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Recently, the sparsity which is implicit in MR images has been successfully exploited for fast MR imaging with incomplete
acquisitions. In this paper, two novel algorithms are proposed to solve the sparse parallel MR imaging problem, which consists
of 𝑙
1
regularization and fidelity terms. The two algorithms combine forward-backward operator splitting and Barzilai-Borwein

schemes. Theoretically, the presented algorithms overcome the nondifferentiable property in 𝑙
1
regularization term. Meanwhile,

they are able to treat a general matrix operator that may not be diagonalized by fast Fourier transform and to ensure that a well-
conditioned optimization system of equations is simply solved. In addition, we build connections between the proposed algorithms
and the state-of-the-art existing methods and prove their convergence with a constant stepsize in Appendix. Numerical results and
comparisons with the advanced methods demonstrate the efficiency of proposed algorithms.

1. Introduction

Reducing encoding is one of the most important ways for
accelerating magnetic resonance imaging (MRI). Partially
parallel imaging (PPI) is a widely used reduced-encoding
technique in clinic due to many desirable properties such
as linear reconstruction, easy use, and 𝑔-factor for clearly
characterizing the noise property [1–6]. Specifically, PPI
exploits the sensitivity prior in multichannel acquisitions to
take less encodings than the conventional methods [7]. Its
acceleration factor is restricted to the number of channels.
More and more large coil arrays, such as 32-channel [8–11],
64-channel [12], and even 128-channel [13], have been used
for faster imaging. However, the acceleration ability of PPI
under the condition of ensuring certain signal noise ratio
(SNR) is still limited because the imaging system is highly
ill-posed and can enlarge the sampling noise with higher
acceleration factor. One solution is to introduce some other
prior information as the regularization term into the imaging
equation. Sparsity prior, becoming more and more popular
due to the emergence of compressed sensing (CS) theory

[14–16], has been extensively exploited to reconstruct target
image from a small amount of acquisition data (i.e., below
theNyquist sampling rate) inmanyMRI applications [17–20].
Because PPI and compressed sensingMRI (CSMRI) are based
on different ancillary information (sensitivity for the former
and sparseness for the latter), it is desirable to combine them
for further accelerating the imaging speed.

Recently, SparseSENSE and its equivalence [1, 3, 21–25]
have been proposed as a straightforward method to combine
PPI and CS.The formulation of this method is similar to that
in SparseMRI, except that the Fourier encoding is replaced
by the sensitivity encoding (comprising Fourier encoding and
sensitivity weighting). Generally, SparseSENSE aims to solve
the following optimization problem:

min
𝑥∈C𝑛

‖𝐷𝑥‖1 +
𝜆

2

𝐴𝑥 − 𝑦

2

2
, (1)

where the first term is the regularization term and the second
one is the data consistency term. ‖ ⋅ ‖

1
and ‖ ⋅ ‖

2
represent
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separately 1-norm and 2-norm and 𝑥 ∈ C𝑛 is the to-be-
reconstructed image. 𝐷 ∈ C𝑚×𝑛 denotes a special transform
(e.g., spatial finite difference andwavelet) and the term ‖𝐷𝑥‖

1

controls the solution sparsity. 𝐴 and 𝑦 are the encoding
matrix and the measured data, respectively:

𝐴 = (

𝐹
𝑝
𝑆
1

.

.

.

𝐹
𝑝
𝑆
𝑘

) ∈ C
𝑘𝑙×𝑛

(𝑙 < 𝑛) ,

𝑦 = (

𝑦
1

.

.

.

𝑦
𝑘

) ∈ C
𝑘𝑙
,

(2)

where 𝐹
𝑝
is the partial Fourier transform and 𝑆

𝑘
∈ C𝑛×𝑛 is

the diagonal sensitivity map for receiver 𝑘. 𝑦
𝑘
∈ C𝑙×1 is the

measured 𝑘-space data at receiver 𝑘. In this paper, we mainly
solve the popular total variation (or its improved version:
total generalized variation) based SparseSENSE model, that
is, ‖𝐷𝑥‖

1
= ‖𝑥‖TV (or ‖𝐷‖

1
= ‖𝑥‖TGV).

For the minimization (1), there exists computational
challenge not only from the nondifferentiability of 𝑙

1
norm

term but also from the ill-condition of the large size inversion
matrix 𝐴. Further, the computational complexity becomes
more and more huge if we try to improve the performance of
SparseSENSE by using large coil arrays, high undersampling
factor, or some more powerful transformations (which are
usually nonorthogonal) to squeeze sparsity. Therefore, rapid
and efficient numerical algorithms are highly desirable, espe-
cially for large coil arrays, high undersampling factor, and
general sparsifying transform.

Several rapid numerical algorithms can solve the numer-
ical difficulties, which are, for example, alternating direction
method of multipliers (ADMM) [26], augmented Lagrangian
method (ALM) [27], splitting Bregman algorithm (SBA) [28],
splitting Barzilai-Borwein (SBB) [24], and Bregman operator
splitting (BOS) [29]. The efficiency of these methods largely
depends on the special structure of the matrix operator𝐷𝑇𝐷
(such as Toeplitz matrix and orthogonal matrix) and the
encoding kernel (without the sensitivity maps). However,
they are not suitable for simultaneously dealing with general
regularization operator 𝐷 and the parallel encoding matrix
𝐴. That is, these algorithms are not able to solve the problem
(1) efficiently because the complex inversion of the large size
matrix has to be computed, if 𝐷𝑇𝐷 and/or 𝐴

𝑇
𝐴 cannot

be diagonalized directly by fast Fourier transform (FFT).
Alternating minimization (AM) algorithm can address the
issue of general 𝐷 and 𝐴, which is a powerful optimization
scheme that breaks a complex problem into simple subprob-
lems [3]. But the addition of new variable may slow the
speed of convergence. Our numerical results in Section 4 also
demonstrate that the alternating minimization algorithm for
large coil data is not very effective in the aspect of convergence
speed. Table 1 illustrates the ability of working on general 𝐷
and 𝐴 (without any preconditioning) for these algorithms.

