
Radioactive Phosphorylation of Alcohols to Monitor
Biocatalytic Diels-Alder Reactions
Alexander Nierth, Andres Jäschke*
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Abstract

Nature has efficiently adopted phosphorylation for numerous biological key processes, spanning from cell signaling to
energy storage and transmission. For the bioorganic chemist the number of possible ways to attach a single phosphate for
radioactive labeling is surprisingly small. Here we describe a very simple and fast one-pot synthesis to phosphorylate an
alcohol with phosphoric acid using trichloroacetonitrile as activating agent. Using this procedure, we efficiently attached
the radioactive phosphorus isotope 32P to an anthracene diene, which is a substrate for the Diels-Alderase ribozyme—an
RNA sequence that catalyzes the eponymous reaction. We used the 32P-substrate for the measurement of RNA-catalyzed
reaction kinetics of several dye-labeled ribozyme variants for which precise optical activity determination (UV/vis,
fluorescence) failed due to interference of the attached dyes. The reaction kinetics were analyzed by thin-layer
chromatographic separation of the 32P-labeled reaction components and densitometric analysis of the substrate and
product radioactivities, thereby allowing iterative optimization of the dye positions for future single-molecule studies. The
phosphorylation strategy with trichloroacetonitrile may be applicable for labeling numerous other compounds that contain
alcoholic hydroxyl groups.
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Copyright: � 2011 Nierth, Jäschke. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (Ja 794-3), the Volkswagen foundation (VW-I/82549) and the Fonds der
Chemischen Industrie. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have read the journal’s policy and have the following conflicts: This work was funded in part by the Fonds der Chemischen
Industrie. This does not alter the authors’ adherence to all the PLoS ONE policies on sharing data and materials.

* E-mail: jaeschke@uni-hd.de

Introduction

Over the past 25 years, many radioactivity-based assays for the

determination of enzymatic activities were replaced by optical

assays involving absorbance, fluorescence, or chemoluminescence.

At the same time, optical detection was also intensively applied

in studies regarding the folding, dynamics, and interactions of

biomolecules with other cellular components. Single-molecule

FRET spectroscopy and super-resolution microscopy are just two

very modern examples in which dye-labeled biomolecules play a

central role [1,2]. The covalent attachment of bulky and often

hydrophobic dyes to a protein or nucleic acid may, however,

dramatically influence its properties, and the function (e. g.,

catalytic activity) of such labeled constructs therefore needs to be

thoroughly validated in order to collect meaningful data. This is

not a trivial task, as (i) biomolecules with site-specifically attached

dyes are precious and often availble in pico- or femtomole

amounts only, and (ii) the attached dyes often interfere with the

optical assays used for activity determination due to quenching,

spectral overlap, or other phenomena. Therefore, there is a need

for highly sensitive methods for enzymatic activity determination

that are not disturbed by dyes, quenchers, or other modifications

present in the biomolecule. We reasoned that radioisotopic tagging

of the substrate of enzymatic reactions with 32P phosphate,

followed by chromatographic analysis, should provide a solution to

this problem.

Our laboratory has discovered RNA enzymes that catalyze C-C

bond formation by Diels-Alder reaction between two small organic

(non-RNA) substrates [3,4]. Since its discovery, the Diels-Alderase

ribozyme (DAse) was studied by a multitude of chemical,

biophysical and computational techniques as we ultimately aim

to unravel the complex mutual relationship between folding,

substrate binding and catalysis [5–10]. In our recent work we have

used fluorescence-based single-molecule techniques to perform

folding studies of the free ribozyme in solution [5]. However,

finding the right label positions that do not disturb function for

such a small and compact structure (49mer) turned out to be a

challenging task, even with available crystallographic information.

We observed precisely the problems outlined above: The attached

dyes disturbed the readout of continuous fluorescence-and

absorbance-based activity assays, and discontinous HPLC assays

required prohibitive amounts of dye-labeled ribozyme. We

therefore developed a general approach using radioactive

phosphate labeling of the DAse standard substrate anthracene-

hexa(ethylene glycol) (AHEG, Figure 1). In this model system,

RNA-catalyzed kinetics between the phosphorylated diene and the

(unlabeled) dienophile substrate N-pentylmaleimide (NPM) were

recorded by thin-layer chromatographic separation of the reaction

components and densitometric comparison of the substrate and

product radioactivities.

