adaptive responses to nitrogen as-
similation based on the availability of nitrogen compounds in the
distinct environments (Cubillos et al. 2011; Salinas et al. 2012;
Tesniere et al. 2015).

Although biparental crosses have brought fruitful results, their power
is limited to the extent of genetic variation between the two parental
strains and identified QTL can only explain a small percentage of the
total phenotypic variance within the species. Instead, utilizing an
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alternative design incorporating multi-parent mapping populations
has proven successful for the mapping of larger number of QTL in
several popular model organisms, for instance: Drosophila (Long et al.
2014), mice (Bogue et al. 2015; Durrant et al. 2011), and plants (Kover
et al. 2009; Huang et al. 2011). Recently, Cubillos et al. (2013) used this
type of strategy on the yeast model based on a mapping population
obtained from outcrossing four founders representative of the main
S. cerevisiae lineages, denominated SGRP-4X. Given the high genetic
diversity and recombination levels in budding yeast, this type of anal-
ysis has shown the advantage of breaking linkage disequilibrium and
increasing haplotype diversity. Based on these antecedents, we investi-
gated the genetic basis of nitrogen assimilation variation between strains
from various origins by performing linkage mapping in SGRP-4X. We
have combined our QTL approach with a BSR-seq analysis in segregants
exhibiting extremely high and low ammonium consumption levels.
Confirmation by RNA mass sequencing and the identification of
multiple allelic variants demonstrates that this is a successful strategy
for mapping low effect genes.

MATERIALS AND METHODS

Parental strains and SGRP-4X segregants

Haploid parental strains YPS128 (“NA,” Mat a, ho:HygMX, ura3:
KanMX), DBVPG6044 (“WA,” Mat a, ho:HygMX, ura3:KanMX),
DBVPG6765 (“WE,” Mat a, ho::HygMX, ura3:KanMX), and
Y12 (“SA,” Mat o ho:HygMX, ura3:KanMX), together with the
165 SGPR-4X segregants used in this study, were previously described
(Cubillos et al. 2009, 2013). Briefly, to generate SGRP-4X segregants,
North American (NA) and West African (WA) strains (both ura3:
KanMX) were crossed to generate diploid F1 hybrids as well as SA
and WE strains (both lys2:URA3). To confirm successful crosses,
individual colonies were isolated and mating tests using tester strains
Y55-2369 (MATa, hoA, ura2-1, tyri-1) and Y55-2370 (MATa, hoA,
ura2-1, tyrl-1), as well as diagnostic PCR for the MAT locus (Huxley
et al. 1990), were performed. F1 hybrids were replicated onto KAc at
23° for sporulation for 10 d before cells were collected in water, treated
with an equal amount of ether, and vortexed for 10 min to kill
unsporulated cells. After washing the cells in water, they were treated
with Zymolase (10 mg/ml) to remove asci. Cell mixtures were vor-
texed for 5 min to increase spore dispersion. Spores from both crosses
were mixed, grown on YPD, and replica plated on minimal media to
select for successful crosses. This procedure was repeated 11 times to
create the F12 population. Viable spores with correct 2:2 segregations
for the MAT locus, and ura3 and lys2 auxotrophies, were selected. We
picked a total of 192 segregants (some from the same tetrad), out of
which 165 were used in this study. All the strains used in this work
were short-term maintained on YPDA solid media (2% glucose, 0.5%
peptone, 0.5% yeast extract, and 2% agar). Genotypes are described in
Supplemental Material, Table S1 and File S1.

Fermentation and nitrogen assimilation estimation

Fermentations were carried out as previously described (Jara et al. 2014).
Briefly, each individual was fermented in duplicate in synthetic wine
must (SM300) and prepared according to Rossignol et al. (2003).
SM300 was supplemented with a final concentration of 300 mgN/L
of assimilable nitrogen (YAN) corresponding to 120 mgN/L of ammo-
nium and 180 mgN/L of a mixture of 19 amino acids (612.6 mg/L
L-proline, 503.5 mg/L L-glutamine, 503.5 mg/L L-arginine mono-
hydrochloride, 179.3 mg/L L-tryptophan, 145.3 mg/L L-alanine,
120.4 mg/L L-glutamic acid, 78.5 mg/L L-serine, 75.92 mg/L
L-threonine, 48.4 mg/L L-leucine, 44.5 mg/L L-aspartic acid,
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44.5 mg/L L-valine, 37.9 mg/L L-phenylalanine, 32.7 mg/L
L-isoleucine, 50.0 mg/L L-histidine monohydrochloride monohydrate,
31.4 mg/L L-methionine, 18.3 mg/L L-tyrosine, 18.3 mg/L L-glycine,
17.0 mg/L L-lysine monohydrochloride, and 13.1 mg/L L-cysteine).
The strains were initially grown under constant agitation in 10 ml of
SM300 for 16 hr at 25°. Next, 1 x 10° cells/ml were inoculated into
12 ml of SM300 (in 15 ml conical tubes) and incubated at 25°, with no
agitation for 6 d, the stage at which most nitrogen consumption
differences can be observed (Martinez et al. 2013; Jara et al. 2014). After
6 d, 12 ml of synthetic grape must (SM300) were centrifuged at 9000 X g
for 10 min and the supernatant was collected. 20 ul of SM300 were
injected in a Shimadzu Prominence HPLC equipment (Shimadzu)
using a Bio-Rad HPX -87H column according to Nissen et al.
(1997). The concentration of each amino acid was measured using
the HPLC analysis as previously described (Gomez-Alonso et al. 2007).
The consumption of each nitrogen source was estimated as the difference
between the initial and final amounts of each source before and after
fermentation, respectively. Phenotyping results are described in Table S2.

QTL mapping

QTL mapping was performed using the linear mixed effect model, with
QTL effect as the fixed effect and genetic background controlled with a
polygenic random effect as proposed in Bernardo (2013). Indepen-
dently, on each case for the 15 phenotypes tested, QTL presence was
assessed for each of the 99,900 segregating sites identified in Cubillos
et al. (2013) (see Table S1) in the linear mixed model as follows:

Y = XB + XiBi + Zuc + e,

where Y is an nx 1 observation vector of phenotypic value (n = 165,
the number of segregants), X is a #n X m design matrix relating obser-
vations to the mating-type locus and auxotrophic markers LYS2 and
URA3 fixed effects B with B being a m X1 vector (m = 4, the four
combinations of LYS2 and URA3 markers), Xyisanxq design matrix
relating observations to the QTL parental allele fixed effects 3, with
B, being a gx 1 vector (q = 4, the number of segregating parental
alleles), Z is a nxn design matrix relating observations to the nx 1
vector of polygenic additive random effects u, with u ~ N(0, Ac? ),
and e is the nx 1 vector of residual effects with e ~ N(0, Io2). I is an
identity matrix and A is a genomic-based kinship based on segrega-
tion information away from the chromosome to which the position
tested belongs. Coefficients of matrix A were calculated between pairs
of individuals as the proportion of shared parental alleles on the
segregating sites from the remaining chromosomes. At each tested
position k, the linear mixed effect model was estimated by REML
using the R-ASReml package for R, and p-values for the QTL fixed
effect obtained with the Wald test. Vectors of 99,900 p-values were
then adjusted for the false discovery rate (FDR) using R function
p-adjust implementing the method from Benjamini and Hochberg
(1995) and significant associations were retained at adjusted g-values =
0.5. Initially, we used this high threshold as a mean to obtain a greater
number of putative QTL to incorporate a larger number of candidate
genes into our screen. QTL mapping results are shown in Table S3.

