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During ageing, normal epithelial tissues progressively accumulate clones
carrying mutations that increase mutant cell fitness above that of wild-
type cells. Such mutants spread widely through the tissues, yet despite
this cellular homeostasis and functional integrity of the epithelia are main-
tained. Two of the genes most commonly mutated in human skin and
oesophagus are p53 and Notch1, both of which are also recurrently mutated
in cancers of these tissues. From observations taken in human and mouse
epithelia, we find that clones carrying p53 and Notch pathway mutations
have different clone dynamics which can be explained by their different
responses to local cell crowding. p53 mutant clone growth in mouse epider-
mis approximates a logistic curve, but feedbacks responding to local
crowding are required to maintain tissue homeostasis. We go on to show
that the observed ability of Notch pathway mutant cells to displace the
wild-type population in the mouse oesophageal epithelium reflects a local
density feedback that affects both mutant and wild-type cells equally. We
then show how these distinct feedbacks are consistent with the distribution
of mutations observed in human datasets and are suggestive of a putative
mechanism to constrain these cancer-associated mutants.
1. Introduction
Ageing human organs accumulate somatic mutations [1]. This is exemplified by
the skin and oesophagus, in which mutant clones replace the majority of the
epithelium by old age [2–5]. Several of the mutant genes occur recurrently in
cancer, arguing that the tumours originate from the mutant clones in normal-
appearing tissues. Examples include p53, NOTCH1 and NOTCH2, commonly
mutated in both normal tissues and cancers in skin and oesophagus. How
tissues are able to carry a high burden of oncogenic mutant clones and yet
remain functional has not been resolved.

Both skin andoesophagus consist of layers of keratinocytes (figure 1a). Prolifer-
ation is confined to the deepest, basal cell layer [6,7]. Cell division generates cells
that either go on to divide or differentiate, exiting the cell cycle and migrating
out of the basal layer into the suprabasal cell layers, eventually reaching the
tissue surface fromwhich they are shed (figure 1b). Continual cell shedding creates
a requirement for constant cell proliferation. Cellular homeostasis requires that on
average, each cell divisiongenerates onedividing andonedifferentiatingdaughter.

The dynamics of dividing cells in mouse skin and oesophagus is described
by a simple, non-spatial mathematical model [6–10]. The single progenitor (SP)
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Figure 1. Spatial rules of division and stratification in the simulated tissue.
(a) The architecture of murine stratified squamous epithelial tissues. Prolifer-
ation is restricted to the lowest basal layer. Upon differentiation, basal cells
exit the cell cycle and migrate through suprabasal layers, until eventually,
they are shed from the tissue. Cell production and loss should be perfectly
balanced so that homeostasis and proper tissue function is achieved.
Figure was generated using BioRender.com. (b,c) Schematic representation
of the rules of the spatial SP model. Proliferating cells in yellow and differ-
entiating cells in blue. Proliferating cells undergo a division type with
balanced division outcome probabilities. In the case of mutant cells, division
probabilities are biased, favouring symmetric division, indicated by dashed
red lines. A proliferating cell which is about to divide checks its immediate
neighbourhood for available space. If a vacant site exists (b), one daughter
cell occupies the mother cell’s space and the second the neighbouring
empty space. If there is no empty space in the immediate neighbour (c),
the two daughters occupy the mother cell’s space, thus creating a double-
cell occupancy. Double-state cells are released once a neighbouring lattice
site becomes available. (d ) Illustration of the two-dimensional hexagonal lat-
tice representing the epithelial basal layer. Proliferating cells are able to
divide, while differentiating cells exit the basal layer and are removed
from the simulation. Mutant cells, marked with a red asterisk, have a bias
in producing proliferating daughters.
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model proposes that a single, equipotent progenitor cell
population maintains the tissue. Progenitor cells divide regu-
larly with an overall division rate λ. Divisions give rise to
either two progenitor daughters (AA), two differentiating
daughters (BB) or one daughter of each type (AB). Division
outcome probabilities are balanced, allowing homeostasis to
be achieved across the progenitor population (equation (1.1)):

A!l
AA r
AB 1� 2r
BB r

8<
:

B!G C

C!m ;,

ð1:1Þ

where A represents basal layer progenitor cells, B basal cells
committed to differentiate and C differentiating suprabasal
layer cells. Given the fact that AA symmetric division leads
to clone expansion and BB symmetric division tends towards
clone extinction, the two symmetric division rates should be
equal in order for a steady state in terms of number of cells
to be maintained across the progenitor clone population.
The probabilities of symmetric and asymmetric divisions
are r and 1− 2r, respectively, with 0 < r < 0.5. Differentiating
daughters in the basal layer stratify to the suprabasal layer
at rate Γ and supra basal cells C are shed at rate μ. The
model captures average cell behaviour in homeostasis and
the neutral competition between wild-type cells.

The SP model does not include any consideration of the
spatial location of cells. In wild-type epidermis in homeosta-
sis, live imaging studies have also shown that cell division is
spatially coupled to the exit of a nearby differentiating cell
from the basal layer [11]. Such coupling, together with the
uniformity of the proliferative cell compartment in skin and
oesophagus, explains the ability of a non-spatial model to
describe normal cell dynamics. In transgenic models,
mutations of p53 and a dominant-negative mutant of
Maml1 (DN_Mam1), which inhibits the Notch pathway, have
been induced in scattered single cells in the epidermis and
oesophagus, respectively [12,13]. The SP model is also able
to capture the behaviour of mutant clones at the early
stages of expansion by introducing an imbalance in the prob-
abilities of symmetric cell division outcomes (AA and BB).
At later stages mutant clones fuse, and only the area of the
tissue colonized by mutant cells rather than the cell number
in individual clones is measurable. At this stage, however,
experimental findings diverge widely from the predictions
of the SP model with an imbalance. In both mutant p53
and DN_Maml1 mouse models, colonized tissues remain
normal in appearance and short-term cell tracking indicates
that progenitor cell division outcomes have reverted to bal-
ance with an equal probability of AA and BB division
outcomes within mutant areas [12,13].