The basic commercially available chemical for radioactive

phosphorus nuclides is ortho-32phosphoric acid (H3
32PO4). The 32P

nuclide is a beta-emitter and gained its popularity in biochemical

labeling due to its short half-life (14.3 days) and readily detectable

energetic radiation (1.71 MeV). Usually, the specificity of enzymes

is utilized to generate radioactive phosphate esters such as
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adenosine-59-32phosphates (a-, b- or c-ATP) [11,12]. Since eligible

enzymes like kinases or phosphatases are very specific in their

substrate recognition [13,14], a chemical synthesis procedure had

to be developed to esterify the hydroxyl group of the AHEG

substrate with radioactive phosphoric acid. The following

requirements for the preparation of AHEG-32P had to be fulfilled:

1. A one-pot synthesis based on H3
32PO4 as starting material.

Other sources of 32P are difficult to obtain, dangerous, or reduce

the specific radioactivity due to the preceding chemical conver-

sions. 2. Facile purification to facilitate safe handling with

radioactivity. 3. Appropriate yields and a H3
32PO4/alcohol ratio

close to unity to gain high specific radioactivity for the efficient

detection of the Diels-Alder product – even in the presence of high

excess of substrate. However, the synthesis of AHEG-32P meeting

the aforementioned requirements turned out to be not a trivial

task, since phosphoric acid is a rather unreactive substance and

has to be activated first [15]. Most of the standard methods are

hardly compatible with radioactive labeling, because several

problems complicate the chemical phosphorylation, like the

formation of multiple phosphates, di- or trialkylesters, and their

laborious chromatographic separation.

Here we devised a simple and easily implemented synthetic

route to 32P-phosphorylated alcohols and developed a TLC-based

assay to accurately monitor the catalytic activities of dye-labeled

ribozyme variants.

Results

Chemical phosphorylation of the alcoholic ribozyme
substrate

To our surprise, adequate chemical methods to attach a

phosphate to alcohols are scarce in the current literature.

Phosphoryl chloride POCl3 in combination with a tertiary amine

is the classic chemical agent. In principle, the radioactively doped

derivative can be generated by the exchange reaction with PCl5
and inorganic 32P-phosphate, but the product 32POCl3 is volatile,

dangerous and of low specific activity [16,17]. Other procedures

use phosphate activation as trimetaphosphate [18] or phosphor-

amidite [19], or employ secondary activation agents like cyanogen

bromide [20,21], imidazoles [22], or acetic anhydride [23].

After unsatisfying phosphorylation attempts with some of these

methods [21,24,25], we considered a more recent approach using

organometallic synthesis [26]. The oxorhenium(VII)-catalyzed

direct condensation of alcohols with phosphoric acid was,

however, found to be inappropriate for the handling of radioactive

compounds (reflux at temperatures above 140uC), and milder

reaction conditions led to product mixtures [27] which were

difficult to separate. Eventually, the synthesis of AHEG-32P

succeeded by activation of the phosphoric acid with trichloroace-

tonitrile under anhydrous conditions (Figure 2). This reagent was

first used by Cramer and co-workers in the early sixties for the

synthesis of mono- and diphosphoric acid esters of the terpene

alcohols, but was not developed further thereafter [28,29].