Table 1: The classification of algorithms for solving the Spars-
eSENSE model.

ADMM ALM SBA BOS SBB AM
Works for general𝐷? No No No No No Yes
Works for general 𝐴? No No No Yes Yes Yes

We can see that only AM is able to deal with general operators
simultaneously.

To solve the problems existing in the algorithms men-
tioned above, this paper develops two fast numerical algo-
rithms based on the operator splitting and Barzilai-Borwein
techniques. The proposed algorithms can be classified into
the forward backward splitting (FBS) method [30] or its
variations. Different from some existing fast algorithms, the
proposed algorithms can treat general matrix operators 𝐷
and 𝐴 and avoid solving a partial differential equation so
as to save huge computational cost. The superiority of our
algorithms lies in that operator splitting is applied to both
regularization term and data consistency term. Meanwhile,
they ensure that a well-posed optimization system of equa-
tion is simply solved. Barzilai-Borwein (BB) stepsize selection
scheme [31] is adopted for much faster computation speed.

This paper is organized as follows. In Section 2, a
review on some related numerical methods for solving the
SparseSENSE model is given. In Section 3, two algorithms
are proposed as variations of forward-backward splitting
scheme. We compare the proposed algorithms with popular
algorithms based on the SparseSENSE model in Section 4.
In Section 5, we discuss the parameters selection of the pro-
posed algorithms and the connections between the proposed
algorithms and the existing algorithms. Section 6 concludes
this paper. Appendix proves the convergence of the proposed
algorithms with constant stepsizes.

2. Related Work

In the early works, gradient descent methods with explicit
or semi-implicit schemes [19, 32] were usually used to
solve problem (1), in which the nondifferentiable norm was
approximated by a smooth term:

‖𝑥‖TV,𝜀 =
𝑛

∑

𝑖=1

√𝐷𝑖𝑥

2

2
+ 𝜀, (3)

where 𝐷
𝑖
𝑥 ∈ R2 contains the forward finite differences of

𝑥. The selection of the regulating positive parameter 𝜀 is
crucial for the reconstruction results and convergence speed.
A large parameter encourages a fast convergence rate but
fails to preserve high quality details. A small one preserves
fine structures in the reconstruction at the expense of slow
convergence.

The methods in [33, 34] and the split Bregman method
[28] equivalent to the alternating direction method of multi-
pliers [26] were presented for solving minimization (1). The
efficiency of the algorithms benefits from the soft shrinkage
operator and the special structure of the encodingmatrix and
sparse transform. This requires that both 𝐴

𝑇
𝐴 and 𝐷

𝑇
𝐷 in
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the optimal equation on 𝑥 can be directly diagonalized by
FFT. But these methods may not be suitable for the parallel
encoding matrix 𝐴 and more general transform 𝐷. They are
even ill-posed if Null(𝐴) ∩ Null(𝐷) ̸= {0}, where Null(⋅)
represents the null space of the operator. In addition, the
augmented Lagrangian method in [27] preconditioned the
encoding matrix 𝐴 and inevitably computed the inversion of
the matrix including general𝐷𝑇𝐷. So, it is also invalid in the
computational efficiency.

The Bregman operator splitting (BOS) method replaces
‖𝐴𝑥 − 𝑦‖

2

2
by a proximal-like term [29]. BOS is able to deal

with 𝐴 of uncertainty structure by the following iterations:

𝑧
𝑘+1

= 𝛿𝑥
𝑘
− 𝐴
𝑇
(𝐴𝑥
𝑘
− 𝑦)

𝑠
𝑘+1

= arg min
𝑠

‖𝑠‖1

+
𝜌

2


𝑠 − (𝑤

𝑘
+ 𝐷𝑥
𝑘
)


2

2

(𝜌𝐷
𝑇
𝐷 + 𝜆𝛿𝐼) 𝑥

𝑘+1
= 𝜌𝐷
𝑇
(𝑠
𝑘+1

− 𝑤
𝑘
) + 𝜆𝑧

𝑘+1

𝑤
𝑘+1

= 𝑤
𝑘
+ 𝐷𝑥
𝑘+1

− 𝑠
𝑘+1

.

(4)

However, a partial differential equation including 𝐷
𝑇
𝐷

should be solved as indicated in (4). This equation may bring
heavy computation for the general regularization operator
𝐷. To solve the problem of heavy computation, Ye et al.
presented a SBB scheme by utilizing the BB stepsize [24].
However, these algorithmsmay be not efficient for the general
𝐷 if the matrix operator𝐷𝑇𝐷 cannot be diagonalized by fast
transform.

Consequently, minimization (1) can be written as a
saddle-point problem:

min
𝑥∈C𝑛

max
𝑤∈𝑋

⟨𝑥,𝐷
T
𝑤⟩ +

𝜆

2

𝐴𝑥 − 𝑦

2

2
, (5)

where 𝑋 = {𝑧 : 𝑧 ∈ C𝑚, |𝑤
𝑗
| ≤ 1 for 𝑗 = 1, 2, . . . , 𝑚}.