The reversion of mutant cell fate from a proliferative bias
towards homeostatic behaviour may also explain how human
tissues tolerate a high burden of diverse mutations. The pro-
liferating cell compartments of skin and oesophagus are
continuous cell sheets with no barriers to restrict the spread
of mutant clones. This allows mutant clones to expand until
they collide with adjacent clones, with fittest clones eliminat-
ing the less fit. Clones thus compete for the fixed space within
the proliferative cell layer, explaining the genetic evidence of
mutant selection seen in mouse and human epithelia
[2,3,5,14]. In mutagen-treated mice, cells at the edge of
clones continue with a bias towards proliferation until they
encounter a clone of similar fitness, when the edge cells
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Figure 2. p53 and DN_Maml1 mutations in mouse epithelia have been shown to have distinct tissue colonization potential that cannot be reproduced by existing
models. (a,b) DN_Maml1 mutants fully colonize the tissue, whereas p53 do so only partially. Figures show the tissue takeover percentage of p53 and DN_Maml1
mutations, as measured in [12,13]. Red dots with error bars correspond to observed mean values with s.e.m. (c,d ) The SP model cannot capture the observed
complete tissue takeover by DN_Maml1 mutated cells, and it is more appropriate to reproduce the phenotypic plasticity of the p53 mutations. This is implemented
as a rule-based model to limit growth to the tissue size. Simulations of the rule-based model were performed using Bio-PEPA, a framework for modelling bio-
chemical networks [21]. (e,f ) Moran-style two-dimensional model. The Moran process is unable to reproduce tissue takeover, either overestimating or
underestimating takeover depending on the specific choice of parameters. In contrast, it appears consistent with DN_Maml1 growth.
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revert towards homeostasis [14]. The mechanisms that under-
pin such fitness sensing and ‘neighbour constraint’ are yet to
be defined. Candidates include the mechanosensing ion
channel PIEZO1 [15,16] and the Notch, Shh and BMP signal-
ling pathways [17,18].

Here, we use a new computational model of clonal com-
petition (figure 1b–d ), to study the clonal dynamics of mutant
p53 and DN_Maml1 clones in transgenic mouse epidermis
and oesophagus. We find the observed differences in
mutant clone dynamics can be explained by different spatial
feedback rules, in response to local cell crowding. This model
is consistent with the known response of epithelial cells to
crowding: increased areal density of keratinocytes promotes
their differentiation and exit from the proliferative cell layer
[19,20]. However, mutant p53 and DN_Maml1 mutations
respond differently to crowding influencing the way each
mutant spreads through the tissue. We go on to explore the
dynamics between simulated p53 and DN_Maml1 mutant
clones competing within the same tissue, showing that the
Notch pathway mutations can be expected to reliably outcom-
pete p53 mutant clones over long periods of time, consistent
with human data.
2. Results
2.1. The spread of p53 and DN_Maml1 carrying

clones cannot be reconciled with existing
models

The study of p53 and DN_Maml1 clone dynamics in mouse
epithelia has indicated that the mutant progenitor cells have
a competitive advantage over their wild-type counterparts,
causing the mutant population to expand super-linearly
[12,13] (electronic supplementary material, figure S1). This
is enabled by an imbalance (δ) in the SP model, where div-
isions resulting in pairs of progenitor cells become more
likely than divisions resulting in differentiated daughters,
leading to the exponential growth of clones. However, the
two mutant types differ in their ability to colonize epithelia
[12,13] (figure 2a,b). Murai et al. [12] studied the fate of epi-
dermal epithelial cells carrying a heterozygous p53 gain-of-
function mutation p53R245W, the mouse equivalent human
p53R248W which is frequently detected in normal human epi-
dermis. By inducing a p53R245W mutation in scattered single
epidermal progenitor cells in transgenic mice, the growth
dynamics of mutant clones in a background of their wild-
type counterparts was tracked. The average p53 mutant
clone size increased super-linearly up to 24 weeks post-
induction indicating their competitive advantage over
wild-type cells. After this period of rapid mutant clone
growth, the expansion rate of p53 mutant cells slowed
considerably so that 30% of the basal layer was colonized
by 15 months after induction of mutant expression (figure 2a).
The rate of mutant cell division did not alter when the
rate of clonal expansion slowed but a small (ca 10%)
increase in basal layer cell areal density was observed.
Together, these findings hint that p53 mutant progenitor
cells adjust their division outcomes in response to alterations
in their local cellular environment.

Alcolea et al. [13] studied the effects of Notch pathway
inhibition in mouse oesophageal epithelial cells. To do this,
they expressed a dominant-negative form of Mastermind-
like 1 protein (DN_Maml1) that binds and sequesters the
intracellular domain of the activated Notch receptor, prevent-
ing it from activating transcription of Notch target genes. The
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mutant Maml1 protein is fused to green fluorescent protein
enabling the mutant cells to be visualized and the size of
mutant clones quantitified. DN_Maml1was expressed in scat-
tered single cells in the esophageal epithelium and the size
distribution of cohorts of the resulting clones was measured
for the next two weeks, after which the rapidly expanding
clones fused together. Subsequently, the area of mutant epi-
thelium was quantified out to 1-year post-induction
(figure 2b; electronic supplementary material, figure S1b).
The growth rate of DN_Maml1 mutant epithelium slowed
beyond three months, but eventually the entire epithelium
was colonized. Once tissue take over was completed, the
imbalance in mutant fate reverted towards normal and a
new homeostatic state with a faster cell turnover was
established.

