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Motion analysis plays an important role in studing activities or behaviors of live objects in medicine, biotechnology, chemistry,
physics, spectroscopy, nanotechnology, enzymology, and biological engineering. This paper briefly reviews the developments in
this area mostly in the recent three years, especially for cellular analysis in fluorescence microscopy. The topic has received much
attention with the increasing demands in biomedical applications. The tasks of motion analysis include detection and tracking of
objects, as well as analysis of motion behavior, living activity, events, motion statistics, and so forth. In the last decades, hundreds
of papers have been published in this research topic. They cover a wide area, such as investigation of cell, cancer, virus, sperm,
microbe, karyogram, and so forth. These contributions are summarized in this review. Developed methods and practical examples
are also introduced. The review is useful to people in the related field for easy referral of the state of the art.

1. Background

Motion analysis for microscopic live objects has become a
new approach to understanding complex living information
of the microworld [1]. Fluorescence microscopy imaging has
rapidly evolved in these years and provided new means for
studying microbial behavior, cell motion, or intracellular
processes in vivo. The super-resolution techniques allow
the observation of many biological structures not resolvable
in conventional fluorescence microscopy. New advances in
these techniques now give them the ability to image three-
dimensional (3D) structures, measure interactions, and
record dynamic processes in living cells [2–5]. However,
since such studies often generate a large volume of noisy
image data that cannot be analyzed efficiently and reliably
by human observation, it is a critical issue to develop
computing methods for automatic motion analysis. Many
tracking techniques exist in the computing science but often
fail to yield satisfactory results in the case of high object
densities, high noise levels, and complex motion patterns [6].

Cellular life can be described as a dynamic equilibrium of
a highly complex network of interacting molecules [7]. It is
not sufficient to only know the identity of the participants in
a cellular process, but questions such as where, when, and
for how long also have to be addressed to understand the
mechanism being investigated.

Recent improvements in methods of single-particle
fluorescence tracking have permitted detailed studies of
molecular motion on the nanometer scale due to its
high selectivity, sensitivity, simplicity, and fastness [8]. The
high microscopy sensitivity resolves the signal of a single
fluorescence-labeled bimolecular within a living cell. A time
resolution of milliseconds for imaging weakly fluorescent
cellular structures like small organelles, vesicles, or even
single molecules is already available [9]. This introduces
tools to a burgeoning field of nanotechnology for analysis
of microtubules, DNAs, proteins, and other biochemical
particles.

Motion analysis for microscopic live objects is a key
issue in this field. One aim is the recognition of selected
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targets in the image and tracking them in time [10].
Single-particle tracking is powerful in measuring particle
motion from video-microscopy image sequences [11, 12]. A
system actually needs to observe the type of cells and their
movement in long image sequences [13].

In the survey, advances in motion analysis for micro-
scopic live objects are briefly reviewed. Overall, significant
progress has been made in several issues, as well as being
integrated with other methods for biomedical applications.

The scope of this paper is restricted to motion analysis
for microscopic live objects by image processing [14, 15],
especially in the field of cellular research. Although this topic
has attracted researchers as early as since the 1980s, this
survey concentrates on the contributions of the latest three
years when the single-molecule fluorescence microscopy or
super-resolution fluorescence imaging became practically
available. It includes only some representative or important
works from recent years.

The current paper has four more sections. Section 2
introduces some application examples. Section 3 briefly
shows the principle of particle filters. Section 4 lists the
relevant research problems and typical methods. Section 5
includes a conclusion and a discussion of future trends.

2. Application Examples

2.1. Virion Study. Optical studies have revealed that virions
move laterally on the plasma membrane, but the complexity
of the cellular environment has prevented access to the
molecular dynamics of early virus-host couplings, which are
important for cell infection [16, 17]. Kukura et al. discussed
a technique for studying virus-membrane interactions and
for resolving nanoscopic dynamics of individual biological
nanoobjects [18]. Helmuth et al. uses a shape reconstruction
method that leads to better discrimination between different
endosomal virus entry pathways and to more robust, accu-
rate, and self-consistent quantification of endosome shape
features [19].