RNA-seq data analysis

A total of 16 individuals with extreme phenotypes for ammonium
consumption (eight segregants with high and eight with low consump-
tion levels, Table S2) were fermented. Fermentations were carried out as
previously described in duplicate for each individual for 24 hr. Cultures
were harvested by centrifugation and cells were treated with 2 U of
Zymolyase for 30 min at 37°. RNA was individually extracted for each
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segregant utilizing the E.ZN.A. Total RNA Kit I (OMEGA) according
to the supplier’s instructions. RNA samples were then treated with
DNase I (Promega) to remove genomic DNA traces and total RNA
was recovered using the GeneJET RNA Cleanup and Concentration
Micro Kit (Thermo Scientific). RNA integrity was confirmed using a
Fragment Analyzer. Later, four RNA pools were generated utilizing
equal amounts (1 pg) of RNA per individual: two high levels of ammo-
nium consumption (HLA) and two low levels of ammonium consump-
tion (LLA). Each pool was generated from independent replicates. The
RNA-seq libraries were constructed using the TruSeq RNA Sample Prep
Kit v2 (Illumina). Briefly, mRNA from 1 g of total RNA was enriched
by mRNA purification magnetic beads. Enriched mRNA was eluted and
fragmented at 94° for 5 min. The double-stranded cDNA was acquired
by RT-PCR using the above fragmented mRNA, followed by end repair,
single A base addition, and adapter index ligation. The ligation product
was amplified by PCR. The size of the end product was ~260 bp. The
sequencing was conducted on a HiSequation 2500 (Illumina) in a single
lane for the four samples. Reads are available in the Biosample Data-
base Project #PRJNA379146 with accession codes SAMN06602320,
SAMNO06602321, SAMNO06602322, and SAMN06602323 for HLA-1,
HLA-2, LLA-1, and LLA-2 samples respectively.

Raw reads were first assessed for their quality using the FASTQC tool
kit (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low
quality reads were discarded using the Trimmomatic tool using default
score settings and a phred score cut-off of 30 (http://www.usadellab.
org/cms/?page=trimmomatic). RNA-seq reads were then aligned to the
S288creference [S. cerevisiae genome obtained on 03/03/2016, from the
Saccharomyces Genome Database (SGD), FTP SITE: http://downloads.
yeastgenome.org/sequence/S288C_reference/genome_releases/ corre-
sponding to a stable release from January 2015] utilizing Tophat with
default score settings (Trapnell et al. 2009). BAM files were sorted and
indexed using Samtools with default score settings (Li et al. 2009).
Alignments were then processed and gene counts were attained utiliz-
ing HTSeq (Anders et al. 2015) with the no-stranded and —gene counts
configuration from the S288c gff file. Differential expression was
assessed with DESeq utilizing the nbinomTest function (Anders and
Huber 2010). The results obtained from the DESeq analysis provided
differentially expressed genes between pools with FDR < 0.05. FDR
was estimated utilizing the default Benjamin-Hochberg correction
(Benjamini and Hochberg 1995).

SNP frequencies were estimated by initially extracting SNP data from
the four pools (two HLA and two LLA) utilizing the mpileup tool from
Samtools with —u and -f options together with bcftools view —vcg
options to export and obtain a .vcf file. Only high quality SNPs (at least
10 reads for the reference and alternative nucleotides) present in all four
samples were considered. For this, we utilized the intersectbed tool from
Bedtools filtering out SNPs absent in at least one of the pools (Quinlan
and Hall 2010). Differential SNP frequency was estimated through a
Fisher test using R and corrected using the g-value package with default
options (Storey and Tibshirani 2003; Bass et al. 2015). A FDR < 0.001
was considered in order to obtain << 10 false positive results.

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways enrichment

Differentially expressed genes and SNPs exhibiting significant frequency
differences between pools were used in the DAVID Bioinformatics
Resource (Huang da et al. 2009) to test for a significant enrichment of
genes in pathways in the KEGG. FDR was estimated utilizing the de-
fault option (Benjamini and Hochberg 1995). We selected categories
with a significant overrepresentation utilizing a FDR < 0.05%.
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Candidate gene validation

Genomic regions comprising 15 kb up- and downstream for selected
QTL were examined in the SGD) for candidate genes. The sequences of
the candidate genes were compared between strains utilizing SIFT
analysis (Bergstrom et al. 2014). To validate the presence of a QTL,
we performed a reciprocal hemizygosity assay (Steinmetz et al. 2002)
(Figure S1). The gene URA3 (essential for pyrimidine biosynthesis)
previously deleted in the parental strains (Cubillos et al. 2009) was used
as a selectable marker with some modifications. Briefly, we used haploid
versions of the corresponding parental strains with extreme phenotypes
for the QTL region to delete each target gene and construct all possible
combinations of single deletions. Next, mutated parental strains were
crossed to generate the reciprocal hemizygote strains and selected in
double drugs plates (50 mg/ml Hygromycin B and 100 mg/ml Nour-
seothricin). The diploid hybrid strains were confirmed by MAT locus
PCR (Huxley et al. 1990) and the deletions of the target genes were
confirmed by PCR using the primers pairs A1/S8 or A4/S5 (Salinas
et al. 2012). Nitrogen assimilation profiles between strains were com-
pared using a classical Student’s t-test (p-value < 0.05). Total amino
acid differences were compared through a paired t-test.

Data availability

As stated above, genotype data can be obtained from Table S1. These
genetic marker data were already published before in Cubillos et al.
(2013). Phenotype data are available in Table S2. Gene transcript data can
be obtained from the Biosample Database Project #PRJNA379146 with
accession codes SAMNO06602320, SAMN06602321, SAMN06602322,
and SAMNO06602323 for HLA-1, HLA-2, LLA-1, and LLA-2 samples,
respectively.

RESULTS

Identification of genomic regions underlying nitrogen
consumption differences in SGRP-4X
In order to obtain broader evidence of the genetic basis underlying
nitrogen assimilation differences in S. cerevisiae, we selected a multi-
parent recombinant population for QTL mapping analysis: SGRP-4X
(Cubillos et al. 2013). The four parental founders of this population are
representative of the NA (YPS128), SA (Y12), WE (DBVPG6765), and
WA (DBVPG6044) clusters (Liti et al. 2009). Initially, we inoculated 1 X
10° cells/ml in 12 ml of synthetic wine must (SM300) and characterized
nitrogen consumption preferences in all founder strains after 6 d of
fermentation. The WE isolate was able to consume greater levels of
ammonium compared to any of the other strains (p-value < 0.05,
t-test), as we have previously described (Jara et al. 2014). On the other
hand, SA and WA isolates were able to efficiently consume amino acids
rather than ammonium (Figure 1A), while the NA isolate consumed
the lowest levels of amino acids and ammonium, representing the least
adapted isolate to wine fermentation must. Based on this premise, a
subset of 165 SGRP-4X fully sequenced recombinants were utilized to
identify genetic variants responsible for nitrogen assimilation differ-
ences between strains (Cubillos et al. 2013). Thus, the whole population
was phenotyped for consumption of 14 amino acids as well as ammo-
nium (see Materials and Methods). Transgression levels were found to
be relatively low, with the exception of serine and histidine, with 23.6
and 27.2%, respectively. Most transgressions were positive transgressive
segregants (Table S2), suggesting that combinations resulting in an
improved nitrogen assimilation profile are rare.

Large linkage blocks have historically been the main obstacle when
analyzing complex traits at this experimental scale. A key reason for
using the highly recombinant SGRP-4X population was to incorporate a
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greater genetic diversity and to distinguish and precisely map genes
underlying a QTL within small linkage blocks compared to biparental F1
or F2 populations. Thus, to accurately identify genomic regions re-
sponsible for nitrogen consumption differences, we performed a QTL
mapping strategy utilizing the high-resolution genetic map previously
obtained for SGRP-4X (Cubillos et al. 2013) on the 15 phenotypes
scored during the fermentation process. Each available marker across
the genome (> 100,000 SNPs) was assessed for an association between
the phenotype and parental allele fixed effects. We used a linear mixed
model including correction for polygenic random effects and retained
peaks with an empirical FDR < 0.5 (Cubillos et al. 2013). Overall, we
were able to identify 29 QTL evenly distributed along the genome, aside
from chromosomes I, V, VI, and VIII, which did not map for any QTL.
Based on overlapping intervals, these QTL can be summarized into
26 major QTL regions (QTL1-QTL26), out of which three were present
in more than a single nitrogen source (Table S4). In all cases, these
pleiotropic QTL were found for two related amino acids. For example,
QTL4 mapped for lysine (—logPvalue 12.26, FDR = 0.04) and arginine
(—logPvalue 8.54, FDR = 0.14) traits, both amino acids with positively-
charged side chains. Similarly, QTL10 mapped for phenylalanine
(—logPvalue 14.39, FDR = 0.01) and methionine (—logPvalue 10.1,
FDR = 0.3), two amino acids with hydrophobic side chains. These
findings are in agreement with the phenotypic correlation between
these couples exhibiting significant Spearman correlations (p < 0.05,
Figure S2). On the other hand, arginine and isoleucine showed the
greatest number of QTL with seven and six significant regions in each
case, respectively (Figure 1B).