In seeking to further investigate the different observed
behaviours of p53 and DN_Maml1 mutants, we performed
simulations of the growth of each mutant using a spatial
Moran model and a rule-based model with a carrying
capacity. In the Moran model, each cell had a pre-defined fit-
ness, and at each step of the simulation, a cell had an
opportunity to replace its neighbour based on their relative fit-
ness. In the rule-based model, cell populations were updated
following the SP paradigm with a maximum population
size. Interestingly, neither of these modelling approaches was
able to capture the growth dynamics of both p53 and
DN_Maml1 mutant populations. The rule-based model was
able to recapitulate the tissue colonization by p53 mutant
cells (figure 2c), but not DN_Maml1 growth (figure 2d). Con-
versely, the Moran process was unable to reproduce p53
growth with a single fitness (figure 2e) but it accurately recapi-
tulated the observed tissue takeover of DN_Maml1 mutants
(figure 2f ).
2.2. The distinct growth behaviour of p53 and
DN_Maml1 mutations can be attributed to their
different sensitivity to crowding

Having shown that neither of the models we tested was able
to reproduce both p53 and DN_Maml1 growth we sought to
recapitulate the behaviour of both mutants with a common
mechanism. The previously tested modelling approaches dis-
regarded the local spatial interactions between cells in the
tissue. Nevertheless, there is growing evidence that spatio-
temporal regulation of cell dynamics has a role in both
tissue maintenance and disease [22–24]. Spatial competition
plays an important role in a wide variety of different scen-
arios, altering growth curves in ways that reflect both tissue
structure and experimental methods [25–27]. The finite size
of the basal layer of the tissue constrains clone growth, and
the topology of the cells restrains clonal expansion to the per-
iphery of the clone. These features potentially alter growth
patterns and undermine the validity of the model. In the SP
model specifically, we might expect that average clone size
grows initially linearly, but becomes sublinear as clones
grow large and only can expand through competition with
neighbouring clones at the periphery. Thus, to explore how
space changes growth and how it affects the ability of
mutant cells to spread within the tissue we developed a
spatial SP model (figure 1b–d ) (see Methods for details).

We initially sought to confirm that the SP model
continues to predict experimental data when spatial
competition is explicitly included, starting from a wild-type
tissue. The spatial SP model was initially developed without
accounting for any kind of spatial feedbacks that could influ-
ence cell fate, similar to the non-spatial model. The
simulation outputs revealed that the spatial constraints
imposed by the lattice do not cause the model to deviate
from the experimental data taken from mouse oesophagus.
Specifically, using input parameter values inferred from
mouse oesophageal data [7], the spatial model was able to
reproduce a set of characteristic quantitative properties of
clone size distributions (the hallmarks of a single population
of progenitor cells), as described in [6] (electronic supplemen-
tary material, figure S2). We further extended this testing to
all available datasets and found that the growth patterns
of the new model accurately reproduced experimental
observations (electronic supplementary material, figure S3).

Having confirmed that neutral systems continue to
behave as expected, we moved onto examining the growth
of advantageous mutations. Initial spatial simulations of the
mutant p53 colonization of the epidermis modified a set of
wild-type cells to have an imbalance in symmetric cell fates.
However, visualization of the tissue showed increased pack-
ing of the mutant cells and an increased abundance of
progenitor cells, leading to tissue overcrowding. As the popu-
lation of progenitor cells and double cells grows over time
(i.e. two cells occupying the same lattice space, see Methods
for details), the overall tissue turnover slows as cells no
longer have space to divide (electronic supplementary
material, figure S4a). This is particularly notable in the
mutated regions which become packed earliest and is contra-
dicted by observations which suggest that the tissue is
otherwise morphologically normal. This has practical impli-
cations for the model; simulations can finish within the
lifetime of the mouse when the tissue becomes packed with
double occupancies (electronic supplementary material,
figure S4b,c), whereas the tissue is found to have an increase
in cell density of only approximately 10% [12].

To address these issues, we extended the model to expli-
citly enable feedbacks that limit growth in response to local
crowding. Cell density increases in large areas replaced by
mutant cells and is coincident with a return to neutrality in
experiments [13]. Two classes of feedback were tested based
on the subpopulation of cells that respond to crowding. In
one class, all cells respond to crowding by promoting differ-
entiation (mutant-insensitive feedback) (figure 3a). In the
second class, only mutant cells respond to crowding by redu-
cing their propensity to symmetric division giving dividing
cells (mutant-sensitive feedback) (figure 3b).

Using a fixed division rate λ, stratification rate Γ and sym-
metric division probability r, as inferred in [12],, both
approaches were tested at a range of crowding thresholds
and induction levels. The mutant-insensitive feedback mech-
anism enhanced tissue takeover, and no longer matched
tissue takeover by the end of the mouse lifetime. By contrast,
the mutant-sensitive feedback followed the growth curves
correctly and was broadly robust to the specific threshold
selected (figure 3c,e). Furthermore, simulations no longer fin-
ished in the mouse lifetime and tissue turnover remained
roughly constant suggesting that the growth advantage of
the mutant p53 cells is sensitive to crowding, effectively
acting as a negative feedback to the mutant cell population.
The mutant-sensitive feedback as a more appropriate mech-
anism to describe mutant p53 tissue takeover was further
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confirmed by the fact that it consistently achieved lower
RMSE values compared to the mutant-insensitive feedback
under various parameter sets (electronic supplementary
material, figure S5).