Electron withdrawal by the three chlorine atoms facilitates

nucleophilic attack of alcohols, forming intermediate trichlor-

oacetimidates, which are versatile activated intermediates in

synthetic chemistry [30]. In order to promote solubility of the

phosphates in organic solvents, the tetrabutylammonium salt of

non-radioactive phosphoric acid was employed, that was doped

prior to use with 1.0 mCi of radioactive phosphoric acid. The

removal of water from the aqueous phosphate stock solution and

systematic control of pH were found to be crucial for the success

of the reaction. The former was achieved by azeotropic

coevaporation with acetonitrile and the latter by addition of

tetrabutylammonium hydroxide to maintain pH 8. As this

reaction was accompanied by side products, such as di- or

triphosphates, we optimized the reaction conditions to obtain

preferably the monophosphate ester of the alcohol. By varying

the reactant ratios and reaction time, we achieved best results

with 1.0 equivalent alcohol, 1.3 equivalents trichloroacetonitrile

and 1.3 equivalents ortho-phosphoric acid for one hour at room

temperature. The isolation of the AHEG-32P was achieved by

preparative thin-layer chromatography (TLC) on silica-coated

sheets using an ammonia-based mobile phase [31]. A sample of

the purified AHEG-32P was analyzed by TLC, comparing of the

intensity of the sample spot with the total radioactivity in the

TLC lane, and purity was determined to be .96%. The yield of

the labeling reaction was 50% and the specific radioactivity of the

product was 51 mCi/mmol, which was convenient to perform

precise kinetic measurements of RNA-catalyzed Diels-Alder

reactions.

Radioactive assay to measure catalytic activities of
ribozymes

The addition of a charged phosphate at the end of the

hexa(ethylene glycol) tether considerably improved water solubility

and acceptance as substrate by the ribozyme (see Figure S1),

thereby facilitating kinetic studies over a wide concentration range

not accessible with other substrates [32,33].

For the radiometric measurement of the ribozyme-catalyzed

reaction, we developed a discontinuous assay with separation of

the labeled reaction components by thin-layer chromatography.

Experimentally, the procedure was to mix the RNA and the

diene AHEG-32P in the reaction buffer, together with a small

Figure 1. Conceptual approach to monitor the Diels-Alder reaction between the two substrates of the Diels-Alderase ribozyme. The
32P radioactively labeled anthracene-hexa(ethylene glycol) AHEG-32P and N-pentylmaleimide NPM yield the 32P-labeled Diels-Alder product DAP-32P.
Substrate conversion and product formation were monitored by chromatographic separation and densitometric analysis of the spot intensities.
doi:10.1371/journal.pone.0021391.g001
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quantity of commercially available adenosine-59-monophosphate

(a-32P-AMP) as radioactive internal standard. The reaction was

started by addition of the dienophile NPM. In appropriate time

intervals 0.7 ml aliquots of the 10 ml reaction mixture were

spotted onto a thin-layer plate and the reaction was stopped by

immediate evaporation of the solvent with a blow-dryer.

Afterwards, the components of the reaction were separated by

developing the thin-layer plates with the mobile phase. A

representative depiction of the thin-layer plates for the reaction

catalyzed by the wild-type Diels-Alderase, and for the uncata-

lyzed background reaction (without RNA) is given in Figure 3.

The increase of the Diels-Alder product intensity and the

decrease in substrate intensity are clearly visible. A densitometric

analysis was performed by quantifying the intensities for each

starting material and product spot in relation to the total intensity

of all spots. Every sample was further corrected for the

experimental pipetting error by a correction factor, based on

the fractional intensities of the internal standard (for further

details see experimental section). Plotting the product concentra-

tion against the reaction time and fitting of monoexponential

curves allowed for the calculation of initial velocities. Under the

reaction conditions employed (7.0 mM wild-type ribozyme,

0.1 mM AHEG-32P, 0.5 mM NPM), we obtained a rate of

product formation of 10.9 mM min21 for the RNA catalyzed

reaction and 0.1 mM min21 for the background reaction, in

accordance with previous findings [32].

Catalytic activities of FRET-labeled Diels-Alderase
ribozymes

While various assays are available for the kinetic investigation of

unmodified ribozymes; including fluorescence- or absorbance-

based assays [9,33], they are less adequate for the precise kinetic

analysis of ribozymes labeled with fluorescent dyes, as the dyes

interfere with the optical readout. This is where the 32P-based

assay provides unique features and gives access to the kinetic data.