Validation of candidates based on the QTL

mapping approach

Based on our QTL mapping strategy, we looked for candidate genes for
molecular validation. The majority of the QTL found in this study were
mapped for arginine together with isoleucine; therefore, we focused on
these amino acids for subsequent analysis (Figure 1 and Table S4). Thus,
we examined all these QTL regions to select genes with a potential
function in nitrogen metabolism. Three QTL were identified for argi-
nine where candidate genes were identified. QTL21 mapped for iso-
leucine and peaks at chromosome XIV - 323 kb, which is 15 kb away
from ASI2, a gene that encodes for an inner nuclear membrane protein
and maintains the repressed state of gene expression in the absence of
inducing amino acids (Forsberg et al. 2001). Similarly, QTL19 was
identified in arginine peaks at chromosome XIV - 158 kb near ALP]
and LYPI, two genes encoding for an arginine transporter and lysine
permease, respectively. QTL8 mapped for arginine near CPSI, a vacu-
olar carboxypeptidase-S, shown to be under the influence of NCR and
more particularly by GLN3. Expression of the vacuolar carboxypepti-
dase-S gene in S. cerevisiae is regulated by nutrient availability
(Hofman-Bang 1999).

To determine the impact of the different allelic variants upon
nitrogen consumption for these selected genes, we performed a func-
tional analysis by hemizygotic strain comparison (Figure S1). For each
gene, we selected the two parental strains for which the recombinant
SGRP-4X segregants showed the most important differences in amino
acid consumption for the QTL region implicated, particularly concern-
ing arginine consumption for LYPI, CPS1, and ALPI genes, and iso-
leucine consumption for ASI2. In this way, the screening allows
selection of the most appropriate parental strains for the cross and gene
validation. The hybrid WE X SA was used to study CPS! for which
segregants with the molecular markers originating from the WE back-
ground showed greater consumption levels for arginine compared to
the SA strain. For the other three genes, ALPI, LYPI, and ASI2, we
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Figure 1 QTL Mapping in SGRP-4X. (A) Ammonium
and amino acid total YAN consumption in parental
strains. Student’s t-test was performed between the
WE isolate and the other strains; * p-value < 0.05,
* p-value < 0.01, and *** p-value < 0.001. (B) Plot
produced by QTL scan using Wald test for Arginine in
the SGRP-4X population. The y-axis shows the p-value
(-log10 scale) for the effect of a QTL along the chromo-
somes (x-axis), which are shown in different colors. Dot-

ted line denotes cut-off FDR < 0.5. FDR, false discovery
rate; ns, not-significant difference; QTL, quantitative
trait loci; WE, Wine/European; YAN, assimilable nitrogen.

A ns
100 o
80
B
=
pd
g 40
20
0
& )
o XeS
(‘\‘O(\\ 00\
& &
¥ v_é\
Nitrogen Source
B Arginine
o _| 1
+e]
[}
e
g o
a
[=2]
o
<
™ rt
o ol
[ I 1 I T 1 I I I I I
1 3 4 5 7 8 10 12 13 14 15
Chromosome

chose the WE x WA hybrid, for which the identification of molecular
markers show a greater consumption of arginine, isoleucine, and tyro-
sine in the WE parental strain. Each cross included two allelic versions
of the selected gene, one parent bearing an inactivated form and the
other parent containing a functional form (Figure S1).

For the four genes tested, the comparison of residual amino acids
revealed a statistically significant difference in YAN consumption for
some amino acids (Table S5). Reciprocal hemizygosity analysis for
ALP1 showed that ALPIWE (reciprocal hemizygote carrying the WE
allelic variant) conferred a higher consumption capacity for arginine,
tyrosine, and phenylalanine, with a difference consumption of 17.1, 5.4,
and 2.9%, respectively, between the two hemizygote constructions
(p-value < 0.05, t-test, Figure 2A). These results are in agreement with
the phenotype found in the SGRP-4X segregant population. The same
findings apply for ASI2, with a greater consumption of glutamic acid,
arginine, and phenylalanine sources (6.7, 17.3, and 4%, respectively)
and marginally significant for isoleucine (p-value = 0.07, t-test), in the
WE allelic variant compared to the WA background (Figure 2B). Con-
cerning LYPI, the hybrid containing the WE allele provided a better
arginine and lysine consumption capacity with a 37.5 and 1.8% differ-
ence between the two hemizygotes (Figure 2C). CPS! is the only gene for
which the assessment of amino acid consumption between hemizygotes
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is different compared to the other genes. The allelic variant from the WE
background showed significantly higher arginine consumption levels
(equivalent to 19.5%), compared to the allele originating from SA; how-
ever, the CPS154 reciprocal hemizygote showed greater tryptophan con-
sumption levels (Figure 2D) equivalent to 2.6%, likely due to a
compensation effect. Overall, these results demonstrate the role of these
four genes in the YAN consumption phenotype and validate the power
of the SGRP-4X multi-parent population to identify small-effect allelic
variants.

BSR-Seq identifies additional candidate genes

Ammonium represents the main nitrogen source in wine must; there-
fore, in order to identify additional genetic variants underlying ammo-
nium consumption differences, we utilized a BSR-Seq approach as a
means to complement the QTL mapping strategy. We separately
fermented eight individuals (in duplicate) that exhibited HLA consump-
tion in the first round of fermentations and another eight with LLA
(Figure 3 and Table S2). RNA was obtained after 24 hr of fermentation
and four pools from each individual replicate were generated (two HLA
and two LLA pools), which were sequenced through an Illumina
HiSeq2500 platform (Figure 3A). We estimated differential expression
between pools utilizing the DEseq package and found 725 genes
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Figure 2 Reciprocal hemizygosity analysis on ALP1, LYP1, ASI2, and CPST mapped through a QTL approach. The hybrid hemizygote strains
consumption levels (mg/L) are shown. *, **, and *** represent a significant statistical difference between the hemizygote strains for the same gene
using a t-test; * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. Reciprocal hemizygotes for (A) SA and WE ALP1, (B) ASI2 WA and WE,
(C) LYPT WA and WE, and (D) CPS1 WA and WE. A/WE denotes hemizygotes carrying the WE allele, while XX/A denotes hemizygotes carrying the
alternative allele. QTL, quantitative trait loci; SA, Sake; WA, West African; WE, Wine/European.

differentially expressed at a 0.05 FDR (Table S6), with 491 genes
expressed significantly higher in HLA compared to LLA and 234 vice
versa.

Subsequently, we utilized the KEGG database to determine what
pathways could be enriched within this subset of genes. We found several
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implicated fermentation-related pathways associated with the differ-
ences found between pools, representing interesting candidates for gene
validation (Figure 4B and Table S7A). Among others, we found carbon
metabolism-related traits such as “glycolysis” and “citrate cycle (TCA
cycle)” together with nitrogen metabolism traits such a: “phenylalanine,
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tyrosine, and tryptophan biosynthesis” and “alanine, aspartate, and
glutamate metabolism,” with 10 and 12 genes, respectively, the majority
of which were upregulated in the HLA pool. Indeed, these HLA segre-
gants showed greater CO, release levels (Figure 3C), finished the fer-
mentation earlier, and consumed 5.4 times more ammonium than LLA
segregants, demonstrating their greater fermentation capacity due to
their higher consumption ability (Figure 3D).