Having shown that the p53 mutant cell growth can be
described by a simple mutant-sensitive feedback, we
revisited and retested DN_Maml1 transgenic mutations in
mouse oesophagus. Testing with both feedback mechanisms,
we found that the mutant-insensitive feedback was required
to capture the rapid takeover, as it matched the experimental
observations on DN_Maml1 tissue colonization. This is
consistent with prior observations that showed, through
EdU labelling experiments, that wild-type cells neighbouring
mutant DN_Maml1 clones were induced to differentiate and
stratify [13]. Visual examination of the underlying simu-
lations suggested that the difference in growth patterns
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between the mutant-insensitive and mutant-sensitive mech-
anisms arises because in the mutant-insensitive feedback,
the reduction in δ in all cells had the effect of ensuring that
cells continued dividing, but maintained the relative advan-
tage of the mutant clone (figure 3d,f ).
publishing.org/journal/rsif
J.R.Soc.Interface
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2.3. Competition
Having shown that both sets of mutations can be understood
in terms of the interactions of the underlying pathways and
the tissue, we sought to assess how simulations with both
feedbacks behaved and how the mutations coexist and inter-
act in the tissue. In humans, the prevalence of mutations
varies between normal oesophagus and the cancers that
derive from it. p53 mutants are present in the great majority
of cancers but are typically present in less than 10% of
normal cells [2,3]. This implies that cancers develop from
the p53 mutant population. By contrast, NOTCH1 mutations
are several fold more common in normal oesophagus than
in cancers, hinting that the loss of NOTCH1 function may
impede malignant transformation. To explore the interactions
of the mutations, we designed a series of different mutational
events to consider how the different mutations interact; co-
induction, timed inductions and variable levels of relative
induction. As mutations that block NOTCH1 function can
be modelled by DN_Maml1, we modelled the effect of
NOTCH1 mutations as an increase in the imbalance com-
bined with the measured increase in division rate, in order
to examine how the different growth behaviours in the
tissue alter the competition.

We found that in all scenarios DN_Maml1 mutant clones
eventually took over the tissue, excluding p53 clones
(figure 4a,b). p53 clones that had grown for extended periods
before DN_Maml1mutations were introduced regressed more
slowly, as the larger clones were more slowly outcompeted,
but ultimately, the constant fitness advantage offered by
DN_Maml1 mutations eventually led to the loss of p53
clones. However, p53 favouring competition scenarios,
where p53 mutants were introduced several weeks earlier
or at a substantially higher proportion, led to a higher rate
of p53 clone regression (figure 4c). We finally explored the
impact of the feedbacks alone, by setting the mutant division
and stratification rates to be the same. We found that the
advantage of DN_Maml1mutants was retained in these simu-
lations (electronic supplementary material, figure S6), though
there was a narrow parameter window where the competing
clones became neutral following takeover (electronic sup-
plementary material, figure S6c).

In seeking to quantitatively describe any distinct spatial
properties of the two competing mutant populations, we
observed that the majority of p53 mutant cells were consist-
ently found in boundaries with DN_Maml1 or wild-type
populations, implying that p53 mutant cells were not able
to form coherent groups in space. On the contrary, the pro-
portion of boundary DN_Maml1 mutant cells progressively
decreased and was almost minimized at later time points,
as they colonized the entire grid (figure 4d ). Furthermore,
the proportion of p53 mutants’ neighbours belonging to a
different type (cell mixing index) was consistently higher,
indicating that p53 mutant cells were more likely to share
junctions with different cell types and therefore tended to
be more dispersed (figure 4e). This is consistent with
experimental observations [12].
The distinct shapes of different clones might also be able
to explain the behaviour observed across different compe-
tition scenarios. When p53 mutants are introduced in the
grid in much higher numbers compared to their DN_Maml1
competitors, they expand and form aggregates more easily
and faster. Regions of tissue containing clones carrying p53
mutations are highly mixed. As such they more quickly
encounter other p53 clones as they spread, reducing their
effective advantage and further slowing their colonization.
The subsequent contact with DN_Maml1 mutant cells which
start expanding substantially in the following time points
would lead to their loss as DN_Maml1 mutant population
is more aggressive.
3. Discussion
Normal, aged human skin and oesphagus are both heavily
mutated and homeostatic, with the tissue retaining normal
histological structure and continuing to function. This is
more remarkable given that a subset of mutations exempli-
fied by p53 and Notch mutants confer a strong competitive
advantage to mutant clones. For tissue integrity to be
retained, these competitive mutants must revert to the neutral
behaviour that characterizes wild-type cells in homeostasis.
The mutant cells must sense and respond to local cell density
within the proliferating cell layer of the epithelium, which
remains constant. Sequencing results in humans and lineage
tracing in transgenic mice indicate Notch pathway mutants
are more effective at colonizing squamous epithelia than
p53 mutants. This difference in clonal expansion is likely to
be multifactorial, but our results point to one difference
between the mutants being their responses to local cell
crowding, likely underpinned by differences in the impact
of the mutations on gene regulatory networks.

We subsequently used the spatial model with the distinct
two feedback mechanisms to explore how mutant p53 and
DN_Maml1 compete within the same tissue. In a wild-type
background, the p53 mutant cell population was always out-
competed by DN_Maml1 population. The winning behaviour
of DN_Maml1 over mutant p53 cells was consistent across a
range of competition scenarios. This argues that Notch
pathway mutants may impede cancer development by
constraining oncogenic p53mutants within epithelia. The dis-
tinct responses of DN_Maml1 and p53 mutants to local cell
crowding may therefore not be accidental. Spatial rules
favouring the dominance of DN_Maml1 over p53 mutants
may have been selected through evolutionary pressure in
order to reduce cancer risk in tissues.