Although the primal-dual hybrid gradient (PDHG) method
alternately updates the primal and dual variables 𝑥 and 𝑧

[35], its efficiency relies on the special structure of 𝐴. That
is, 𝐴𝑇𝐴 can be diagonalized directly by fast transform. The
alternating minimization (AM) algorithm [3] reduces the
PPI reconstruction problem with regularization into the TV-
based image denoising and least square (LS) subproblems as

V𝑘+1 = argmin
V

‖V‖TV + 𝛼 ‖V − 𝑥‖
2

2

𝑥
𝑘+1

= argmin
𝑥

𝜆

2

𝐴𝑥 − 𝑦

2

2
+ 𝛼 ‖V − 𝑥‖2

2
.

(6)

The AM algorithm is updated as follows:

𝑧
𝑘+1

= 𝛿
𝑘
𝑥
𝑘
− 𝐴
𝑇
(𝐴𝑥
𝑘
− 𝑦)

𝑤
𝑘+1

= argmin
𝑤∈𝑋

1

2


𝑤 − (𝑤

𝑘
+ 𝜏
𝑘
𝐷
𝑘V𝑘)



2

2

V𝑘+1 = (1 + 2𝛼𝜃
𝑘
)
−1

(V𝑘 + 2𝛼𝜃
𝑘
𝑥
𝑘
− 𝜃
𝑘
𝐷
𝑇
𝑤
𝑘+1

)

𝑥
𝑘+1

= (𝜆𝛿
𝑘
+ 2𝛼)

−1

(2𝛼V𝑘+1 + 𝜆𝑧𝑘+1)

𝛿
𝑘+1

=


𝐴 (𝑥
𝑘+1

− 𝑥
𝑘
)


2

2

𝑥
𝑘+1 − 𝑥𝑘


2

2

,

(7)

where the stepsize is updated by the rules 𝜏
𝑘
= 0.2 + 0.08𝑘,

𝜃
𝑘
= (0.5 − 5/(15 + 𝑙))/𝜏

𝑘
[35].

3. Algorithm Framework

In this section, we propose two algorithms for solving the
SparseSENSE model (1), which are based on the operator
splitting scheme and connected by Yosida approximation.
We deduce the algorithms with the fixed-point technology as
follows.

For the convenience of derivation, we denote ‖𝐷 ⋅ ‖
1
by

(𝜑 ∘ 𝐷)(⋅) and rewrite the SparseSENSE model as

min
𝑥∈C𝑛

(𝜑 ∘ 𝐷) (𝑥) +
𝜆

2

𝐴𝑥 − 𝑦

2

2
. (8)

By the classic arguments of convex analysis, solution 𝑥∗ to (8)
satisfies the first-order optimality condition:

0 ∈ 𝜕 (𝜑 ∘ 𝐷) (𝑥
∗
) + 𝜆𝐴

𝑇
(𝐴𝑥
∗
− 𝑦) , (9)

where 𝜕(𝜑 ∘ 𝐷)(𝑧) is the subdifferential of (𝜑 ∘ 𝐷) at point
𝑧. According to the chain rule, subdifferential 𝜕(𝜑 ∘ 𝐷) is
identified by

𝜕 (𝜑 ∘ 𝐷) = 𝐷
𝑇
∘ (𝜕𝜑) ∘ 𝐷. (10)

By substituting it into (9) and splitting, we get the equivalent
formulation:

𝑧
∗
= 𝑥
∗
− 𝛿
−1
𝐴
𝑇
(𝐴𝑥
∗
− 𝑦) ,

𝑤
∗
∈ 𝜕𝜑 (𝐷𝑥

∗
) ,

0 = 𝐷
𝑇
𝑤
∗
+ 𝜆𝛿 (𝑥

∗
− 𝑧
∗
) .

(11)

In addition, for any positive number 𝛾, we have

𝑤
∗
∈ 𝜕𝜑 (𝐷𝑥

∗
) ⇐⇒

𝛾𝑤
∗
+ 𝐷𝑥
∗
∈ 𝛾𝜕𝜑 (𝐷𝑥

∗
) + 𝐷𝑥

∗
⇐⇒

𝐷𝑥
∗
= Prox

𝛾𝜑
(𝛾𝑤
∗
+ 𝐷𝑥
∗
) ⇐⇒

𝛾𝑤
∗
= 𝛾𝑤
∗
+ 𝐷𝑥
∗
− Prox

𝛾𝜑
(𝛾𝑤
∗
+ 𝐷𝑥
∗
) ,

(12)
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where the proximal operator Prox
𝛾𝜑
(V) is defined as

Prox
𝛾𝜑
(V) = argmin

𝑢

𝜑 (𝑢) +
1

2𝛾
‖𝑢 − V‖2

2
. (13)

Therefore, when the Barzilai-Borwein technique is involved,
the solution to the minimization problem (1) can be obtained
quickly based on the following updating:

𝑧
𝑘+1

= 𝑥
𝑘
− 𝛿
−1

𝑘
𝐴
𝑇
(𝐴𝑥
𝑘
− 𝑦)

𝑠
𝑘+1

= argmin
𝑠

𝜑 (𝑠) +
1

2𝛾


𝑠 − (𝛾𝑤

𝑘
+ 𝐷𝑥
𝑘
)


2

2

𝛾𝑤
𝑘+1

= 𝛾𝑤
𝑘
+ 𝐷𝑥
𝑘
− 𝑠
𝑘+1

𝑥
𝑘+1

= 𝑧
𝑘+1

− (𝜆𝛿
𝑘
)
−1

𝐷
𝑇
𝑤
𝑘+1

𝛿
𝑘+1

=


𝐴 (𝑥
𝑘+1

− 𝑥
𝑘
)


2

2

𝑥
𝑘+1 − 𝑥𝑘


2

2

.