Within each pathway, several genes emerged as causative candidates
for the consumption differences between individuals. To help us elucidate
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Reads’ Alignment

Figure 3 BSR-Seq experimen-
tal approach. (A) Experimental
strategy followed to obtained
mRNA counts and SNP frequen-
cies from HLA and LLA pools. (B)
Pathways enriched (FDR < 5%)
in genes differently expressed
between pools. (C) CO; lost (g/L)
in HLA (black) and LLA (dotted gray
lines) pools. SDs are shown for
each measured time-point. (D)
Nitrogen consumption (mgN/L)
in HLA (black) and LLA (gray)
pools after 6 d of fermentation.
* p-value < 0.05, ** p-value < 0.01,
and “** p-value < 0.001. BSR-seq,
Bulk segregant RNA-sequencing;
FDR, false discovery rate; HLA,
high levels of ammonium consump-
tion; LLA, low levels of ammo-
nium consumption; SNP, single
nucleotide polymorphism.

Ammonium

s

causative genes and increase the power of our study, we initially focused the
analysis on differentially expressed genes within nitrogen-related pathways
such as: “phenylalanine, tyrosine, and tryptophan biosynthesis” together
with the “alanine, aspartate, and glutamate metabolism” pathways and
cross-referenced this data with the QTL mapping results. Moreover, to
augment the likelihood of finding common regions, a p-value < 107
(—logPvalue > 6) was used for all phenotypes. Eight genes present in both
datasets were found (Table S7B). Interestingly, AROI, which encodes for a
protein involved in chorismate biosynthesis (a precursor of aromatic
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amino acids), represents a good candidate since it emerged with a
p-value < 1077 in the QTL mapping approach for ammonium and is
upregulated in the HLA pool with respect to the LLA pool (0.82 log,-fold
change). Similarly, HIS5, which encodes for a histidinol-phosphate ami-
notransferase and is involved in the general control of amino acid bio-
synthesis, showed a p-value < 1072 for isoleucine and is upregulated in
HLA. Altogether, these RNA-seq results complement the QTL mapping
approach and provide relevant genetic and biological insights toward
the understanding of nitrogen source preferences and niche-ecological
adaptation.

Identification of SNPs highly enriched in pools

of segregants

The BSR-seq approach enables the finding of differentially expressed
genes between pools, but also allelic variants highly represented at the
RNA level. These variants could be present because of allele enrichment
in the pool of segregants or due to differences in expression levels, which
consequently affect allele frequency distribution. In order to identify
SNPs enriched within either pool that could be associated with the
ammonium trait and find an additional set of genes that could com-
plement the previous findings, we looked for single variants (utilizing
samtools) by comparing the reads to the reference assembly (S288c).
Overall, we identified 29,934 SNPs found in all four pools (HLA and LLA
in duplicates), out of which only SNPs that were present in at least
10 reads within each pool were considered (Table S8). Next, we com-
pared allele frequency ratios (#references/#alternative reads per nucle-
otide) between HLA and LLA pools through a Fisher exact test (Figure
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S3). A total of 2231 SNPs were found to be differentially represented
between pools at a 0.001 FDR (< 2.2 false positives expected by
chance). These SNPs belonged to 1460 genes and KEGG pathways
analysis indicated that many are part of fermentation relevant traits
(Table S9). Examples include: “Biosynthesis of secondary metabolites”
(FDR = 0.0078) and “Biosynthesis of amino acids” (FDR = 0.01),
extending the repertoire of functional variants for molecular validation.
In this context, PDCI, a pyruvate decarboxylase that represents a key
enzyme in alcoholic fermentation, was found within several of these
pathways where the WE variant is highly represented in the HLA pool
with respect to the LLA pool (Figure 4A, FDR = 10~14), and could
partly explain its adaptation and affinity for ammonium consumption.

Consequently, we generated bulk expression frequency ratios be-
tween pools (HLA/LLA) and found 626 genes with ratios > 5 in either
direction (335 HLA > LLA and 291 for LLA > HLA, respectively).
Among those genes exhibiting extreme HLA/LLA ratios, we found
GSF2, an integral membrane protein that may promote secretion of
certain hexose transporters (Figure 4B). Moreover, the WE variant is
highly represented in the HLA pool, suggesting a greater fermentation
capacity of this allelic variant.

Candidate validation derived from BSR-seq analysis

Allelic variants that emerged from our BSR-seq analysis were evaluated
through reciprocal hemizygosity. AROI, which encodes for a multi-
functional enzyme involved in amino acid metabolism was found
within a marginally significant QTL for ammonium at position
IV.713 (—logPvalue = 6.94) and differentially expressed between pools
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(Table S6), where the SA allele was overrepresented in the LLA pool.
Thus, we chose to use the WE X SA cross since the WE genotype was
enriched in those SGRP-4X segregants exhibiting high ammonium
consumption levels. Molecular validation in reciprocal hemizygotes
demonstrated phenotypic differences for four amino acids (glutamic
acid, tryptophan, leucine, and isoleucine) between allelic variants. In-
terestingly, glutamic acid and leucine were highly consumed by
AROI54, while the aromatic amino acid tryptophan and the nonpolar
isoleucine were preferentially assimilated by AROI™E, in agreement
with the “phenylalanine, tyrosine, and tryptophan biosynthesis” KEGG
pathway findings (Figure 5A and Table S7). In contrast, we did not find
differences for ammonium ion consumption, suggesting that AROI
might not be a direct causal factor for differences for this nitrogen
source, but rather an intermediate with consequences upon the con-
sumption of other sources.

Similarly, PDCI, a pyruvate decarboxylase, was chosen based on
allelic frequency differences between HLA and LLA pools and its role in
several overrepresented pathways (Table S9). In this case, the WE X NA
hybrid was evaluated given the high frequency of the WE allele in the
HLA pool. Reciprocal hemizygotes for PDCI showed statistically sig-
nificant differences for tryptophan and tyrosine (p-value < 0.05, ¢-test),
but not for ammonium as might have been expected (Figure 5B). In this
case, PDCI™E showed a 6.2 and 13.1% greater consumption level for
tryptophan and tyrosine, respectively.

DISCUSSION
The utilization of biparental crosses has been the main strategy utilized
for QTL mapping and the identification of regions underlying complex
traits, mostly because the limited number of sequenced strains has
impeded other approaches (for example genome-wide association
studies) (Liti and Louis 2012; Cubillos 2016). However, in most cases,
mapped regions are limited to a few hotspots, such as: HAPI, MKT1I,
IRA1, and IRA2 (Ehrenreich et al. 2009; Wang and Kruglyak 2014;
Breunig et al. 2014). This is likely due to the utilization of a small set
of biparental crosses between laboratory and wine domesticated strains,
where a few polymorphisms have significant effects upon a wide set of
phenotypes. In this context, the need for a greater panel of strains to un-
derstand the ecology, biology, genetics, and evolution of S. cerevisiae is vital.

To overcome the power limitation of genetically restricted biparental
crosses, we previously reported the generation of SGRP-4X. This
S. cerevisiae mapping population was obtained by outcrossing four foun-
ders representative of the main lineages for 12 generations (Cubillos et al.
2013; Burke et al. 2014), and contains 165 segregants with fine-grained
mosaic genomes that have been sequenced for linkage mapping studies.
We took advantage of the enormous sequence diversity of this popula-
tion to unveil a greater number of genetic variants underlying nitrogen
consumption differences between wild strains from different origins.
Nitrogen consumption traits are important since: (i) nitrogen is an es-
sential nutrient for any kind of fermentation, (ii) consumption profiles
are genetically determined at the beginning of the fermentation process,
and (iii) preferences are generally strain-dependent (Fleet 2003, 2008).
Previous studies utilizing the four parental strains used in this study (and
others) clearly demonstrate that natural strains vary greatly in their
capacity to use nitrogen sources, likely due to differences in nitrogen
metabolism, pathways, and more precisely in Ssyl-Ptr3-Ssy5 (SPS) and
NCR systems between strains (Ibstedt et al. 2015; Crepin et al. 2012).
These differences could be explained as an adaptive response to a specific
nitrogen environment, particularly for the strains that have been isolated
from a wide range of conditions (Liti et al. 2009).