Finally, this work further raises the question of how to
measure and model mutational spread in tissues. A series
of papers have illustrated how the effect of clone expansion
may be modelled using a simple imbalance in fate or a fitness
advantage, and that this could be related to genetic measures
of non-neutrality such as the ratio of protein altering to silent
mutations (dN/dS) [12–14,25,28]. The fundamental obser-
vation that underpins the modelling presented in this work,
however, illustrates that any apparent advantage of an indi-
vidual clone may not necessarily predict its overall takeover
of the tissue. In this context, estimates of selection will rep-
resent a compound of both clonal advantage and tissue-
level effects. Considering the role of feedback systems in the
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Figure 4. DN_Maml1 mutations outcompete p53 mutant cells in competition simulations of oesophagus. (a) Typical competition simulation time lapse assuming
mutant co-induction and same induction level. (b) Tissue takeover percentage of p53 and DN_Maml1 mutations, when both are introduced in the tissue. (c) Average
percentage of p53 mutant takeover loss rate across all simulated competition scenarios. Calculations measured the difference in tissue takeover between the week
when takeover was the highest until the final week of the simulation. (d ) The proportion of boundary cells in p53 and DN_Maml1 mutant cells. (e) Proportion of
neighbours of a different mutation type or wild-type (cell mixing index) as computed for p53 and DN_Maml1 mutations. The cell mixing index was calculated for
each mutant cell and the values were averaged over each mutation. Data correspond to mean values across 100 simulations. Shaded areas correspond to s.d.
Parameters used: DN_Maml1: SP parameters taken from [13], δ = 1 (from [13]), crowding threshold: six cells, δ

0
= 1, p53: SP parameters taken from [7],

δ = 0.95 (from [12]), crowding threshold: six cells.
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tissue, and how they work to maintain homeostasis,
represents a major challenge for future work.
4. Methods
4.1. Spatial single progenitor model
A stochastic cellular automaton (CA) was used to implement the
SP model in two-dimensional space and explore the collective
behaviour of cells in the tissue. A two-dimensional, hexagonal
lattice was used to model the basal layer of the epithelium,
reflecting the observation that each oesophageal basal cell has
six neighbours on average (figure 1d ). Basal epithelial cells
were simulated on a lattice originally containing 10 000 cells,
L = 100 × 100, corresponding to roughly 1% of the area of adult
mouse oesophagus, where periodic boundary conditions were
applied. Each simulation was repeated 100 times.

Each site of the grid may be occupied either by one of the two
cell types described in the SP model, proliferating cells (A) and
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post-mitotic cells (B), or it may remain vacant as a result of a stra-
tification event. Also, a lattice site may be occupied by two cells,
indicating a crowded region. A division event can lead to three
potential outcomes: two proliferating cells, two differentiating
cells or one daughter of each cell type. The neighbourhood in
the SP CA model is defined by the six adjacent places. Division
and stratification events were considered as two independent
processes determined solely by r, λ and Γ parameters. This cell-
autonomous approach could lead to cases where a cell division
event occurs at a region with no available neighbouring vacant
space. In this case, the two daughter cells were placed on the
same grid space, indicating an increased cell density area. Analo-
gously, cases where an empty space generated by a recently
stratified B cell is not rapidly replaced by a nearby newly born
cell might be observed, representing a low cell density area. Con-
sidering the above, each lattice site could have one of the
following seven potential states: A, B, DAA, DAB, DBA, DBB and
‘empty’ (∅), where DAA, DAB, DBA, DBB correspond to double
occupancies (figure 1b,c). Thus, the SP model (equation (1.1))
was extended to explicitly include space as follows:

A �!l

AA r

AB
1
2
� r

BA
1
2
� r

BB r

8>>>>>>><
>>>>>>>:

A X!l

DAA r

DAB
1
2
� r

DBA
1
2
� r

DBB r

8>>>>>>><
>>>>>>>:

B!G �,

ð4:1Þ

where A ∅ denotes a type A cell neighbouring a vacant lattice site
and AX denotes a type A cell neighbouring either a type A or
type B cell, thus indicating that there is no neighbouring empty
space. DAA, DAB, DBA, DBB correspond to double occupancies.
The CA model was developed in NetLogo [29]. We used a
Markovian stochastic simulation algorithm where the basal
layer was simulated as an asynchronous CA. The algorithm
included the following steps:

1. Start by defining a grid of NxN sites (N = 100) with A and B
cells randomly seeded.

2. For every cell on each lattice site, draw a random number
from an exponential distribution with mean 1/λ or 1/Γ to
assign time of next event (division or stratification) for A
and B cells, respectively.

3. Select cell with the smallest next event time assigned. Current
time is updated to the smallest next event time.

4. If an A cell is selected, use a random number from a uniform
distribution U∈ (0, 1) to choose the division type to occur by
comparing U to division probabilities. Assign the division
type as a next event for the selected cell. If a B cell is selected,
assign stratification as a next event for the selected cell.

5. If the next event is division, all neighbouring places are checked
for empty space. In the case of an existing neighbouring space,
one newborn cell will replace the mother cell and the other will
occupy the empty neighbouring space. If there is no empty
neighbouring space available, then both will remain at the
mother cell’s space (creating a ‘double-state’ cell), until a neigh-
bouring space is released. If stratification is the next event, B cell
stratifies, leaving an empty space, which allows potential neigh-
bouring ‘double-state’ daughters to be released.

6. Repeat steps 3–6 until there are no A or B cells left, or time
threshold is reached.
4.2. Spatial single progenitor model of non-neutral

growth

The study of p53 and DN_Maml1 mutant clone dynamics in
mouse epithelia indicated that the mutant progenitor clones are
not in homeostasis in a mixed tissue and have a fitness advan-
tage over their wild-type counterparts [12,13]. This has been
shown to be achieved by having a bias (δ) towards the pro-
duction of proliferating progeny. Such bias results in a gradual
expansion in the proliferating population over time as there are
less chances for the mutant clones to be lost by differentiation.
Thus, mutant clonal expansion appears to be consistent with a
SP model including a cell fate imbalance:

A�!l
AA r(1þ d)
AB 1� 2r
BB r(1� d)

8<
:

B!G �,

ð4:2Þ

where δ denotes the tilt in cell fate. Therefore, δ = 0 corresponds
to homeostasis, δ = 1 implies the absence of symmetric differen-
tiation, leading to persistence and δ =−1 implies the absence of
symmetric division, leading to extrusion.