(14)

The above iterations can be identified as a forward-backward
operator splitting method [36]. Comparing (14) to (4), the
partial differential equation in (4) is not involved. Since𝜑(⋅) =
‖⋅‖
1
in the SparseSENSEmodel (1), the proximal operator is a

shrinkage operator that is able to solve 𝑠𝑘+1 quickly from the
following formulation:

Prox
𝛾‖⋅‖
1

(V) =
V

‖V‖2
max (‖V‖2 − 𝛾, 0) . (15)

The proposed algorithm (14) is referred to as the forward-
backward operator splitting shrinkage (FBOSS) algorithm.

Considering Moreau’s decomposition [30], for the proxi-
mal operator there exists a connection as follows:

V = Prox
𝛾𝜑
(V) + 𝛾Prox

𝜑
∗
/𝛾
(
V
𝛾
) , (16)

where 𝜑∗ represents the conjugate function of 𝜑. Applying
(16) to the updates in (14), for all 𝑘we get a modified iterating
sequences as

𝑧
𝑘+1

= 𝑥
𝑘
− 𝛿
−1

𝑘
𝐴
𝑇
(𝐴𝑥
𝑘
− 𝑦)

𝑤
𝑘+1

= argmin
𝑡∈𝑋

𝜑
∗
(𝑡) +

𝛾

2


𝑡 − (𝑤

𝑘
+ 𝛾
−1
𝐷𝑥
𝑘
)


2

2

𝑥
𝑘+1

= 𝑧
𝑘+1

− (𝜆𝛿
𝑘
)
−1

𝐷
𝑇
𝑤
𝑘+1

𝛿
𝑘+1

=


𝐴 (𝑥
𝑘+1

− 𝑥
𝑘
)


2

2

𝑥
𝑘+1 − 𝑥𝑘


2

2

.

(17)

Obviously, the proximal operator Prox
𝛾𝜑
∗ for minimization

(1) is a projection operator and 𝑋 = {𝑥 ∈ C𝑛 : |𝑥
𝑗
| ≤

1 for 𝑗 = 1, 2, . . . , 𝑛}. According to (15) and (16), we obtain
the following computation through a simple derivation:

Prox
‖⋅‖
∗

1
/𝛾
(
V
𝛾
) =

V
‖V‖2

min(‖V‖2
𝛾

, 1) . (18)

This shows that the modified iteration algorithm (17) is also a
fast numerical algorithm for solving minimization (1), which
is called the forward-backward operator splitting projection
(FBOSP) method. This is because the projection operator
keeps the calculation speed same as the shrinkage.

4. Numerical Experiments

Three sets of MR data are utilized in the experiments. Data 1
was acquired on a GE 3T scanner (GEHealthcare,Waukesha,
WI)with a 32-channel head coil and a 3DT1-weighted spoiled
gradient echo sequence (TE = minimum full, TR = 7.5ms,
FOV = 24 × 24 cm, matrix = 256 × 256, and slice thickness
= 1.7mm). Data 2 was of one frame of the dynamic MR
data, which was acquired on a 3T Siemens Verio scanner
(Siemens Medical Solutions, Erlangen, Germany) (flip angle
= 50 degree, TE/TR = 56.6/1.89ms, Size = 256×225×17×15,
FOV = 340mm × 287mm, and slice thickness = 6mm).
Data 3 (size = 256 × 256 × 8) was downloaded from the fol-
lowing website: http://www.ece.tamu.edu/∼jimji/pulsarweb/
[37].

We can directly reconstruct the sparse data acquired
from MRI by means of our proposed schemes. However,
we employ the fully acquired data as the reference to make
quantitative comparisons between our proposed schemes and
the other methods. So, all data sets were fully acquired and
then artificially undersampled using nonuniform random
sampling masks corresponding to different undersampling
factors. Here, a ground truth or reference image 𝑥∗ is set to
the square-root of sum of squares of coil images obtained
by fully sampled 𝑘-space data from all channels. Peak signal
noise ratio (PSNR) and relative error are employed as the
performance metrics, which are defined as 20log

10
(255/‖𝑥 −

𝑥
∗
‖
2

2
) and ‖𝑥 − 𝑥∗‖

2
/‖𝑥
∗
‖
2
, respectively. The sensitivity maps

𝑆
𝑗
are simulated with the full 𝑘-space data to avoid the effect

of inaccurate sensitivity estimation.
All the comparison algorithms were implemented in

MATLAB (version R2013a) and performed on a computer
with an Intel(R) Xeon(R) CPU X5690 3.47GHz, 64GB of
memory, and a Windows operating system. Empirically, we
set 𝜆 = 1.0 × 10

3 for all algorithms, 𝜌 = 0.5 for BOS,
and 𝛼 = 1.0 × 10

2 for AM. For BOS, 𝛿 = 1. 𝛾 is set in
the range [10−1, 101] for FBOSS and FBOSP. Each algorithm
is terminated when the relative change ‖𝑥𝑘 − 𝑥

𝑘−1
‖
2
/‖𝑥
𝑘
‖
2

reaches the predefined stopping criterion 𝜀 = 5 × 10
−5. This

criterion could guarantee that the iterative solution for all
algorithms approximates to the optimal solution sufficiently.

4.1. Comparisons on the TV-Based SparseSENSE Model. In
this subsection, the comparisons on the TV-based Spars-
eSENSE model were carried out by BOS [29], AM [3],
SBB [24], FBOSS, and FBOSP. We tested on each data set
with different undersampling factors. Table 2 illustrates the
numerical comparison results. Here, we did not use 10-fold
undersampling factor for data 2 because the reconstruction
error for all the algorithms is very large due to high under-
sampling rate and noise in data acquisition. As shown in
Table 2, the proposed algorithms FBOSS and FBOSP achieve
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Table 2: Numerical results for the TV-based SparseSENSE model.