In the continuation of our previous single-molecule folding

study of the ribozyme by Förster resonance energy transfer

(FRET), we attempted to find improved label positions for the two

cyanine dyes Cy3 and Cy5 [5]. By using the template-directed and

combinatorial ligation strategy optimized in our lab [5,10], we

synthesized several RNA constructs with varying labeling positions

(Figure 4). These constructs were then subjected to the radioactive

assay, where readout was found to be as accurate as with the

unlabeled ribozyme (see Figure S2). The first selection of dye

positions resulted in RNA constructs of reduced catalytic activity,

compared to the wild-type ribozyme (Figure 5A). Some constructs

were almost inactive (both green traces), while the best construct

showed four-fifths of the wild-type activity. Analysis of these results

in the context of the available structural information [4] allowed to

iteratively identify labeling positions with minimal perturbation of

RNA catalysis. The kinetic curves of this ‘‘second generation’’ of

constructs are shown in Figure 5B. As result, the constructs

Figure 2. Synthesis of radioactively labeled anthracene AHEG-32P as ribozyme substrate. The alcohol of AHEG (1.0 eq.) was
phosphorylated by activation with trichloroacetonitrile (1.3 eq.). The solubility of the phosphates in the organic solvent was achieved by using the
tetrabutylammonium salt of phosphoric acid (1.3 eq.) which was doped with 1.0 mCi of ortho-32P-phosphoric acid prior to synthesis.
doi:10.1371/journal.pone.0021391.g002

Figure 3. Radioactive assay for activity measurements of Diels-Alderase ribozymes. The picture shows thin-layer plates for the thermal
background reaction (left) and the RNA catalyzed reaction (right) scanned on a Typhoon imager for radioactivity. For each point in time in minutes,
one aliquot of the reaction mixture (0.7 ml) was spotted. Abbreviations are R = reference (AHEG-32P alone), DAP-32P = Diels-Alder product spots,
AHEG-32P = starting material spots and a-32P-AMP = internal standard spots.
doi:10.1371/journal.pone.0021391.g003
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U11
Cy3-U50

Cy5 and 59Cy3-U50
Cy5 show wild-type and U11

Cy3-

U33
Cy5 close to wild-type activity. Notably, labeling within the

asymmetric bulge of the ribozyme leads to markedly reduced

catalytic activities (constructs with labeling of A41
Cy5 and U42

Cy5).

Discussion

The past popularity of radioisotopic labeling has been

undermined by recent developments in fluorescence microscopy

and spectroscopy, in which labeling with a fluorophore is an

essential feature. For pure tracing of a biomolecular target,

radioisotopic labeling has several advantages over organic

fluorophores. Firstly radioactivity can easily be measured with

high sensitivity down to the low femtomolar concentration range,

and in terms of detection efficiency 32P is comparable or superior

to the standard fluorophores. Secondly, the radiation of radioiso-

topes is completely independent of its molecular environment.

This is in contrast to the modulation of fluorescence of organic

fluorophores by proteins or nucleic acids which often leads to

difficulties in data analysis and interpretation [34]. Furthermore,

organic fluorophores are known to often interact with the 3D

structure of the biomolecule and thereby interfere with their

function. Such perturbations are much smaller or negligible for a

phosphate group. Additionally, radiolabels do not suffer from self-

quenching, photobleaching or signal fluctuations due to stacking

and changes in pH or temperature.

An important advantage of radioactive labeling in our

experimental setup is the independence from other fluorescence

labels, i.e., the dyes attached to the catalyst (‘‘orthogonality’’).

This feature allows precise activity determination without

interference. Furthermore, the radioactive assay presented here

requires only minimum quantities of precious dye-labeled RNAs.

Even with an inefficient enzyme (in terms of catalytic rate

acceleration) like the Diels-Alderase, pmol amounts of enzyme

are sufficient for reliable determination of the catalytic activity.

The chemical labeling presented here avoids the need for

enzyme-catalyzed transfer of phosphate and is therefore much

wider in scope than most enzymatic approaches, which are often

very restricted in terms of their substrate recognition. The one-

pot synthesis using trichloroacetonitrile is experimentally easy to

conduct, does not require demanding safety equipment, and can

be performed in laboratories at standard radiosafety levels [17].

We expect that our methodology is adaptable to other enzymes

that process substrates with an alcohol functionality or substrates

to which an alcohol functional group can be appended. Notably,

this methodology could prove useful for phosphorylation of

other biologically or medically important alcohols [35,36], and

for the development of biochemical techniques that require

ultrasensitive detection, like activity based protein profiling

(ABPP) [37].