In this study, we were able to extend the number of reported variants
known to influence nitrogen consumption and specifically demonstrate
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that allelic variants in four candidate genes, mapped within three QTL
forarginine, had an impact on YAN consumption performances (Figure
4). Our findings demonstrate that all tested genes have a mild, but
significant effect on nitrogen assimilation. This can be explained by
the extreme complexity of this population, with many allelic variants
from different genetic backgrounds interacting within a single individ-
ual, buffering large effect alleles, and minimizing their impact upon
phenotypes. Classical QTL mapping studies in yeast using two-parent
crosses identify a few large effect loci per trait, missing small effect QTL
(Bloom et al. 2015), complex gene-gene interactions (Ono et al. 2017),
and a great fraction of pathways’ response programs (Gutin et al. 2015),
which altogether shape an individual’s phenotype. Our results validate
the role of several genes in arginine consumption and their likely allele-
allele interactions with a functional compensation, difficult to detect in
quantitative genetic and genomics studies utilizing two-parent crosses.
Interestingly, ammonium jon consumption was unaffected by the
inactivation of the four alleles (Table S5), likely explained by the fact that
ammonium ions are transported by three specific MEP permeases,
namely Meplp, Mep2p, and Mep3p (Marini et al. 1994, 1997), which
were not mapped in our study. For three of the four genes, allelic
variants with a positive effect on amino acid consumption belong to
the WE genetic background, in agreement with the fact that this pa-
rental strain presents the highest YAN consumption and demonstrat-
ing that it likely possesses a selective advantage for oenological
conditions. In this context, the WE background may have evolved a
series of mechanisms and pathways to enforce the consumption capac-
ity of overrepresented nitrogen sources (i.e., ammonium, glutamine,
and arginine) within wine must. Indeed, the BSR-Seq strategy demon-
strated that carbon source assimilation pathways and nitrogen metab-
olism were significantly overrepresented in WE allelic variants and
differentially expressed compared to other allelic backgrounds, dem-
onstrating the underlying molecular mechanisms behind the greater
fermentation profile in HLA segregants (Table S7 and Table S9). Dif-
ferences in assimilation profiles and adaptation mechanisms could be
driven by the availability of nitrogen sources within each strain’s niche.
These key elements interact to determine ecological relationships be-
tween nutrient sources and strains’ adaptation capacity. In this context,
a series of genomic changes have been associated with niche adaptation
in wine yeast strains, such as SSUI (a sulfite-nitrite pump) transloca-
tions related to sulfite resistance and copy number variation of CUP-1
(encoding a copper-binding metallothionein) implicated in elevated
copper tolerance (Warringer et al. 2011; Marsit and Dequin 2015).
The comparison of the RNA-seq results and cross information with
the QTL mapping strategy provided a set of genes enriched for metabolic
pathways that could explain how strains were able to evolve and adapt to
their preferred nitrogen sources and partly explain ecological differen-
tiation. In particular, through RNA-seq, we were able to identify PDCI
and AROI as candidate genes. PDCI is a pyruvate decarboxylase
Kellermann et al. (1986). This enzyme has a key role in the glycolytic
pathway, which is essential for directing the glucose flux to ethanol
production (Williamson et al. 1980). Coupled with two other decar-
boxylase proteins, Pdc5p and Pdc6p, Pdclp contributes to the catabo-
lism of branched amino acids (isoleucine and valine) and aromatic
amino acids (phenylalanine and tryptophan) (Dickinson et al. 2003).
In our study, we found assimilation differences between PDCI allelic
variants for tyrosine (Table S5). Likewise, AROI was found to underlie
differences for several amino acids (Figure 5A). This gene encodes for
an enzyme involved in the biosynthesis of aromatic amino acid pre-
cursors playing a central role in the superpathway of phenylalanine,
tyrosine, and tryptophan biosynthesis (Duncan et al. 1987). Most of the
genes encoding for the aromatic amino acid biosynthetic enzymes are
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Figure 5 Reciprocal hemizygosity analysis on PDC7 and ARO1 genes mapped through BSR-seq approach. The hybrid hemizygote strains
consumption levels (mg/L) are shown. *, **, and *** represent a significant statistical difference between the hemizygote strains for the same
gene using a t-test; * p-value < 0.05, ** p-value < 0.01, and *** p-value < 0.001. Reciprocal hemizygotes for (A) NA and WE PDC1, and (B) ARO1
WA and WE. A/WE denotes hemizygotes carrying the WE allele, while XX/A denotes hemizygotes carrying the alternative allele. BSR-seq, Bulk
segregant RNA-sequencing; NA, North American; WA, West African; WE, Wine/European.

regulated by the transcriptional activator Gen4p which is a key player of
the TOR pathway. Gendp participates in the regulation of the metabolic
pathway GAAC (Hinnebusch and Fink 1983) and is potentially in-
volved in the regulation of the NCR pathway (Tesniere et al. 2015).
Besides its association with the TOR pathway, it was demonstrated that
mutations within AROI can cause the accumulation of intermediate
metabolites (Lucchini et al. 1978) and disrupt the biosynthesis of cer-
tain amino acids. This disruption of the intracellular nitrogen pool
could have repercussions on TOR sensing and signaling.

The QTL mappingstrategy provided another set of genes thatarealso
related to the TOR, SPS, and NCR pathways. ASI2is involved in the SPS
signaling pathway through the transcription factor Stp1p (Zargari et al.
2007). Asi2p acts in a multi-protein complex together with Asilp and
Asi3p to ensure the control of the transcription factors Stplp
and Stp2p, regulating the stability of the SPS sensor system (Omnus
and Ljungdahl 2014). In S. cerevisiae, the SPS signaling pathway enables
cells to respond to the presence of extracellular amino acids and induce
their uptake rate (Ljungdahl and Daignan-Fornier 2012). It is well
known that the SPS system is upregulated at the beginning of the
fermentation process (Ljungdahl 2009), suggesting that variation in
Asi2p could modulate the SPS activity, resulting in gene expression
differences associated with this system and impacting amino acid as-
similation. On the other hand, LYPI encodes for a lysine permease
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whose activity is regulated by the SPS pathway. Lysine is an important
amino acid for yeast nitrogen metabolism and fermentation perfor-
mance (Lei et al. 2013), and the identification of allelic variants of
LYPI supports the hypothesis of variation in SPS activity between
parental strains. Our findings correlate well with this previous work,
which demonstrated that lysine supplementation improves the expres-
sion of SPS-regulated genes, suggesting a fine modulation of the SPS
system for the detection of extracellular amino acids. We were also able
to validate the role of ALPI, encoding for an arginine transporter
controlled by the NCR system. The nitrogen environment changes
during fermentation, and yeast cells need to readapt their nitrogen
metabolism (Tesniere et al. 2015). To achieve this, the NCR system is
regulated by TOR activity, and previous studies have demonstrated
that strains can have differences in TOR that impact their capacity
to ferment (Brice et al. 2014a). Interestingly, LYPI and ALPI have
high sequence homology and are adjacent (separated by 881 bp)
(Sychrova and Chevallier 1994). However, they are controlled by two
distinct nitrogen regulation mechanisms (SPS and NCR, respectively),
demonstrating the architectural complexity of the phenotype. Similarly,
we validated the role of CPSI, which encodes a permease involved in
the degradation of proteins into amino acids, to provide nitrogen sour-
ces for the cell (Hofman-Bang 1999). Expression of CPSI is under the
influence of NCR and more precisely the transcription factor Gln3p
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(Bordallo and Suarez-Rendueles 1993), which is in agreement with
NCR being upregulated in the presence of arginine (Godard et al
2007). Changes in CPSI activity can perturb the equilibrium of the
nitrogen pool, impacting the TOR pathway and affecting NCR activity
together with YAN consumption (Tesniere et al. 2015). In connection
with these results, the pyruvate decarboxylase activity of Pdcl is regu-
lated by the protein phosphatase, Sit4p, which is also an important
component of the TOR pathway. Sit4p is likewise involved in the reg-
ulation of the NCR system through GIn3. PDCI is a known candidate
for regulation of fermentative activity (de Assis et al. 2013) and it is very
likely that, in our study, variation in PDCI gene expression constitutes a
marker determining the fermentative efficiency of a strain. This is co-
herent with the overexpression of PDCI in the WE parental strain
(HLA pool), which is consistently the most suitable strain in the oeno-
logical fermentation environment. We can, thus, claim that, under
oenological conditions, the WE strain shows the best capacity to use
some of the available amino acids through the modulation of the TOR
pathway sensing system.