Coil number Undersampling factor Performance metric BOS AM SBB FBOSS FBOSP

Data 1 32 10
PSNR (dB) 46.87 47.36 49.53 49.61 49.57

Relative error (𝑒 − 2) 3.04 2.87 2.24 2.22 2.23
CPU time (sec.) 325.4 132.3 95.3 55.3 53.0

Data 1 32 6
PSNR (dB) 55.93 56.99 57.62 58.11 57.76

Relative error (𝑒 − 3) 10.68 9.49 8.82 8.34 8.68
CPU time (sec.) 162.7 78.2 45.4 32.2 31.2

Data 1 32 4
PSNR (dB) 61.00 62.41 62.80 63.56 63.56

Relative error (𝑒 − 3) 5.98 5.08 4.86 4.45 4.45
CPU time (sec.) 99.9 48.0 29.3 27.2 26.5

Data 2 15 6
PSNR (dB) 54.22 54.35 57.17 57.25 57.95

Relative error (𝑒 − 3) 14.82 14.60 10.55 10.46 9.65
CPU time (sec.) 199.4 75.1 35.1 29.3 24.7

Data 2 15 4
PSNR (dB) 63.21 65.34 65.93 66.22 66.70

Relative error (𝑒 − 3) 5.26 4.12 3.85 3.72 3.50
CPU time (sec.) 77.7 30.8 16.0 12.7 10.8

Data 3 8 10
PSNR (dB) 40.20 40.21 40.61 40.64 40.68

Relative error (𝑒 − 2) 6.06 6.05 5.79 5.77 5.73
CPU time (sec.) 60.5 24.5 18.0 13.2 10.8

Data 3 8 6
PSNR (dB) 48.86 49.29 50.20 50.13 50.21

Relative error (𝑒 − 2) 2.24 2.13 1.92 1.93 1.92
CPU time (sec.) 51.1 21.4 16.6 11.2 9.8

Data 3 8 4
PSNR (dB) 51.72 51.80 51.78 51.86 51.79

Relative error (𝑒 − 2) 1.61 1.60 1.60 1.58 1.60
CPU time (sec.) 34.0 13.2 10.3 8.5 7.6

Reference (a) BOS (b) AM (c) SBB (d) FBOSS (e) FBOSP

(f) BOS (g) AM (h) SBB (i) FBOSS (j) FBOSP

Figure 1: (a)–(e) Reconstructed images with relative error, 3.04%, 2.87%, 2.24%, 2.22%, and 2.23%, separately on data 1 when the
undersampling factor equals 10. (f)–(j) Absolute error images corresponding to (a)–(e).

better reconstruction performances with less computational
time compared to the other three methods.

As shown in Figures 1, 2, and 3, images reconstructed by
the five algorithms have similar reconstruction qualities. In
Figures 4 and 5, we give the reconstructed results and error

images based on FBOSS and FBOSP at different iterations
to illustrate that the proposed algorithms can improve image
quality iteratively.

Besides, we plot the relative error and PSNR as functions
of the CPU time to examine the efficiency of FBOSS, FBOSP
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Reference (a) BOS (b) AM (c) SBB (d) FBOSS (e) FBOSP

(f) BOS (g) AM (h) SBB (i) FBOSS (j) FBOSP

Figure 2: (a)–(e) Reconstructed images with relative error, 1.48%, 1.46%, 1.06%, 1.05%, and 0.97%, separately on data 2 when the
undersampling factor equals 6. (f)–(j) Absolute error images corresponding to (a)–(e).

Reference (a) BOS (b) AM (c) SBB (d) FBOSS (e) FBOSP

(f) BOS (g) AM (h) SBB (i) FBOSS (j) FBOSP

Figure 3: (a)–(e) Reconstructed images with relative error, 6.06%, 6.05%, 5.79%, 5.77%, and 5.73%, separately on data 3 when the
undersampling factor equals 10. (f)–(j) Absolute error images corresponding to (a)–(e).

compared to BOS, AM, and SBB. As indicated in Figures
6(a), 6(b), and 6(c), the relative error curves of FBOSS and
FBOSP descend faster than those of BOS, AM, and SBB.
The curve of BOS is far above the others, which implies its
lower efficiency. FBOSS and FBOSP have almost identical
performance. Figures 6(d), 6(e), and 6(f) demonstrate that
PSNR curves of FBOSS and FBOSP have the fastest ascents
among these five algorithms.

The above experiments illustrate that the proposed algo-
rithms FBOSS and FBOSP have better performance than
BOS, SBB, and AM in terms of computational efficiency,
although 𝐷

𝑇
𝐷 generated from the TV-based SparseSENSE

model can be diagonalized by FFT. Besides, as indicated
in Table 2, the larger the undersampling factor of the test
data, the bigger the CPU time gap between the proposed
methods and the others.This gap for the small downsampling

factor is not obvious. This is because the initial solution 𝑥
0

for the data with small undersampling factor is close to the
optimal solution 𝑥

∗; the iterations for the algorithms only
take a small amount of time to meet the stopping criterion.
Nevertheless, the case for the data with large undersampling
factor is opposite. In addition, we find out that the larger
the coil numbers of the test data are, the more significant
the performances of the proposed methods become. To
demonstrate this point, we plotted the CPU time under
similar relative error as the function of the coil number of
data in Figures 7(a) and 7(b). From the figures we can see
that as the coil number increases the proposed algorithms
ascend more slowly than the others. The robustness for
the coil numbers of data set becomes another advantage of
the presented algorithms. Thus, these observations indicate
that the proposed algorithms are superior especially in the
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(a) Iter. = 1 (b) Iter. = 5 (c) Iter. = 20

(d) Iter. = 1 (e) Iter. = 5 (f) Iter. = 20
Figure 4: (a)–(c) Reconstruction of data 1 by FBOSS at different iterations when the undersampling factor equals 10. (d)–(f) Absolute error
images corresponding to (a)–(c).