Figure 4. Depiction of 49mer Diels-Alderase ribozyme second-
ary structure with indication of all labeling positions. Green
arrows refer to the Cy3 and red arrows to the Cy5 fluorophore. All
constructs were 39-biotinylated (hollow arrow) for immobilisation in
future single-molecule experiments. In the case of 39-Cy5-labeling, the
49mer minimal motive was extended to a 50mer by a dangling uridine
(gray).
doi:10.1371/journal.pone.0021391.g004

Figure 5. Reaction kinetics of dye-labeled Diels-Alderase ribozyme constructs determined by the radiometric assay. (A) Reaction
kinetics of constructs with the first selection of dye-positions. Conditions: 7.0 mM RNA, 1.0 mM AHEG-32P and 1.0 mM NPM. (B) Reaction kinetics of
constructs with optimized dye-positions, employing 0.1 mM AHEG-32P. References (black) are the reaction of the wild-type ribozyme (wt DAse) and
the background reaction without RNA.
doi:10.1371/journal.pone.0021391.g005
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Materials and Methods

Materials and general procedures
Chemicals were purchased from Sigma-Aldrich (Taufkirchen,

Germany) or Acros Organics (Geel, Belgium) and used without

further purification. Radioactive compounds (H3
32PO4, a-32P-

AMP) were obtained from Hartmann Analytic (Braunschweig,

Germany). The detection of radioactivity (32P nuclide) was

performed with a b-c handcounter (LB122 or LB124, Berthold

Technologies, Bad Wildbad, Germany). High-sensitivity measure-

ments of radioactivity were performed with a scintillation counter

in the Cherenkov-mode (LS 650, Beckmann Coulter, Fullerton,

USA). The specific radioactivity was calculated by comparing the

radioactivity of the respective sample to the total radioactivity and

by correcting for shielding effects. Standard DAse buffer (16:

300 mM NaCl, 30 mM Tris-HCl, 80 mM MgCl2, pH 7.4) was

prepared as 56 stock solution and diluted as required. RNA

concentrations were measured in 2.0 ml sample volumes with a

NanoDrop ND-1000 spectrophotometer (Peqlab Biotechnologie,

Erlangen, Germany) using the theoretical extinction coefficient of

the respective sequence at 260 nm (e260 nm = 453 600 M21 cm21).

High-resolution electrospray ionisation mass spectra (HRMS-ESI)

of phosphates were recorded on a Bruker micrOTOF-Q II in

negative mode. Nucleic magnetic resonance (NMR) spectra were

recorded on a Varian 500 MHz NMR system and calibrated using

residual undeuterated solvent or d6-DMSO as internal standard.

Visualisation and quantification of radiolabeled spots was

conducted according to the ‘‘phosphorimaging’’ method: The

thin-layer sheets were exposed to Eu2+-doped storage phosphor

plates and readout was done with a Typhoon 9400 gel scanner

(GE Healthcare, Uppsala, Sweden), equipped with a red solid-

state laser (633 nm). The analysis of scans was performed with

ImageQuant v5.2 software (GE Healthcare).

Preparation of RNA
The (unlabeled) wild-type DAse was obtained from CSS

Chemical Synthesis Services, (Craigavon, Northern Ireland).

Ribonucleic acids with a FRET pair of fluorophores and a biotin

modification were obtained by enzymatic ligation of separately

modified 27mer (upstream) and 22mer (downstream) RNA

fragments according to previously published procedures [5]. The

eleven full length constructs were derived from the two sequences

59-GGA GCU CGC UUC GGC GAG GUC GUG CCA-39

(27mer) and 59-GCU CUUCGG AGC AAU ACU CGA C(U)-

biotin-39 (22mer) carrying a Cy3 or Cy5 dye at one of the

underlined bases. In some constructs, the 22mer was extended by

one additional uridine (parenthesized) to incorporate a 39-Cy5

dye. All RNA fragments and the 49mer splint DNA (59-

Fluorescein-GTC GAG TAT TGC TCC GAA GAG CTG

GCA CGA CCT CGC CGA AGC GAG CTC C-39) were

obtained from IBA (Göttingen, Germany) as 100 mM stock-

solutions and were used as received.

Chemical Synthesis
(9-Anthracenylmethyl)hexaethyleneglycol (AHEG) [38] and N-

pentylmaleimide (NPM) [39] were synthesized according to

published procedures.