To simulate mutant clonal dynamics in two-dimensional
space, we used the spatial SP model including a fate imbalance,
considering both wild-type and mutant epithelial cells. The
choice of the grid architecture, the neighbourhood, the number
of states and spatial rules of the CA model were implemented
as described in the homeostatic spatial SP model. However, a
new mutation-status property was introduced to distinguish
mutant cells from wild-type cells. In the case of p53 cells, mutants
have the exact same properties as the wild-type cells and the only
thing that distinguishes the two cell populations is that p53
mutant cells have an innate bias towards the production of pro-
liferating cells (δ) (figure 1b,c). In the case of DN_Maml1 mutant
cells, mutants will also have distinct λ, Γ and r values, as inferred
by [13]. Considering the above, the spatial SP model, initially
described in equation (4.1) was modified as follows, in order to
accommodate the mutant cell population:

A �!l

AA r(1þ d)

AB
1
2
� r

BA
1
2
� r

BB r(1� d)

8>>>>>><
>>>>>>:

A X!l

DAA r(1þ d)

DAB
1
2
� r

DBA
1
2
� r

DBB r(1� d)

8>>>>>><
>>>>>>:

B!G �,

ð4:3Þ

The simulation steps were modified as follows:

1. Start by defining a grid of NxN sites (N = 100) with A and B
cells randomly seeded.

2. Insert randomly mutant cells of type A.
3. For every cell on each lattice site, draw a random number

from an exponential distribution with mean 1/λ or 1/Γ to
assign time of next event (division or stratification) for A
and B cells, respectively.

4. Select cell with the smallest next event time assigned. Current
time is updated to the smallest next event time.

5. If an A cell is selected, use a random number from a uniform
distribution U∈ (0, 1) to choose the division type to occur by
comparing U to division probabilities. Symmetric division
probabilities for mutant cells are biased according to δ.
Assign the division type as a next event for the selected
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cell. If a B cell is selected, assign stratification as a next event
for the selected cell.

6. If the next event is division, all neighbouring spaces are
checked for empty space. In the case of an existing neighbour-
ing space, one new daughter cell will replace the mother cell
and the other will occupy the empty neighbouring space. If
there is no empty neighbouring space available then both
will remain at the mother cell’s space (creating a ‘double-
state’ cell), until a neighbouring space is released. If stratifica-
tion is the next event, B cell stratifies, leaving an empty space,
which allows a pair of potential neighbouring ‘double-state’
daughters to be released.

7. Repeat steps 4–7 until there are no A or B cells left, or time
threshold is reached.

To introduce feedbacks in the non-neutral simulations, we
followed the same steps and modified the division probabilities.
To perform simulations with the mutant-insensitive feedback, an
additional fate bias parameter, δ

0
, was introduced. The value of

δ
0
depends on the local cell density, i.e. number of neighbouring

cells. A neighbourhood (n) consisting of more than a defined
number of cells would be considered as ‘crowded’ whereas
fewer neighbouring cells than the defined crowding threshold
would indicate an underpopulated region (’empty’). In the
former case, δ

0
is negative rendering the fate of dividing cells

tilted towards symmetric differentiation to release crowding. In
the latter case, a positive δ

0
is chosen, favouring symmetric div-

ision to fill the empty sites. When the neighbourhood is neither
‘crowded’ nor ‘empty’, this indicates that the local cell density
is homeostatic and therefore δ

0
= 0:

A �!l

AA r(1þ dþ d0)

AB
1
2
� r

BA
1
2
� r

BB r(1� d� d0)

8>>>>>><
>>>>>>:

A X!l

DAA r(1þ dþ d0)

DAB
1
2
� r

DBA
1
2
� r

DBB r(1� d� d0)

8>>>>>><
>>>>>>:

d0 !
þ n , cell density cutoff
0 n ¼ cell density cutoff
� n . cell density cutoff

B!G �,

ð4:4Þ

where δ
0
∈ [0, 1]. As each cell on the grid has six neighbours in

normal conditions, i.e. no overcrowding, no gaps, the local cell
density crowding cut-off was set to six cells. This reflects the top-
ology of the healthy tissue. Furthermore, as wild-type cells do
not have a δ, they would solely respond to the cell density bias
(δ

0
), whereas in the case of mutant cells the cell density bias

(δ
0
) and their innate fate bias (δ) would be counterbalanced

(equation (4.4)). To avoid large increases in overall tissue cell
density, an additional rule was applied to every cell in the grid
that had an overcrowded neighbourhood (n > 8 cells). In this
case, the probability of that cell undergoing symmetric division
was minimized (AA = 0, BB = 2r).

To perform simulations with the mutant-sensitive feedback
mechanism, no additional cell density fate bias parameter (δ

0
)

was used but mutants were set to lose their innate bias towards
the production of proliferating progeny, (δ), in response to
crowding in their local neighbourhood. Thus, the mutant-sensi-
tive feedback model can be described by equation (4.3) which
describes a spatial model with fate bias. The value of δ parameter
is turned off when the local cell density (i.e. number of cells) of a
dividing mutant cell’s neighbourhood consists of more than a
defined crowding threshold, switching the mutant behaviour to
balanced mode (δ = 0). Moreover, to allow for crowding release,
induced by the double-state cells observed in mutant-sensitive
feedback simulations, we introduced an additional rule where
every new division that gave rise to a double occupancy consist-
ing of at least one differentiating cell (DAB, DBA, DBB) would lead
to an instantaneous stratification event, that is, the removal of
one B cell from the simulation. This additional rule is consistent
with previous reports of cell extrusion events to compensate pro-
liferation induced local stress [16,30,31].

To perform mutant competition simulations, both mutant-
sensitive and mutant-insensitive feedback rules were introduced
in the same simulation. p53 mutant cells followed the mutant-
sensitive feedback while DN_Maml1 mutants and wild-type
cells followed the mutant-insensitive feedback.
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with a readme file describing their use.