(a) (b) (c)

(d) (e) (f)
Figure 5: (a)–(c) Reconstruction of data 1 by FBOSP at different iterations when the undersampling factor equals 10. (d)–(f) Absolute error
images corresponding to (a)–(c).
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Figure 6: The performance comparisons of the five algorithms for the TV-based SparseSENSE model when the undersampling factors for
data 1, data 2, and data 3 are 10, 6, and 10, respectively. (a, b, c) Relative error versus CPU time of data 1, data 2, and data 3. (d, e, f) PSNR
versus CPU time of data 1, data 2, and data 3.
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Figure 7: The CPU time of the five algorithms for the TV-based SparseSENSE model as functions of the coil numbers on different
undersampling factors. (a) CPU time versus the coil numbers on the 6-fold undersampling factor; (b) CPU time versus the coil numbers
on the 4-fold undersampling factor.
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Table 3: Numerical results for the TGV-based SparseSENSE model.

Undersampling factor Performance metric AM FBOSP

Data 1 10
PSNR (dB) 47.37 49.62

Relative error (𝑒 − 2) 2.87 2.21
CPU time (sec.) 142.2 60.0

Data 2 6
PSNR (dB) 54.23 55.95

Relative error (𝑒 − 2) 1.48 1.22
CPU time (sec.) 78.4 28.1

Data 3 4
PSNR (dB) 52.01 53.34

Relative error (𝑒 − 2) 1.56 1.34
CPU time (sec.) 19.8 12.0

harsh situation where the data is of large-scale and highly
undersampled.

4.2. Comparisons on the Second-Order TGV-Based Spars-
eSENSEModel. In this subsection, we only compared FBOSP
with AM based on a special second-order TGV reconstruc-
tion model to demonstrate the performance of the proposed
algorithms for general𝐷.This is because BOS and SBB cannot
work well for the general sparse transform𝐷 and FBOSP has
an inexact connection to AM.

The second-order total generalized variation [38] is
defined as

TVG2
𝛼
(𝑥) = sup {∫

Ω

𝑥div2𝑤𝑑𝑥,𝑤 ∈ 𝑋
∗
} , (19)

where 𝑋
∗

= {𝑤 | 𝑤 ∈ 𝐶
𝑘

𝑐
(Ω, Sym2(R𝑛)), ‖div𝑙V‖

∞
≤

𝑎
𝑙
, 𝑙 = 0, 1}, 𝐶𝑘

𝑐
(Ω, Sym2(R𝑛)) is the space of compactly

supported symmetric tensor field, and Sym2(R𝑛) is the space
of symmetric tensors on R𝑛. By taking 𝛼

1
= +∞, 𝛼

0
= 1, a

special form of second-order TGV can be written as

‖𝐷𝑥‖
1
=



𝐷
11
𝑥

(𝐷
12
𝑥 + 𝐷

21
𝑥)

2

(𝐷
12
𝑥 + 𝐷

21
𝑥)

2
𝐷
22
𝑥

1

, (20)

where 𝐷
𝑖𝑗
(𝑖, 𝑗 = 1, 2) is the second-order finite difference

and 1 and 2 represent the horizontal and vertical directions,
respectively. Obviously, operator 𝐷 in (20) cannot be diago-
nalized by fast transform.Therefore, BOS and SBB are absent
in the comparisons as they are not efficient for the special
TGV SparseSENSE model.

For the comparisons between FBOSP and AM, we test
data 1, data 2, and data 3 corresponding to undersampling
factors 10, 6, and 4, respectively. Table 3 demonstrates the
superiority of FBOSP.The reconstructed and error images for
AM and FBOSP on data 3 are shown in Figure 8. In addition,
we give the reconstructed and error images at different
iterations to demonstrate that FBOSP is able to improve
image quality iteratively (shown in Figure 9). As shown

in Figures 10(a), 10(b), and 10(c), the proposed algorithm
FBOSP keeps its superiority in convergence speed.

5. Discussions

5.1. Parameters Selection. In this subsection, we discuss the
effect of the involved parameters 𝛾 and 𝜆 on the performance
of the proposed algorithms for the TV-based SparseSENSE
model. Here, data 1 is employed for the test. We plot the
relative error as the function of CPU time under the different
parameters for FBOSS and FBOSP. As shown in Figure 11(a),
FBOSS with smaller 𝛾 or larger 𝜆 seems to have better
performance than other parameter combinations.The reason
is that for a small 𝛾 the information of gradient image is not
easy to lose in the shrinkage threshold procedure.Meanwhile,
𝑥
𝑘 can better approximate the optimal solution when 𝜆 is

sufficiently large. In contrast, FBOSP has nearly stable per-
formance under different parameters. Therefore, we selected
the parameters of FBOSS for moderated performance and fix
the parameters of FBOSP in the experiments.

5.2. Connection to the Existing Methods. It is known that the
main computational steps of BOS (or SBB) and AM are the
splitting Bregman iteration, which are equivalent to ADMM
and the PDHG iterations, respectively. In this subsection, we
analyze two relations between the proposed algorithms and
the existing popular methods: (1) FBOSS and ADMM and
(2) FBOSP and PDHG. For simplicity, we simplify (1) by
replacing 𝐴 with an identity operator Id.