For 3D tracking of GLUT4 vesicles, Wu et al. present
an algorithm, where mobile granules are segmented from
a time-lapse image stack, and Kalman filter is used to
estimate the granules for reducing searching range of reliable
tracking [20]. Schelhaas et al. studied the lateral mobility
of individual, incoming human papillomavirus type 16
pseudoviruses bound to live HeLa cells by single-particle
tracking [21, 22].

In [23], eight tracking approaches are evaluated for
testing real microscopy images of HIV-1 particles. The prob-
abilistic approaches based on independent particle filters are
found to be superior to the deterministic schemes as well as
to the approaches based on a mixture of particle filters.

2.2. Cellular Analysis. A tracking algorithm is tested in [10]
on solid-lipid nanoparticles diffusing within cells and on
lymphocytes diffusing in lymphonodes. It appears useful for
the cellular and in vivo image processing where little a priori
assumption on the type, the extent and the variability of

particle motions, can be done. Another example of single-
particle tracking is proposed in [13] with application to
platelet adhesion under flow.

2.3. Subcellular Analysis. Determination of the subcellular
localization and dynamics is an important step towards the
understanding of multimolecular complexes in a cellular
context [24]. Live imaging of subcellular structures is essen-
tial for the understanding of cellular processes. Algorithms
have been proposed in the community for detecting fluo-
rescently labeled subcellular objects in microscope images
[25]. However, reconstruction of subcellular structures from
images remains a major challenge in the field [19].

Transport of intracellular organelles along the micro-
tubule cytoskeleton is in a bidirectional manner [26]. The
study of protein dynamics is essential for the understanding
the multi-molecular complexes at subcellular levels [27]. For
understanding of microtubules and their associated proteins,
dynamic interactions are routinely observed in vitro on the
level of single molecules, mainly using a geometry in which
labeled motors move on surface-immobilized microtubules
[28]. Machan and Hof discussed several key questions of
lateral mobility investigation in planar lipid membranes,
including the influence of membrane and aqueous phase
composition, choice of a fluorescent tracer molecule, fric-
tional coupling between the two membrane leaflets and
between membrane and solid support [29]. A simulation
and estimation framework is proposed in image-processing
field for intracellular dynamics and trafficking in video-
microscopy and fluorescence imagery [30].

2.4. Activity in Nucleus. The nucleus is a well-organized and
highly compartmentalized organelle, and this organization
is intimately related to nuclear function [31]. Dange et
al. discussed the potential of tracking single RNAs and
proteins in the nucleus [7]. The dynamics, localization, and
interaction rates are vital to the understanding of cellular life.
They provide a review of the HIV life cycle, which provides
an opportunity to study mechanisms deeply integrated
within the structure of the nucleus.

Gene delivery helps treatment of many diseases. Under-
lying that the rational design of gene-delivery vectors can
discover the individual steps of the gene-delivery pathway.
With fluorescence microscopy, it is possible to isolate indi-
vidual steps along the gene-delivery pathway to characterize
the mechanisms of cellular binding, cellular internalization,
and nuclear entry [32].

3D imaging of bacterial protein distribution and neuron
dendritic morphology is discussed in [33]. Super-resolution
method is proposed in [34] for orientation estimation and
localization of fluorescent dipoles using 3D steerable filters.

2.5. Molecular Mechanism. Dynamic properties of proteins
have crucial roles in understanding protein function and
molecular mechanism within cells [35]. Researchers often
need to accurately determine the motion of single-molecule
trajectories [36]. It is also interesting to study the behavior
of motor proteins and associated organelle transport within
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a cell [11, 37]. Molecular motors such as kinesin, myosin,
and F-1-ATPase are responsible for many important cellular
processes. These motor proteins exhibit nanometer-scale,
stepwise movements on millisecond timescales. Methods to
measure these small and fast movements with high spa-
tial and temporal resolution require relatively complicated
systems [38]. Colocalization of two or more molecules is
an essential aspect of many biological molecular processes
and single-molecule technologies for investigating these
processes in live cells [39]. An imaging method is developed
in [40] to quantitatively detect the colocalization of two
species of individual molecules.