Conclusions

In this study, we identified a series of QTL and candidate genes through
an integrative QTL-mapping-BSR-seq approach utilizing a complex
AIL multi-parent population denominated SGRP-4X. The causal var-
iants for CPS1, LYPI, ALP1, and ASI2 are responsible for mild nitrogen
assimilation differences for arginine, demonstrating how complex
multi-parent populations can untangle small effect sources of natural
variation. Our molecular validation demonstrates the role of several
genes, which can confluence through multiple molecular mechanisms
with significant effects on nitrogen assimilation, gene expression dif-
ferences, and wine fermentation. In this context, these results support
variations in nitrogen signaling pathways, and more precisely in SPS
and NCR as the main systems responsible for differences in YAN
consumption between strains from various origins. The SPS and
NCR systems are key factors controlling nitrogen consumption and
are highly conserved in S. cerevisiae (Crepin et al. 2012). In contrast,
nitrogen metabolism regulation differs between strains (Gutierrez et al.
2013; Brice et al. 2014a; Jara et al. 2014), and variations in these systems
could be linked to differences in the specific nitrogen environments
causing ecological differentiation of these strains. Our results provide
evidence of the molecular changes leading to niche adaptation with
important implications for evolution and quantitative genomics in yeast.

ACKNOWLEDGMENTS

This work was supported by grants from the Comisién Nacional de
Investigacion Cientifica y Tecnoldgica (CONICYT) Fondo Nacional
de Desarollo Cientifico y Tecnoldgico (FONDECYT) (grants 11140097
to F.A.C, 1150522 to C.M.,, 3150159 to C.B., and 11130148 to V.G;
Millennium Nucleus in Fungal Integrative and Systems Biology
(MN-FISB) grant 120043 to F.A.C., Programa de Cooperacion Cientifica
ECOS/CONICYT (C13B02) to FA.C, CM, and GL; and Proyecto
Basal USA 1555 - Vridei 021771CR_CONT Universidad de Santiago
de Chile.

LITERATURE CITED

Anders, S., and W. Huber, 2010 Differential expression analysis for se-
quence count data. Genome Biol. 11(10): R106.

Anders, S., P. T. Pyl, and W. Huber, 2015 HTSeq-a Python framework to
work with high-throughput sequencing data. Bioinformatics 31(2): 166-169.

Arroyo-Lopez, F. N., Z. Salvado, J. Tronchoni, J. M. Guillamon, E. Barrio
et al., 2010 Susceptibility and resistance to ethanol in Saccharomyces
strains isolated from wild and fermentative environments. Yeast 27(12):
1005-1015.

-=.G3:Genes| Genomes | Genetics Volume 7

Bass, J., A. Dabney, and D. Robinson, 2015 qvalue: Q-value Estimation for
False Discovery Rate Control. R package version 2.6.0. http://github.com/
jdstorey/qvalue. Accessed: November 1, 2016.

Beltran, G., M. J. Torija, M. Novo, N. Ferrer, M. Poblet et al., 2002  Analysis
of yeast populations during alcoholic fermentation: a six year follow-up
study. Syst. Appl. Microbiol. 25(2): 287-293.

Ben-Ari, G, D. Zenvirth, A. Sherman, L. David, M. Klutstein et al.,

2006 Four linked genes participate in controlling sporulation efficiency
in budding yeast. PLoS Genet. 2(11): e195.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Stat. Soc. B 85:
289-300.

Bergstrom, A., J. T. Simpson, F. Salinas, B. Barre, L. Parts et al., 2014 A
high-definition view of functional genetic variation from natural yeast
genomes. Mol. Biol. Evol. 31(4): 872-888.

Bernardo, R., 2013 Genomewide markers as cofactors for precision map-
ping of quantitative trait loci. Theor. Appl. Genet. 126(4): 999-1009.

Bloom, J. S., I. Kotenko, M. J. Sadhu, S. Treusch, F. W. Albert et al.,

2015 Genetic interactions contribute less than additive effects to
quantitative trait variation in yeast. Nat. Commun. 6: 8712.

Bogue, M. A,, G. A. Churchill, and E. J. Chesler, 2015 Collaborative cross
and diversity outbred data resources in the mouse phenome database.
Mamm. Genome 26(9-10): 511-520.

Bordallo, J., and P. Suarez-Rendueles, 1993 Control of Saccharomyces
cerevisiae carboxypeptidase S (CPS1) gene expression under nutrient
limitation. Yeast 9(4): 339-349.

Brauer, M. J., C. M. Christianson, D. A. Pai, and M. ]. Dunham, 2006 Mapping
novel traits by array-assisted bulk segregant analysis in Saccharomyces
cerevisiae. Genetics 173(3): 1813-1816.

Breunig, J. S., S. R. Hackett, ]. D. Rabinowitz, and L. Kruglyak, 2014  Genetic
basis of metabolome variation in yeast. PLoS Genet. 10(3): e1004142.
Brice, C.,, L. Sanchez, F. Bigey, J. L. Legras, and B. Blondin, 2014a A genetic
approach of wine yeast fermentation capacity in nitrogen-starvation re-

veals the key role of nitrogen signaling. BMC Genomics 15: 495.

Brice, C,, L. Sanchez, C. Tesniere, and B. Blondin, 2014b  Assessing the
mechanisms responsible for differences between nitrogen requirements of
saccharomyces cerevisiae wine yeasts in alcoholic fermentation. Appl.
Environ. Microbiol. 80(4): 1330-1339.

Burke, M. K., G. Liti, and A. D. Long, 2014 Standing genetic variation
drives repeatable experimental evolution in outcrossing populations of
Saccharomyces cerevisiae. Mol. Biol. Evol. 31(12): 3228-3239.

Crepin, L., T. Nidelet, I. Sanchez, S. Dequin, and C. Camarasa, 2012  Sequential
use of nitrogen compounds by Saccharomyces cerevisiae during
wine fermentation: a model based on kinetic and regulation charac-
teristics of nitrogen permeases. Appl. Environ. Microbiol. 78(22):
8102-8111.

Cubillos, F. A., 2016 Exploiting budding yeast natural variation for indus-
trial processes. Curr. Genet. 62(4): 745-751.

Cubillos, F. A, E. J. Louis, and G. Liti, 2009 Generation of a large set of
genetically tractable haploid and diploid Saccharomyces strains. FEMS
Yeast Res. 9(8): 1217-1225.

Cubillos, F. A,, E. Billi, E. Zorgo, L. Parts, P. Fargier et al., 2011 Assessing
the complex architecture of polygenic traits in diverged yeast populations.
Mol. Ecol. 20: 1401-1413.