(1) Relation between FBOSS and ADMM. FBOSS can be
interpreted as an ADMM method with a semi-implicit
scheme applied to the augmented Lagrangian of the original
problem as follows:

𝐿 (𝑥, 𝑠; 𝑤) = (‖𝑠‖1 − ⟨𝑤, 𝑠 − 𝐷𝑥⟩ +
𝛽

2
‖𝑠 − 𝐷𝑥‖

2

2
)

+
𝜆

2

𝑥 − 𝑦

2

2
,

(21)
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(a) AM (b) FBOSP

(c) AM (d) FBOSP

Figure 8: (a)-(b) Reconstructed images with relative error, 1.56% and 1.34%, separately on data 3. (c)-(d) Absolute error images corresponding
to (a)-(b).

where 𝑤 is Lagrangian multiplier. By using ADMM for
𝐿(𝑥; 𝑠; 𝑤), the solution to problem (1) (𝐴 = 𝐼) can be gained
from the following sequence:

𝑠
𝑘+1

= argmin
𝑠

‖𝑠‖1 +
𝛽

2


𝑠 − 𝐷𝑥

𝑘
− 𝛽
−1
𝑤
𝑘

2

2
,

𝑤
𝑘+1

= 𝑤
𝑘
+ 𝛽 (𝐷𝑥

𝑘
− 𝑠
𝑘+1

) ,

𝑥
𝑘+1

= argmin
𝑥

𝛽

2


𝑠
𝑘+1

− 𝐷𝑥 − 𝛽
−1
𝑤
𝑘+1

2

2

+
𝜆

2

𝑥 − 𝑦

2

2
.

(22)

If 𝛽 = 𝛾
−1, FBOSS is almost equivalent to ADMM, except

that the former employs a semi-implicit scheme for the 𝑥-
subproblem,while the latter employs an implicit scheme.That
is why the proposed algorithm performs better than the SBB
method although SBB also adopts the BB stepsize scheme.

(2) Relation between FBOSP and PDHG. FBOSP based on
the projection gradient method can be regarded as a PDHG
technique without the proximal term in the gradient descent
step, applied to the primal-dual formulation:

min
𝑥

max
𝑤∈𝑋


Φ (𝑥, 𝑤) fl ⟨𝑥,𝐷
𝑇
𝑤⟩ +

𝜆

2

𝑥 − 𝑦

2

2
, (23)

where 𝑤 ∈ 𝑋
 is dual variable. According to the PDHG

iteration, the max-min problem (23) is solved by the update
of the sequence:

𝑤
𝑘+1

= argmax
𝑤∈𝑋

Φ(𝑥
𝑘
, 𝑤) −

𝛾

2


𝑤 − 𝑤

𝑘

2

2
,

𝑥
𝑘+1

= argmax
𝑥

Φ(𝑥,𝑤
𝑘+1

) +
𝜃

2


𝑥 − 𝑥
𝑘

2

2
.

(24)

By replacing 𝑤 with 𝑡 and taking 𝜃 = 0 in the above
iteration, it is the main procedure of the FBOSP method for
minimization (1).
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(a) Iter. = 1 (b) Iter. = 5 (c) Iter. = 20

(d) Iter. = 1 (e) Iter. = 5 (f) Iter. = 20

Figure 9: (a, b, c) Reconstruction of data 1 by FBOSP at different iteration. (d, e, f) Absolute error images corresponding to (a, b, c).
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Figure 10:The performance comparisons of AM and FBOSP for the second-order TGV-based SparseSENSEmodel when the undersampling
factors for data 1, data 2, and data 3 are 10, 6, and 4, respectively. (a)–(c) Relative error versus CPU time of data 1, data 2, and data 3.

6. Conclusions

In this paper, two fast numerical algorithms based on the
forward-backward splitting scheme are proposed for solving
the SparseSENSE model. Both of them effectively overcome
the difficulty brought by the nondifferentiable 𝑙

1
norm

according to the fine property of proximity operator. They
also avoid solving a partial differential equation with huge

computation, which has to be solved in the conventional
gradient descentmethods.The proposed algorithms can treat
the general matrix operators 𝐷𝑇𝐷 and 𝐴

𝑇
𝐴 that may be

not diagonalized by the fast Fourier transform. We compare
them with Bregman algorithms [24, 29] and the alternating
minimizationmethod [3].The results show that the proposed
algorithms are efficient for solving the SparseSENSE model
quickly.
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Figure 11:The performance comparisons of different parameters. (a) Relative error versus CPU time on FBOSS; (b) relative error versus CPU
time on FBOSP.

Appendix

To illustrate the convergence of the presented algorithms,
we show that the proposed algorithm FBOSS with the
constant stepsize 𝛿 converges by utilizing the nonexpansivity
of proximity operator in this section. Based on the connec-
tion between FBOSS and FBOSP, it is easy to deduce the
convergence of FBOSP with the constant stepsize 𝛿 because
the projection operator keeps the contractive property. First,
the related theories about the proximity operator are given as
follows.

LemmaA.1. For the given convex function 𝜑 and its conjugate
function 𝜑∗, it holds for any 𝑎, 𝑏 ∈ R𝑑 that


Prox
𝛾𝜑
(𝑎) − Prox

𝛾𝜑
(𝑏)



2

2

≤ ‖𝑎 − 𝑏‖
2

2

−

(𝐼 − Prox

𝛾𝜑
) (𝑎) − (𝐼 − Prox

𝛾𝜑
) (𝑏)



2

2
.

(A.1)

Next, we give the main conclusion for the convergence
of FBOSS with constant 𝛿 under the nonexpansivity of
proximity operator.

Theorem A.2. Assume 𝛿 ≥ ‖𝐴
𝑇
𝐴‖ ≥ (1/2𝜆𝛾)‖𝐷

𝑇
𝐷‖, the

sequence {(𝑠
𝑘+1

, 𝑤
𝑘+1

, 𝑥
𝑘+1

)} generated by Algorithm 1 with
constant 𝛿 converges to the point (𝑠∗, 𝑤∗, 𝑥∗), where 𝑥∗ is the
solution to the SparseSENSE model.