3. Particle Tracking

3.1. Particle Filtering. Probabilistic tracking methods have
recently shown several advantages with better integration of
spatial and temporal information, and the possibility to more
effectively incorporate prior knowledge. Smal et al. propose
a fully automated particle filtering algorithm for the tracking
of many subresolution objects in fluorescence microscopy
image sequences [6]. It involves a track management proce-
dure and allows the use of multiple dynamics models.

Villa et al. developed a particle-tracking algorithm opti-
mized for low signal noised images with minimum require-
ments on the target size and without a priori knowledge
of the motion type. The particle tracking is performed by
building, from a stack of accumulative difference images, a
single 2D image in which the motion of the whole set of the
particles is coded in time [10].

Many single-particle tracking algorithms deliver subpixel
accurate measurements with noisy data corresponding to
sub-10-nm resolution. Image-correlation techniques have
been shown to be the most accurate method of tracking
extended objects. Saunter proposes a method for exper-
imentally determining the accuracy of image-correlation-
based tracking and demonstrates the possibility of making
measurements accurate to 5 nm when working with extended
objects within live cells [11].

3.2. Multiple Model Filtering. A multiple model tracking
method is proposed in [41] with multidimensional assign-
ment. They combine an interacting multiple model filter,
multidimensional assignment, particle occlusion handling,
and merge-split event detection together. The advantage
of a multidimensional assignment is that both spatial and
temporal information can be used by using several later
frames as reference. The multiple model filter, which is
used to maintain and predict the state of each track,
contains several models which correspond to different types
of biologically realistic movements.

Godinez et al. developed deterministic and probabilistic
approaches for multiple virus tracking in multichannel
fluorescence microscopy images [23]. The probabilistic
approaches are based on a mixture of particle filters and
independent particle filters.

Genovesio et al. propose a method to detect and
track multiple moving biological spotlike particles showing

different kinds of dynamics [42]. It can extract and analyze
information such as number, position, speed, movement,
and diffusion phases of particles. After a detection stage per-
formed by a 3D undecimated wavelet transform, prediction
of spots’ future states is accomplished with an interacting
multiple model algorithm which includes several models cor-
responding to different biologically realistic movement types.
Then the filters are updated to compute final estimations.

For tracking problem of several hundreds of objects,
a framework is provided in [43] with general information
about vesicle transport, that is, traffic flows between origin
and destination regions. Traffic estimation is accomplished
by adapting the advances in network tomography. A method
is proposed in [44] to detect and track multiple moving bio-
logical spotlike particles showing different kinds of dynamics
in image sequences.

3.3. 3D Nanoscopy. Various biophysical studies require high
spatial and temporal resolution in vitro and also in vivo
[38]. It remains a challenge to precisely localize single
molecules in 3D [45, 46]. Tang et al. applies near-isotropic
3D optical nanoscopy with photon-limited chromophores
to 3D imaging of bacterial protein distribution and neuron
dendritic morphology with subdiffraction resolution [3, 33].

Huang et al. demonstrated 3D stochastic optical recon-
struction microscopy by using optical astigmatism to deter-
mine both axial and lateral positions of individual fluo-
rophores with nanometer accuracy [2]. The construction of
a 3D image can achieve a resolution of 20 to 30 nanometers
in the lateral dimensions and 50 to 60 nanometers in the
axial dimension. This allows to resolve the 3D morphology
of nanoscopic cellular structures.

Yu et al. argued that the bright fluorescence can yield a
theoretical particle tracking uncertainty of less than 1 nm.
A lateral tracking uncertainty of 1-2 nm is determined
from analysis of trajectories of fixed and freely diffusing
particles. Axial position information for 3D particle tracking
is obtained by defocused imaging [47].