Cubillos, F. A., L. Parts, F. Salinas, A. Bergstrom, E. Scovacricchi et al.,
2013 High-resolution mapping of complex traits with a four-parent
advanced intercross yeast population. Genetics 195(3): 1141-1155.

de Assis, L. J., R. B. Zingali, C. A. Masuda, S. P. Rodrigues, and M. Montero-
Lomeli, 2013  Pyruvate decarboxylase activity is regulated by the Ser/Thr
protein phosphatase Sit4p in the yeast Saccharomyces cerevisiae. FEMS
Yeast Res. 13(6): 518-528.

Dickinson, J. R., L. E. Salgado, and M. J. Hewlins, 2003 The catabolism of
amino acids to long chain and complex alcohols in Saccharomyces cer-
evisiae. J. Biol. Chem. 278(10): 8028-8034.

Duncan, K., R. M. Edwards, and J. R. Coggins, 1987 The pentafunctional
arom enzyme of Saccharomyces cerevisiae is a mosaic of monofunctional
domains. Biochem. J. 246(2): 375-386.

June 2017 | Nitrogen Consumption Variants in SGRP-4X | 1703


http://www.yeastgenome.org/locus/S000003708/overview
http://www.yeastgenome.org/locus/S000004034/overview
http://www.yeastgenome.org/locus/S000002205/overview
http://www.yeastgenome.org/locus/S000002205/overview
http://www.yeastgenome.org/locus/S000000842/overview
http://www.yeastgenome.org/locus/S000004034/overview
http://www.yeastgenome.org/locus/S000004034/overview
http://www.yeastgenome.org/locus/S000004034/overview
http://www.yeastgenome.org/locus/S000003708/overview
http://www.yeastgenome.org/locus/S000005212/overview
http://www.yeastgenome.org/locus/S000005214/overview
http://www.yeastgenome.org/locus/S000005103/overview
http://github.com/jdstorey/qvalue
http://github.com/jdstorey/qvalue

Durrant, C,, H. Tayem, B. Yalcin, J. Cleak, L. Goodstadt et al., 2011 ~ Collaborative
cross mice and their power to map host susceptibility to Aspergillus
fumigatus infection. Genome Res. 21(8): 1239-1248.

Ehrenreich, I. M., J. P. Gerke, and L. Kruglyak, 2009  Genetic dissection of
complex traits in yeast: insights from studies of gene expression and other
phenotypes in the BYXRM cross. Cold Spring Harb. Symp. Quant. Biol.
74: 145-153.

Fleet, G. H., 2003 Yeast interactions and wine flavour. Int. J. Food Micro-
biol. 86(1-2): 11-22.

Fleet, G. H., 2008 Wine yeasts for the future. FEMS Yeast Res. 8(7): 979-
995.

Forsberg, H., M. Hammar, C. Andreasson, A. Moliner, and P. O. Ljungdahl,
2001 Suppressors of ssyl and ptr3 null mutations define novel amino
acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 158
(3): 973-988.

Gasch, A. P, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen et al.,
2000 Genomic expression programs in the response of yeast cells to
environmental changes. Mol. Biol. Cell 11(12): 4241-4257.

Godard, P., A. Urrestarazu, S. Vissers, K. Kontos, G. Bontempi et al.,

2007  Effect of 21 different nitrogen sources on global gene expression in
the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 27(8): 3065-3086.

Gomez-Alonso, S., I. Hermosin-Gutierrez, and E. Garcia-Romero,

2007  Simultaneous HPLC analysis of biogenic amines, amino acids, and
ammonium ion as aminoenone derivatives in wine and beer samples.
J. Agric. Food Chem. 55(3): 608-613.

Gutierrez, A., G. Beltran, J. Warringer, and J. M. Guillamon, 2013  Genetic
basis of variations in nitrogen source utilization in four wine commercial
yeast strains. PLoS One 8(6): e67166.

Gutin, J., A. Sadeh, A. Rahat, A. Aharoni, and N. Friedman, 2015 Condition-
specific genetic interaction maps reveal crosstalk between the cAMP/PKA
and the HOG MAPK pathways in the activation of the general stress re-
sponse. Mol. Syst. Biol. 11(10): 829.

Hinnebusch, A. G., and G. R. Fink, 1983 Positive regulation in the general
amino acid control of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci.
USA 80(17): 5374-5378.

Hofman-Bang, J., 1999 Nitrogen catabolite repression in Saccharomyces
cerevisiae. Mol. Biotechnol. 12(1): 35-73.

Hu, X. H, M. H. Wang, T. Tan, J. R. Li, H. Yang et al, 2007 Genetic
dissection of ethanol tolerance in the budding yeast Saccharomyces cer-
evisiae. Genetics 175(3): 1479-1487.

Huang, X., M. J. Paulo, M. Boer, S. Effgen, P. Keizer et al., 2011  Analysis of
natural allelic variation in Arabidopsis using a multiparent recombinant
inbred line population. Proc. Natl. Acad. Sci. USA 108(11): 4488-4493.

Huang da, W., B. T. Sherman, and R. A. Lempicki, 2009  Systematic and
integrative analysis of large gene lists using DAVID bioinformatics re-
sources. Nat. Protoc. 4(1): 44-57.

Huxley, C,, E. D. Green, and I. Dunham, 1990 Rapid assessment of S.
cerevisiae mating type by PCR. Trends Genet. 6(8): 236.

Ibstedt, S., S. Stenberg, S. Bages, A. B. Gjuvsland, F. Salinas ef al., 2015 Concerted
evolution of life stage performances signals recent selection on yeast
nitrogen use. Mol. Biol. Evol. 32(1): 153-161.

Jara, M,, F. A. Cubillos, V. Garcia, F. Salinas, O. Aguilera et al., 2014 Mapping
genetic variants underlying differences in the central nitrogen metabo-
lism in fermenter yeasts. PLoS One 9(1): €86533.

Katou, T., M. Namise, H. Kitagaki, T. Akao, and H. Shimoi, 2009 QTL
mapping of sake brewing characteristics of yeast. ]. Biosci. Bioeng. 107(4):
383-393.

Kellermann, E., P. G. Seeboth, and C. P. Hollenberg, 1986 Analysis of the
primary structure and promoter function of a pyruvate decarboxylase
gene (PDC1) from Saccharomyces cerevisiae. Nucleic Acids Res. 14(22):
8963-8977.

Kim, H. S., and J. C. Fay, 2007  Genetic variation in the cysteine biosynthesis
pathway causes sensitivity to pharmacological compounds. Proc. Natl.
Acad. Sci. USA 104(49): 19387-19391.

Kover, P. X., W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich et al.,
2009 A multiparent advanced generation inter-cross to fine-map
quantitative traits in Arabidopsis thaliana. PLoS Genet. 5(7): €1000551.

1704 | F. A. Cubillos et al.

Legras, J. L., D. Merdinoglu, J. M. Cornuet, and F. Karst, 2007 Bread, beer
and wine: Saccharomyces cerevisiae diversity reflects human history. Mol.
Ecol. 16(10): 2091-2102.

Lei, H., H. Li, F. Mo, L. Zheng, H. Zhao et al., 2013  Effects of Lys and His
supplementations on the regulation of nitrogen metabolism in lager yeast.
Appl. Microbiol. Biotechnol. 97(20): 8913-8921.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al, 2009 The
sequence alignment/map format and SAMtools. Bioinformatics 25(16):
2078-2079.

Liti, G., and E. J. Louis, 2012 Advances in quantitative trait analysis in yeast.
PLoS Genet. 8(8): €1002912.

Liti, G., D. M. Carter, A. M. Moses, ]. Warringer, L. Parts et al, 2009 Population
genomics of domestic and wild yeasts. Nature 458(7236): 337-341.

Ljungdahl, P. O., 2009 Amino-acid-induced signalling via the SPS-sensing
pathway in yeast. Biochem. Soc. Trans. 37(Pt. 1): 242-247.

Ljungdahl, P. O., and B. Daignan-Fornier, 2012 Regulation of amino acid,
nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Ge-
netics 190(3): 885-929.