Input 𝜆, 𝛾 and 𝛿. Set 𝑥0 = 𝐴
𝑇
𝑦, 𝑤0 = 0 and 𝛿

0
= 1.

Repeat
Given 𝑥𝑘 and 𝛿

𝑘
, compute 𝑧𝑘+1;

Given 𝑤𝑘 and 𝑥𝑘, compute 𝑠𝑘+1;
Given 𝑤𝑘, 𝑥𝑘 and 𝑠𝑘+1, compute 𝑤𝑘+1;
Given 𝑧𝑘+1, 𝑤𝑘+1 and 𝛿

𝑘
, compute 𝑥𝑘+1;

Given 𝑥𝑘 and 𝑥𝑘+1, compute 𝛿
𝑘+1

;
𝑘 ← 𝑘 + 1

until ‖𝑥𝑘 − 𝑥𝑘−1‖/‖𝑥𝑘‖ < 𝜀

return

Algorithm 1: FBOSS for the SparseSENSE model.

Proof. Suppose that the point (𝑠
∗
, 𝑤
∗
, 𝑥
∗
) satisfies (14),

according to (16) and Lemma A.1, we have


𝛾 (𝑤
𝑘+1

− 𝑤
∗
)


2

2

=

Prox
𝛾𝜑
∗ (𝛾𝑤
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∗
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∗
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.

(A.2)
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In addition, by combining the first and the fourth equations
in (14), we get

1

𝜆𝛾
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(A.3)

Let (1/𝜆𝛾)‖𝛾(𝑤𝑘+1 − 𝑤∗)‖2
2
+ ‖𝑥
𝑘
− 𝑥
∗
‖
2

𝐻
= 𝑀
𝑘+1

, then𝑀
1
≥

𝑀
2
≥ ⋅ ⋅ ⋅ and 𝑀

𝑘+1
≥ 0 for all 𝑘. Hence, lim

𝑘→∞
𝑀
𝑘
exists,

which implies that

lim
𝑘→∞
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2
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= 0. (A.4)

It leads to lim
𝑘→∞

𝑥
𝑘
= 𝑥
∗, which deduces that
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Moreover, it follows from (14), (16), and Lemma A.1 that

Prox
𝛾𝜑
(𝛾𝑤
𝑘
+ 𝐷𝑥
𝑘
) − Prox

𝛾𝜑
(𝛾𝑤
∗
+ 𝐷𝑥
∗
)


2

2

≤

𝛾 (𝑤
𝑘
− 𝑤
∗
) + 𝐷 (𝑥

𝑘
− 𝑥
∗
)


2

2

−

(𝐼 − Prox

𝛾𝜑
) (𝛾𝑤

𝑘
+ 𝐷𝑥
𝑘
)

− (𝐼 − Prox
𝛾𝜑
) (𝛾𝑤
∗
+ 𝐷𝑥
∗
)


2

2
=

𝛾 (𝑤
𝑘
− 𝑤
∗
)

+ 𝐷 (𝑥
𝑘
− 𝑥
∗
)


2

2
−

𝛾 (𝑤
𝑘+1

− 𝑤
∗
)


2

2
.
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Therefore, by taking limits for both sides of the above
inequality, we obtain

lim
𝑘→∞


𝑠
𝑘+1

− 𝑠
∗2

= lim
𝑘→∞


Prox
𝛾𝜑
(𝛾𝑤
𝑘
+ 𝐷𝑥
𝑘
)

− Prox
𝛾𝜑
(𝛾𝑤
∗
+ 𝐷𝑥
∗
)
2
= lim
𝑘→∞


𝛾 (𝑤
𝑘
− 𝑤
∗
)

+ 𝐷 (𝑥
𝑘
− 𝑥
∗
)
2
= lim
𝑘→∞


𝛾𝑤
𝑘
− 𝑤
𝑘+12

= 0,

(A.7)

which immediately gets

lim
𝑘→∞

𝑠
𝑘
= 𝑠
∗
,

lim
𝑘→∞

𝑤
𝑘
= 𝑤
∗
.

(A.8)

On the other hand, by combining (9), (10), and (12), it is
easy to conclude that 𝑥∗ is the solution to the SparseSENSE
model (1) if point (𝑠∗, 𝑤∗, 𝑥∗) satisfies (14).

Input 𝜆, 𝛾 and 𝛿. Set 𝑥0 = 𝐴
𝑇
𝑦, 𝑤0 = 0 and 𝛿

0
= 1.

Repeat
Given 𝑥𝑘 and 𝛿

𝑘
, compute 𝑧𝑘+1;

Given 𝑤𝑘 and 𝑥𝑘, compute 𝑤𝑘+1;
Given 𝑧𝑘+1, 𝑤𝑘+1 and 𝛿

𝑘
compute 𝑥𝑘+1;

Given 𝑥𝑘 and 𝑥𝑘+1, compute 𝛿
𝑘+1

;
𝑘 ← 𝑘 + 1

until ‖𝑥𝑘 − 𝑥𝑘−1‖/‖𝑥𝑘‖ < 𝜀

return

Algorithm 2: FBOSP for the SparseSENSE model.

Through the proof for Theorem A.2, we can immediately
obtain the following convergence conclusion for Algorithm 2
with constant 𝛿.

Theorem A.3. Assume 𝛿 ≥ ‖𝐴
𝑇
𝐴‖ ≥ (1/𝜆𝛾)‖𝐷

𝑇
𝐷‖, the

sequence {(𝑤𝑘+1, 𝑥𝑘+1)} generated byAlgorithm2with constant
𝛿 converges to the point (𝑤∗, 𝑥∗), where 𝑥∗ is the solution to the
SparseSENSE model.
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