4. Research Issues

4.1. Fluorescence Microscopy. Most biological molecules are
less than 5–10 nm in diameter, and getting molecular details
requires imaging at this scale. The basic research in cell
biology and in medical sciences is mainly based on confocal
fluorescence [10]. Nowadays, a great deal of attention in
biomedical and pharmaceutical technology is going to the
development of nanoscopic particles to efficiently deliver
nucleic acids to target cells. Despite the great potential of
nucleic acids for treatment of various diseases, progress in the
field is fairly slow [48]. The resolution of conventional optical
microscopy is constrained to about 200–500 nm due to the
diffraction limit, but the recent developed super-resolution
fluorescence imaging, which is based on single-molecule
localization and image reconstruction, offers a comparatively
simple way to achieve a substantially improved optical
resolution down to similar to 20–50 nm in the image
plane [49–51]. The recent stochastic optical reconstruction
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microscopy makes use of single-molecule imaging methods
and photo-switchable fluorescent probes to temporally sepa-
rate the spatially overlapping images of individual molecules.
An image is acquired over a number of imaging cycles.
This allows the position to be determined with nanometer
accuracy [51]. Single-molecule fluorescence microscopy has
become one of the most popular methods in the single-
molecule toolbox [52]. In [53], a 26-ms time resolution and
a spatial accuracy of 5 nm in each dimension are achieved.
The resulting high-resolution trajectories reveal not only
heterogeneity among vesicles but also heterogeneity within
single-vesicle trajectories. Fluorescence imaging with one-
nanometer accuracy and single-molecule high-resolution
colocalization are used to monitor the diffusive behavior
of synthetic molecular walkers at the single-molecule level.
Michelotti discussed the imaging methods and experimen-
tal challenges of very low velocities (e.g., 3 nm/min) of
nanowalkers [8]. The state of the art in single-molecule
tools including fluorescence spectroscopy, tethered particle
microscopy, optical and magnetic tweezers, and atomic force
microscopy can be found in the survey by Walter et al. [54].

4.2. Detection. Determination of the position of a cell,
termed localization, is of paramount importance in achiev-
ing reliable and robust motion analysis. Achieving high-
level descriptors such as dynamics and activities is possible
if the position is known and accurately tracked. Aguet et
al. introduce a method for the joint estimation of position
and orientation of dipoles, based on the representation
of a physically realistic image formation model as a 3D
steerable filter. They establish theoretical, localization-based
resolution limits on estimation accuracy and experimentally
show that the position accuracy is 5 nm and the orientation
accuracy is 2 degrees [34].

Smal et al. evaluate the performance of the most fre-
quently used detection methods for quantitative comparison
[55]. Seven unsupervised and two supervised methods are
involved. The experiments are carried out on synthetic
images of three different types, for which the ground truth
was available, as well as on real image data sets acquired
for two different biological studies. The results suggest that
for very high noise images the supervised learning methods
perform best overall.

4.3. Intracellular Process. Ensemble measurements are not
sufficient to describe individual steps of molecular mobility,
spatial-temporal resolution, kinetic parameters, and geo-
graphical mapping. It is important to find where individual
steps exactly occur for better understanding of the living
cell. The nucleus is with many highly complex multiorder
processes, such as replication, transcription, splicing, and so
forth and provides a complicated, heterogeneous landscape.
Single-molecule tracking has become more and more attrac-
tive [7]. Jung et al. reported the work on diffusion of oriented
single molecules with switchable mobility in networks of
long unidimensional nanochannels [56].

Using dynamic techniques to track, manipulate, and
probe motor proteins is crucial in providing new insights

[1]. To understand the regulation of intracellular transport
through quantitative analysis of the motion of organelles
in a controlled environment, Soppina et al. present a
simple and reliable method that uses avidin-coated magnetic
beads to prepare microtubules labeled at the minus end. It
demonstrated video-rate high-resolution imaging of single
cellular organelles moving along plus and minus directions
on labeled microtubules [26].

4.4. Segmentation and Count. Ruusuvuori carried out a
comparative study including eleven-spot detection or seg-
mentation algorithms from various application fields [25].
The experimentally derived images permit a comparison
of method performance in realistic situations where the
number of objects varies within image set. The study finds
major differences in the performance of different algorithms,
in terms of object counts and segmentation accuracies. An
automatic segmentation and tracking method is designed
in [44] to enable quantitative analyses of cellular shape and
motion from 4D microscopy data.

A method in [13] includes functions of automatic
segmentation methodology which removes operator bias,
platelet recognition across the series of images based on a
probability density function. It can be integrated to analyze
the platelet trajectories to obtain relevant information, such
as deposition and removal rates, displacement distributions,
pause times, and rolling velocities.