Synthesis of (n-Bu4N)H2
31PO4

In a 1.5 ml Eppendorf tube n-Bu4N(OH) (6.70 ml, 1.5 M in

H2O, 10.05 mmol) and non-radioactive H3
31PO4 (0.66 ml, 85% in

H2O, 9.79 mmol) were mixed thoroughly with 100.0 ml acetoni-

trile (MeCN), frozen in liquid nitrogen and lyophilized to dryness.

Synthesis of radioactively doped 1-(Anthracen-9-yl)-
2,5,8,11,14,17-hexaoxa-nonadecan-19-yl phosphate
(AHEG-32P)

The quarternary ammonium salt (n-Bu4N)H2
31PO4 (1.3 eq.,

9.79 mmol) was transferred into an Eppendorf vial with MeCN

(25.0 ml). Then H3
32PO4 (18.50 ml, 1.0 mCi, 37 MBq in H2O)

was added and the solution was lyophilized to dryness.

Alternatively, the solution was coevaporated twice with 50.0 ml

of dry MeCN in a centrifugal evaporator. To the residue 50 ml dry

dichloromethane and 3.5 ml dry AHEG (1.0 eq., 7.41 mmol) were

added and the mixture was transferred to a fresh Eppendorf vial.

The pH was checked by spotting 1.0 ml of the reaction mixture on

a piece of pre-wetted pH paper (pH,8) and the reaction was

started by adding 1.01 ml trichloroacetonitrile (1.3 eq., 10.0 mmol).

After gentle shaking of the vial in a thermomixer (Eppendorf

Thermomixer comfort, Hamburg, Germany) for one hour at room

temperature, the pH of the reaction was adjusted to pH,8 by

adding 1.5 ml n-Bu4N(OH) (1.5 M in H2O). The solution was

concentrated in a centrifugal evaporator and washed three times

with diethyl ether (500 ml). The aqueous residue was evaporated to

dryness (30 min.), 35 ml dry dichloromethane, 3.5 ml dry AHEG

(1.0 eq., 7.41 mmol) and 1.01 ml trichloroacetonitrile (1.3 eq.,

10.0 mmol) were added and the solution was mixed over night.

Afterwards, the solution was concentrated in a centrifugal

evaporator, diluted with 20 ml H2O and the solution was washed

three times with Et2O (300 ml, each ,300 Bq/cm2).

The radioactive solution of AHEG-32P (,80 ml) was applied on

a thin-layer sheet (polyester supported silica, Polygram Sil G/

UV254, 0.2 mm, 20.0620.0 cm, Macherey-Nagel, Düren, Ger-

many) with a positive-displacement pipette (100 ml, Pos-D, Rainin,

Oakland, USA). Subsequently, the sheet was developed twice with

freshly prepared running buffer [isobutyric acid/ethyl acetate/

KCl (0.5 M in H2O)/NH4OH (25% in H2O), (7:7:2:1)]. After

short air-drying the product was located by UV fluorescence

(Rf = 0.48) and the wet band was excised, collected in a 2.0 ml

Eppendorf tube and extracted with MeCN/H2O (4:3, 700 ml).

After shaking for 15 min. the suspension was centrifuged

(5 000 upm), filtered through a syringe filter (Teflon) and the

solution was coevaprated three times with MeCN/H2O (2:1,

1.5 ml) to dryness in a centrifugal evaporator. The residue was

redissolved in water of the highest purity and the concentration

was determined spectroscopically at 365 nm with a calibration

line. For this purpose, thoroughly dried AHEG was weighed into

vials and diluted to concentrations in the range of 20 to 150 mM,

the anthracene absorption at 365 nm was measured and a linear

fit of the data points yielded the equation:

canthracene½mM�~ absorption365 nmz0:0041

0:00722

The purity of the product was determined by TLC, comparing

the radioactivity of the compound spot with the total radioactivity

of the chromatogram by densitometry. Yield was 50%, purity

.96%, specific radioactivity 51 mCi/mmol. It should be noted

that the specific radioactivity can be varied over several orders of

magnitude by changing the 31P/32P ratio in the phosphorylation

reaction. The purification of the product could also be performed

by reversed phase HPLC (Agilent 1100 Series system) on a semi-

preparative Phenomenex Luna C18 column (5 mm, 250615 mm

at 5.0 ml/minute). An isocratic mixture of the buffers A (0.1 M

triethylammonium acetate in H2O, pH 7.4) and B (0.1 M

triethylammonium acetate in MeCN/H2O, 5:1, pH 7.4) was used

Radioactive Phosphorylation of Enzyme Substrates
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for separation (A/B, 63:37). Further analysis was conducted with