Authors’ contributions. V.K., P.J. and B.H. wrote the manuscript. V.K.
wrote code, performed simulations and analysed data. M.H. wrote
code and performed Moran model simulations. B.H. supervised
and designed the study. All authors were responsible for editing
the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was supported through a Grant-in-Aid to the MRC
Cancer unit and core grants from the Wellcome Trust to the Well-
come Sanger Institute, 098051 and 206194. M.W.J.H. acknowledges
support from the Harrison Watson Fund at Clare College, Cam-
bridge. B.A.H. and V.K. acknowledge support from the Royal
Society (grant no. UF130039). P.H.J. is supported by a Cancer
Research UK Programme grant (nos. C609/A17257 and C609/
A27326).
Acknowledgements. We thank the Hall and Jones groups for useful
discussions.
References
1. Blokzijl F et al. 2016 Tissue-specific mutation
accumulation in human adult stem cells during
life. Nature 538, 260–264. (doi:10.1038/
nature19768)

2. Martincorena I et al. 2018 Somatic mutant clones
colonize the human esophagus with age. Science
362, 911–917. (doi:10.1126/science.aau3879)

3. Martincorena I et al. 2015 High burden and
pervasive positive selection of somatic mutations in
normal human skin. Science 348, 880–886. (doi:10.
1126/science.aaa6806)
4. Yokoyama A et al. 2019 Age-related remodelling of
oesophageal epithelia by mutated cancer drivers. Nature
565, 312–317. (doi:10.1038/s41586-018-0811-x)

5. Fowler JC et al. 2021 Selection of oncogenic mutant
clones in normal human skin varies with body site.
Cancer Disc. 11, 340–361. (doi:10.1158/2159-8290.
CD-20-1092)

6. Clayton E, Doupé DP, Klein AM, Winton DJ, Simons
BD, Jones PH. 2007 A single type of progenitor cell
maintains normal epidermis. Nature 446, 185–189.
(doi:10.1038/nature05574)
7. Doupe DP, Alcolea MP, Roshan A, Zhang G,
Klein AM, Simons BD, Jones PH. 2012 A single
progenitor population switches behavior to
maintain and repair esophageal epithelium. Science
(New York, NY) 337, 1091–1093. (doi:10.1126/
science.1218835)

8. Doupé DP, Klein AM, Simons BD, Jones PH. 2010
The ordered architecture of murine ear epidermis is
maintained by progenitor cells with random fate.
Dev. Cell 18, 317–323. (doi:10.1016/j.devcel.2009.
12.016)

http://dx.doi.org/10.1038/nature19768
http://dx.doi.org/10.1038/nature19768
http://dx.doi.org/10.1126/science.aau3879
http://dx.doi.org/10.1126/science.aaa6806
http://dx.doi.org/10.1126/science.aaa6806
http://dx.doi.org/10.1038/s41586-018-0811-x
http://dx.doi.org/10.1158/2159-8290.CD-20-1092
http://dx.doi.org/10.1158/2159-8290.CD-20-1092
http://dx.doi.org/10.1038/nature05574
http://dx.doi.org/10.1126/science.1218835
http://dx.doi.org/10.1126/science.1218835
http://dx.doi.org/10.1016/j.devcel.2009.12.016
http://dx.doi.org/10.1016/j.devcel.2009.12.016


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210607

10
9. Lim X, Tan SH, Koh WLC, Chau RMW, Yan KS, Kuo
CJ, Van Amerongen R, Klein AM, Nusse R. 2013
Interfollicular epidermal stem cells self-renew via
autocrine Wnt signaling. Science (New York, NY)
342, 1226–1230. (doi:10.1126/science.1239730)

10. Piedrafita G, Kostiou V, Wabik A, Colom B,
Fernandez-Antoran D, Herms A, Murai K, Hall BA,
Jones PH. 2020 A single-progenitor model as the
unifying paradigm of epidermal and esophageal
epithelial maintenance in mice. Nat. Commun. 11,
1429. (doi:10.1038/s41467-020-15258-0)

11. Mesa KR, Kawaguchi K, Cockburn K, Gonzalez D,
Boucher J, Xin T, Klein AM, Greco V. 2018
Homeostatic epidermal stem cell self-renewal is
driven by local differentiation. Cell Stem Cell 23,
677–686.e4. (doi:10.1016/j.stem.2018.09.005)

12. Murai K et al. 2018 Epidermal tissue adapts to
restrain progenitors carrying clonal p53 mutations.
Cell Stem Cell 23, 687–699.e8. (doi:10.1016/j.stem.
2018.08.017)

13. Alcolea MP, Greulich P, Wabik A, Frede J, Simons
BD, Jones PH. 2014 Differentiation imbalance in
single oesophageal progenitor cells causes clonal
immortalization and field change. Nat. Cell Biol. 16,
615–622. (doi:10.1038/ncb2963)

14. Colom B et al. 2020 Spatial competition shapes the
dynamic mutational landscape of normal
esophageal epithelium. Nat. Genet. 52, 604–614.
(doi:10.1038/s41588-020-0624-3)

15. Gudipaty SA, Rosenblatt J. 2017 Epithelial cell
extrusion: pathways and pathologies. Seminars Cell
Dev. Biol. 67, 132–140. (doi:10.1016/j.semcdb.
2016.05.010)

16. Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H,
Chien C-B, Morcos PA, Rosenblatt J. 2012 Crowding
induces live cell extrusion to maintain homeostatic
cell numbers in epithelia. Nature 484, 546–549.
(doi:10.1038/nature10999)

17. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S.
2012 The Notch signalling system: recent
insights into the complexity of a conserved
pathway. Nat. Rev. Genet. 13, 654–666. (doi:10.
1038/nrg3272)

18. Rosekrans SL, Baan B, Muncan V, Van Den Brink GR.
2015 Esophageal development and
epithelial homeostasis. Am. J. Physiol. 309,
G216–228. (doi:10.1152/ajpgi.00088.2015)