4.5. Movement and Tracking. It is often required to localize
particles in a live cell to a certain accuracy to study their
localization-related functions [57, 58]. Particle tracking has
seen numerous applications in live-cell imaging studies of
subcellular dynamics. Establishing correspondence between
particles in a sequence of frames with high particle density,
particles merging and splitting, particles entering and exiting
the frame, temporary particle disappearance, and an ill-
performing detection algorithm is the most challenging task
[41]. Smal et al. propose a completely automatic tracker
based on a Bayesian probabilistic framework. It better
exploits spatiotemporal information and prior knowledge
than common approaches, which yields more robust track-
ing [59].

Sbalzarini and Koumoutsakos present a 2D feature track-
ing algorithm for the automated detection and quantitative
analysis of particle trajectories as recorded by video imaging
in cell biology [60]. The tracking requires no a priori model-
ing of the motion, it is self-initializing, it discriminates spuri-
ous detections, and it can handle temporary occlusion as well
as particle appearance and disappearance from the image.

To extract the maximum information from a sequence
of fluorescence images, Yoon et al. describe a Bayesian-based
inference approach, based on a transdimensional sequential
Monte Carlo method that utilizes spatiotemporal informa-
tion. The method allows accurate tracking of molecules over
long trajectories even with low signal/noise ratio and in the
presence of fluorescence blinking and photobleaching [61].

The movement trajectories in fluorescence video mi-
croscopy can be computationally analyzed in terms of
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diffusion rate and mode of motion [21]. The trajectories
play a role in the analysis of living-cell dynamics. Boulanger
et al. develop a general simulation framework to produce
image sequences showing small moving spots in interaction
and corresponding to intracellular dynamics and trafficking
in biology [30]. Wieser and Schutz describe strategies how
to make use of single-molecule trajectories for deducing
information about nanoscopic structures in a live cell
context, for example, elucidating the plasma membrane
organization [9].

For simultaneously determining multiple trajectories of
single molecules from sequential fluorescence images, Clay-
tor et al. developed a procedure for accurately monitoring
surface motion under ambient conditions [36]. The tracking
algorithm is computationally nondemanding and does not
assume a model for molecular motion.

4.6. Dynamics. Investigation of lipid lateral mobility in
biological membranes and their artificial models provides
information on membrane dynamics and structure where
methods based on optical microscopy are convenient for
such investigations [29].

The motion of the tagged locus is observed and
analyzed to extract quantitative information regarding its
dynamics. Levi and Gratton reviewed recent advances in
chromatin dynamics in interphase. They introduced the basis
of particle-tracking methods and trajectory analysis and
summarized what has been learnt by using this technology in
the context of chromatin dynamics [31]. Nitzsche reviewed
the recent methods related to gliding motility assays in
conjunction with 3D-nanometry [28]. They provide prac-
tical advice on how to set up gliding assays, acquire high-
precision data from microtubules and attached quantum
dots, and analyze data by 3D-nanometer tracking. Nanoscale
tracking of single particles in fixed cells was demonstrated
in [47], where a range of complex behaviors, possibly due to
binding/unbinding dynamics, is observed.

For direct visualization of the protein dynamics,
Wang et al. combined total internal reflection fluores-
cence microscopy with oblique illumination fluorescence
microscopy to observe the movement of membrane-
anchored green fluorescence proteins in living cells [35].

Kukura et al. present a colocalization methodology
that combines scattering interferometry and single-molecule
fluorescence microscopy to visualize both position and
orientation of single quantum dot-labeled Simian virus 40
particles [18]. Using nanometer spatial with 8 ms temporal
resolution, they observed sliding and tumbling motions
during rapid lateral diffusion on supported lipid bilayers and
repeated back and forth rocking between nanoscopic regions
separated by 9 nm.

4.7. Events and Behaviors. Detection of meaningful events
in spatiotemporal fluorescence image sequences is certainly
important in cellular analysis, for example, membrane
transport and gene-delivery process [32]. Pécot et al. pro-
pose an original patch-based Markov modeling to detect
spatial irregularities in fluorescence images with low false

alarm rates [27]. Toprak and Selvin described some of
the most commonly used fluorescence imaging tools to
measure nanoscale movements and the rotational dynamics
of biomolecules [62].