the non-radioactive 31P-AHEG compound, which was purified by

preparative TLC. 1H NMR (500 MHz, D2O/d3-MeCN, 25uC):

d= 8.68 (s, 1H), 8.46–8.48 (d, 2H), 8.17–8.19 (d, 2H), 7.67–7.71

(m, 2H), 7.60–7.64 (m, 2H), 5.63 (s, 2H), 3.98–4.00 (m, 2H), 3.86–

3.89 (m, 2H), 3.77–3.79 (m, 2H), 3.40–3.70 (m, 15H), 3.22 (q,

J = 7.3 Hz, 2H), 3.09 (dt, J = 7.2, 14.4 Hz, 1H) ppm; 13C NMR

(126 MHz, D2O, 25uC): d= 132.81, 132.19, 130.67, 130.43,

129.53, 128.49, 127.12, 125.67, 72.43, 71.48, 71.19–70.96, 66.33,

64.41, 48.23 ppm; 31P NMR (202 MHz, D2O, 25uC): d= 1.01 (t,

J(P,H) = 6.45 Hz) ppm. HRMS-ESI: m/z (%): calcd. for

C27H36O10P: 551.2052 [M+H]2, found: 551.2071 (Figure S3).

Radioactive Assay
Diels-Alder reaction kinetics (multiple-turnover) were measured

by thin-layer chromatographic separation of the 32P-labeled

reaction components and densitometric analysis of the substrate

and product radioactivities. For a typical reaction, the RNA (final

concentration: 7.0 mM), AHEG-32P (100.0 mM, ,10?106 cpm)

and the internal standard a-32P-AMP (,2.5?106 cpm) were mixed

in standard Diels-Alder buffer (16) and the Diels-Alder reaction

was started by adding and quick mixing of 1.0 ml of a 5.0 mM

NPM stock solution (in dry EtOH containing 0.5% DMSO). The

total volume of the reaction was 10.0 ml. The background reaction

was measured by omitting the RNA. At different points in time

aliquots were taken (0.7 ml), which were spotted on a TLC-plate

(silica gel, Polygram SilG/UV254, 0.2 mm, 10.0614.0 cm, Ma-

cherey-Nagel, Düren, Germany) and dried quickly with a blow-

dryer for 30 s. After completion of one or several kinetic

measurements, the TLC-sheets were developed twice with freshly

prepared running buffer (see above). The radioactivity of the

starting material alone (,80 000 cpm) was set as reference point.

Densitometric analysis of radioactivity was performed as follows: A

correction factor for each sample was determined, by dividing the

intensity of the respective internal standard spot a-32P-AMP

(Rf = 0.34) by the average over all internal standard intensities in

one experiment. Then the volume of each product spot (Rf = 0.55)

and starting material spot (Rf = 0.47) was multipied with the

respective correction factor. The amount of product formation was

calculated by dividing the corrected product intensity by the sum

of the corrected product and starting material intensities. Initial

velocities were calculcated by fitting monoexponential curves to

the datapoints with OriginPro v8.0 (OriginLab, Northampton,

Massachusetts, USA).

Supporting Information

Figure S1 Catalytic performance of AHEG-31P in the
absorbance based assay. The measurement was performed at

365 nm. Conditions: 7.0 mM RNA, 0.1 mM anthracene deriva-

tives and 0.5 mM NPM. The rate constant for non-radioactive

AHEG-31P is equal to the fastest standard diene substrate 9-

hydroxymethylanthracene (3.5 M21 s21) [33], as indicated by the

near-identical progress curves for both reactions.

(TIF)

Figure S2 Thin-layer plates from the reaction kinetics
of dye-labeled Diels-Alderase ribozyme constructs,
scanned for radioactivity (raw data).
(PDF)

Figure S3 Mass spectrum of non-radioactive AHEG-31P.

(PDF)
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