Long, A. D,, S. J. Macdonald, and E. G. King, 2014 Dissecting complex
traits using the Drosophila synthetic population resource. Trends Genet.
30(11): 488-495.

Lucchini, G., A. Biraghi, M. L. Carbone, A. de Scrilli, and G. E. Magni,
1978  Effect of mutation in the aromatic amino acid pathway on spor-
ulation of Saccharomyces cerevisiae. J. Bacteriol. 136(1): 55-62.

Magasanik, B, and C. A. Kaiser, 2002 Nitrogen regulation in Saccharo-
myces cerevisiae. Gene 290(1-2): 1-18.

Marini, A. M., S. Vissers, A. Urrestarazu, and B. Andre, 1994 Cloning and
expression of the MEP1 gene encoding an ammonium transporter in
Saccharomyces cerevisiae. EMBO J. 13(15): 3456-3463.

Marini, A. M,, S. Soussi-Boudekou, S. Vissers, and B. Andre, 1997 A family
of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol.
17(8): 4282-4293.

Marsit, S., and S. Dequin, 2015 Diversity and adaptive evolution of Sac-
charomyces wine yeast: a review. FEMS Yeast Res. 15(7): fov067.

Martinez, C., V. Garcia, D. Gonzalez, M. Jara, M. Aguilera et al., 2013  Gene
expression of specific enological traits in wine fermentation. Electron.

]. Biotechnol. 16(4): 13.

Marullo, P., M. Aigle, M. Bely, I. Masneuf-Pomarede, P. Durrens et al.,
2007 Single QTL mapping and nucleotide-level resolution of a physi-
ologic trait in wine Saccharomyces cerevisiae strains. FEMS Yeast Res.
7(6): 941-952.

Nissen, T. L., U. Schulze, J. Nielsen, and J. Villadsen, 1997 Flux distribu-
tions in anaerobic, glucose-limited continuous cultures of Saccharomyces
cerevisiae. Microbiology 143(Pt. 1): 203-218.

Noble, J., I. Sanchez, and B. Blondin, 2015 Identification of new Saccha-
romyces cerevisiae variants of the MET2 and SKP2 genes controlling the
sulfur assimilation pathway and the production of undesirable sulfur
compounds during alcoholic fermentation. Microb. Cell Fact. 14: 68.

Nogami, S., Y. Ohya, and G. Yvert, 2007 Genetic complexity and quanti-
tative trait loci mapping of yeast morphological traits. PLoS Genet. 3(2):
e3l.

Omnus, D. ], and P. O. Ljungdahl, 2014 Latency of transcription factor
Stpl depends on a modular regulatory motif that functions as cytoplas-
mic retention determinant and nuclear degron. Mol. Biol. Cell 25(23):
3823-3833.

Ono, J., A. C. Gerstein, and S. P. Otto, 2017 Widespread genetic incom-
patibilities between first-step mutations during parallel adaptation of
Saccharomyces cerevisiae to a common environment. PLoS Biol. 15(1):
€1002591.

Pedruzzi, 1., F. Dubouloz, E. Cameroni, V. Wanke, J. Roosen et al.,

2003 TOR and PKA signaling pathways converge on the protein kinase
Rim15 to control entry into GO. Mol. Cell 12(6): 1607-1613.

Querol, A, M. T. Fernandez-Espinar, M. del Olmo, and E. Barrio,

2003 Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86(1-2):
3-10.

Quinlan, A. R, and I. M. Hall, 2010 BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics 26(6): 841-842.

-=.G3:Genes| Genomes | Genetics



Rossignol, T., L. Dulau, A. Julien, and B. Blondin, 2003 Genome-wide
monitoring of wine yeast gene expression during alcoholic fermentation.
Yeast 20(16): 1369-1385.

Salinas, F., F. A. Cubillos, D. Soto, V. Garcia, A. Bergstrom et al., 2012 The
genetic basis of natural variation in oenological traits in Saccharomyces
cerevisiae. PLoS One 7(11): e49640.

Salinas, F., C. G. de Boer, V. Abarca, V. Garcia, M. Cuevas et al.,

2016 Natural variation in non-coding regions underlying phenotypic
diversity in budding yeast. Sci. Rep. 6: 21849.

Salmon, J. M., 1989  Effect of sugar transport inactivation in Saccharomyces
cerevisiae on sluggish and stuck enological fermentations. Appl. Environ.
Microbiol. 55(4): 953-958.

Sicard, D., and J. L. Legras, 2011 Bread, beer and wine: yeast domesti-
cation in the Saccharomyces sensu stricto complex. C. R. Biol. 334(3):
229-236.

Smith, E. N, and L. Kruglyak, 2008 ~Gene-environment interaction in yeast
gene expression. PLoS Biol. 6(4): e83.

Steinmetz, L. M., H. Sinha, D. R. Richards, J. I. Spiegelman, P. J. Oefner et al.,
2002 Dissecting the architecture of a quantitative trait locus in yeast.
Nature 416(6878): 326-330.

Steyer, D., C. Ambroset, C. Brion, P. Claudel, P. Delobel et al, 2012 QTL
mapping of the production of wine aroma compounds by yeast. BMC
Genomics 13: 573.

Storey, J. D., and R. Tibshirani, 2003 ~ Statistical significance for genomewide
studies. Proc. Natl. Acad. Sci. USA 100(16): 9440-9445.

Swinnen, E., V. Wanke, J. Roosen, B. Smets, F. Dubouloz et al., 2006 Rim15
and the crossroads of nutrient signalling pathways in Saccharomyces
cerevisiae. Cell Div. 1: 3.

Sychrova, H., and M. R. Chevallier, 1994 APLI, a yeast gene encoding a
putative permease for basic amino acids. Yeast 10(5): 653-657.

-=.G3:Genes| Genomes | Genetics

Volume 7 June 2017 |

ter Schure, E. G., N. A. van Riel, and C. T. Verrips, 2000 The role of
ammonia metabolism in nitrogen catabolite repression in Saccharomyces
cerevisiae. FEMS Microbiol. Rev. 24(1): 67-83.

Tesniere, C., C. Brice, and B. Blondin, 2015 Responses of Saccharomyces
cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl.
Microbiol. Biotechnol. 99(17): 7025-7034.

Torija, M. J.,, N. Rozes, M. Poblet, J. M. Guillamon, and A. Mas, 2001  Yeast
population dynamics in spontaneous fermentations: comparison between
two different wine-producing areas over a period of three years. Antonie
van Leeuwenhoek 79(3-4): 345-352.

Trapnell, C., L. Pachter, and S. L. Salzberg, 2009 TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics 25(9): 1105-1111.

Wang, X, and L. Kruglyak, 2014 Genetic basis of haloperidol resistance in
Saccharomyces cerevisiae is complex and dose dependent. PLoS Genet.
10(12): €1004894.

Warringer, J., E. Zorgo, F. A. Cubillos, A. Zia, A. Gjuvsland et al.,

2011 Trait variation in yeast is defined by population history. PLoS
Genet. 7(6): e1002111.

Williamson, V. M., J. Bennetzen, E. T. Young, K. Nasmyth, and B. D. Hall,
1980 Isolation of the structural gene for alcohol dehydrogenase by ge-
netic complementation in yeast. Nature 283(5743): 214-216.

Yang, S., J. Fresnedo-Ramirez, Q. Sun, D. C. Manns, G. L. Sacks et al,
2016 Next generation mapping of enological traits in an F2 interspecific
grapevine hybrid family. PLoS One 11(3): e0149560.

Zargari, A., M. Boban, S. Heessen, C. Andreasson, J. Thyberg et al,

2007 Inner nuclear membrane proteins Asil, Asi2, and Asi3 function in
concert to maintain the latent properties of transcription factors Stp1 and
Stp2. J. Biol. Chem. 282(1): 594-605.

Communicating editor: K. Nichols

Nitrogen Consumption Variants in SGRP-4X | 1705