4.8. Reconstruction. Shape reconstruction of 2D/3D sub-
cellular structures from live cell helps us to understand
the whole object. Helmuth et al. presented model-based
algorithm to reconstruct outlines of subcellular structures
using a subpixel representation [19, 63]. From 2D images,
3D tracking can also be realized by utilizing the exponential
decay of the fluorescence intensity excited by the evanescent
field [64].

5. Conclusion and Future Directions

This paper summarizes recent developments in motion anal-
ysis for microscopic live objects in cellular research. Typical
contributions are addressed for localization, tracking, count,
estimation, reconstruction, modeling, cell analysis, and so
forth. Representatives are listed for people to have a general
overview of state of the art. A number of methods are intro-
duced on motion analysis for microscopic live objects. Most
of the cited works are published reports in the last three years.

Although motion analysis for microscopic live objects
has been developed in many applications as an important
approach to observation and diagnosis, many problems
still exist in its development for biomedical engineering.
Researchers are exerting efforts not only in simple local-
ization, but also in improving the future methods in other
aspects.

(1) Dealing with noisy data: in fluorescence microscopy,
the blurred noisy images acquired are complex to
analyze. Hidden Markov models facilitate extrac-
tion of the sequence of hidden states from noisy
data through construction of probabilistic models.
Since constraints resulting from short data sets and
poisson-distributed photons in like fluorescence can
limit good statistics, additional information criteria
such as peak localization error and chi-square prob-
abilities can incorporate theoretical constraints in
principle [65].

(2) Accurate detection: in live-cell fluorescence mi-
croscopy imaging, the biological images generally
need to detect many subresolution objects. Indeed,
complex interactions between a large number of
small moving particles in a complex scene can-
not be easily modeled, limiting the performance
of object detection and tracking algorithms [30].
Object detection and tracking often perform poorly
in the case of noisy image data [59]. In live-cell
imaging by fluorescence microscopy, the signal-to-
noise ratio can be extremely low, making automated
spot detection a very challenging task [55].

(3) Reliable tracking: reliability is a great concern in
practical applications. Motion analysis relies on many
conditions and parameters. Related techniques rely
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on existing noise statistics, initial positions, and
sufficiently good approximation. Quantitative anal-
ysis of dynamic processes in living cells requires
tracking of hundreds of bright spots in noisy image
sequences [59]. Factors, such as low signal/noise
ratio, unknown number of particles, and fluorophore
blinking and photobleaching, make accurate tracking
over long trajectories very difficult [61]. Existing
tracking methods rarely work when many small and
poorly distinguishable objects interact. Pécot et al.
proposes that another way of tracking that consists in
determining the full trajectories of all the objects, can
be more relevant [24]. Techniques like background
subtraction and Kalman filter are also helpful for
reliable tracking [20]. Rogers et al. designed an
algorithm to accurately track the motion of low-
contrast particles against a background with large
variations in light levels. The method is based on a
polynomial fit of the intensity around each feature
point and is especially suitable for tracking endoge-
neous particles in the cell, imaged with bright field,
phase contrast or fluorescence optical microscopy. It
can also simultaneously track particles of all different
sizes and shapes [66].

(4) Information analysis: advanced methods in computer
vision and image processing are helpful to extract
interesting information. Data analysis requires deep
collaboration between biologists and computer sci-
entists. It is a challenge to transform the vast amounts
of unstructured data into quantitative information
for the discovery of cellular behaviors and the
rigorous testing of mechanistic hypotheses [67, 68].
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[25] P. Ruusuvuori, T. Äijö, S. Chowdhury et al., “Evaluation
of methods for detection of fluorescence labeled subcellular
objects in microscope images,” BMC Bioinformatics, vol. 11,
article 248, 2010.

[26] V. Soppina, A. K. Rai, and R. Mallik, “Simple non-fluorescent
polarity labeling of microtubules for molecular motor assays,”
BioTechniques, vol. 46, no. 7, pp. 543–549, 2009.
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