19. Watt FM, Jordan PW, O’neill CH. 1988 Cell shape
controls terminal differentiation of human
epidermal keratinocytes. Proc. Natl Acad. Sci. USA
85, 5576–5580. (doi:10.1073/pnas.85.15.5576)

20. Roshan A, Murai K, Fowler J, Simons BD,
Nikolaidou-Neokosmidou V, Jones PH. 2016 Human
keratinocytes have two interconvertible modes of
proliferation. Nat. Cell Biol. 18, 145–56. (doi:10.
1038/ncb3282)

21. Ciocchetta F, Hillston J. 2009 Bio-PEPA: a framework
for the modelling and analysis of biological systems.
Theoret. Comp. Sci. 410, 3065–3084. (doi:10.1016/j.
tcs.2009.02.037)

22. Van Der Heijden M et al. 2019 Spatiotemporal
regulation of clonogenicity in colorectal
cancer xenografts. Proc. Natl Acad. Sci.
USA 116, 6140–6145. (doi:10.1073/pnas.
1813417116)

23. Lynch MD, Lynch CNS, Craythorne E, Liakath-Ali K,
Mallipeddi R, Barker JN, Watt FM. 2017 Spatial
constraints govern competition of mutant clones in
human epidermis. Nat. Commun. 8, 1119. (doi:10.
1038/s41467-017-00993-8)

24. Streichan SJ, Hoerner CR, Schneidt T, Holzer D,
Hufnagel L. 2014 Spatial constraints control cell
proliferation in tissues. Proc. Natl Acad. Sci. USA
111, 5586–5591. (doi:10.1073/pnas.1323016111)

25. Hall MWJ, Jones PH, Hall BA. 2019 Relating
evolutionary selection and mutant clonal dynamics
in normal epithelia. J. R. Soc. Interface 16,
20190230. (doi:10.1098/rsif.2019.0230).

26. Noble R, Burri D, Kather JN, Beerenwinkel N. 2019
Spatial structure governs the mode of tumour
evolution. bioRxiv (Figure 1), 1–18.

27. Chkhaidze K, Heide T, Werner B, Williams MJ, HuangW,
Caravagna G, Graham TA, Sottoriva A. 2019 Spatially
constrained tumour growth affects the patterns of
clonal selection and neutral drift in cancer genomic
data. PLoS Comput. Biol. 15, e1007243. (doi:10.1371/
journal.pcbi.1007243)

28. Frede J, Greulich P, Nagy T, Simons BD, Jones PH.
2016 A single dividing cell population with
imbalanced fate drives oesophageal tumour growth.
Nat. Cell Biol. 18, 967–978. (doi:10.1038/ncb3400)

29. Wilensky U, Evanston I. 1999 Netlogo: center for
connected learning and computer-based modeling.
Evanston, IL: Northwestern University.

30. Marinari E, Mehonic A, Curran S, Gale J, Duke T,
Baum B. 2012 Live-cell delamination
counterbalances epithelial growth to limit tissue
overcrowding. Nature 484, 542–545. (doi:10.1038/
nature10984)

31. Miroshnikova YA et al. 2018 Adhesion forces and
cortical tension couple cell proliferation and
differentiation to drive epidermal stratification. Nat.
Cell Biol. 20, 69–80. (doi:10.1038/s41556-017-
0005-z)

32. Kostiou V, Hall MW, Jones PH, Hall BA. 2021
Simulations reveal that different responses to cell
crowding determine the expansion of p53 and Notch
mutant clones in squamous epithelia. Figshare.

http://dx.doi.org/10.1126/science.1239730
http://dx.doi.org/10.1038/s41467-020-15258-0
http://dx.doi.org/10.1016/j.stem.2018.09.005
http://dx.doi.org/10.1016/j.stem.2018.08.017
http://dx.doi.org/10.1016/j.stem.2018.08.017
http://dx.doi.org/10.1038/ncb2963
http://dx.doi.org/10.1038/s41588-020-0624-3
http://dx.doi.org/10.1016/j.semcdb.2016.05.010
http://dx.doi.org/10.1016/j.semcdb.2016.05.010
http://dx.doi.org/10.1038/nature10999
http://dx.doi.org/10.1038/nrg3272
http://dx.doi.org/10.1038/nrg3272
http://dx.doi.org/10.1152/ajpgi.00088.2015
http://dx.doi.org/10.1073/pnas.85.15.5576
http://dx.doi.org/10.1038/ncb3282
http://dx.doi.org/10.1038/ncb3282
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/10.1073/pnas.1813417116
http://dx.doi.org/10.1073/pnas.1813417116
http://dx.doi.org/10.1038/s41467-017-00993-8
http://dx.doi.org/10.1038/s41467-017-00993-8
http://dx.doi.org/10.1073/pnas.1323016111
http://dx.doi.org/10.1098/rsif.2019.0230
http://dx.doi.org/10.1371/journal.pcbi.1007243
http://dx.doi.org/10.1371/journal.pcbi.1007243
http://dx.doi.org/10.1038/ncb3400
http://dx.doi.org/10.1038/nature10984
http://dx.doi.org/10.1038/nature10984
http://dx.doi.org/10.1038/s41556-017-0005-z
http://dx.doi.org/10.1038/s41556-017-0005-z

	Simulations reveal that different responses to cell crowding determine the expansion of p53 and Notch mutant clones in squamous epithelia
	Introduction
	Results
	The spread of p53 and DN_Maml1 carrying clones cannot be reconciled with existing  models
	The distinct growth behaviour of p53 and DN_Maml1 mutations can be attributed to their different sensitivity to crowding
	Competition

	Discussion
	Methods
	Spatial single progenitor model
	Spatial single progenitor model of non-neutral growth
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	Acknowledgements
	References


