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Abstract

Motivation: Genome-scale metabolic networks and transcriptomic data represent complementary

sources of knowledge about an organism’s metabolism, yet their integration to achieve biological

insight remains challenging.

Results: We investigate here condition-specific series of metabolic sub-networks constructed by

successively removing genes from a comprehensive network. The optimal order of gene removal

is deduced from transcriptomic data. The sub-networks are evaluated via a fitness function, which

estimates their degree of alteration. We then consider how a gene set, i.e. a group of genes contri-

buting to a common biological function, is depleted in different series of sub-networks to detect the

difference between experimental conditions. The method, named metaboGSE, is validated on pub-

lic data for Yarrowia lipolytica and mouse. It is shown to produce GO terms of higher specificity

compared to popular gene set enrichment methods like GSEA or topGO.

Availability and implementation: The metaboGSE R package is available at https://CRAN.R-project.

org/package=metaboGSE.

Contact: marco.pagni@sib.swiss

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of high throughput sequencing techniques, especially RNA

sequencing, has greatly facilitated the experimental investigation of an

organism’s transcriptome under different physiological conditions.

RNA-seq data consists of reads mapped onto an annotated genome,

which permits quantitation of the transcript abundance of all predicted

genes. These values can be used as a proxy to quantify gene expression

or may provide hints about protein abundance for protein-coding

genes. Differential expression between two conditions or co-expression

profiles across many conditions are currently the fundamental statistic-

al approaches to analyze RNA-seq data (Conesa et al., 2016).

However, to obtain a biological interpretation from these analyses,

genes also need to be carefully annotated with prior biological know-

ledge. For example, the Gene Ontology (GO) provides genome annota-

tions by grouping genes into sets, each one identified by a unique GO

term that corresponds to a process, function or sub-cellular location.

GO terms are hierarchically arranged in a directed acyclic graph

(DAG) whose structure can be exploited by computational methods

such as topGO (Alexa and Rahnenführer, 2016) together with gene ex-

pression data. Another popular method, Gene Set Enrichment Analysis

(GSEA) (Subramanian et al., 2005) considers two-condition expression

profiles and attempts to identify functionally enriched sets of genes by

investigating the change in the expression-based orderings of the genes.

The incorporation of gene connectivity information has been shown as
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a way to improve gene set enrichment methods (Alexeyenko et al.,

2012; Glaab et al., 2012). Such connectivity information could be pro-

vided by a genome-scale metabolic network (GSMN).

GSMNs have been successfully used to study and model metab-

olism in living organisms (Feist and Palsson, 2008; McCloskey

et al., 2013; Oberhardt et al., 2009). These are complex biological

networks that include thousands of interconnected nodes of four

main types: metabolites; biochemical and transport reactions;

enzymes and transporters; and genes. The last three elements are

usually referred to as gene-protein-reaction. A GSMN can be turned

into a predictive tool to model if and how an organism can reach a

certain objective, for instance biomass production, under defined en-

vironmental constraints. Flux Balance Analysis (FBA) (Varma and

Palsson, 1994) can then be used for this purpose. For the sake of

simplicity, we will designate here a model as viable, if it can produce

biomass at a non-zero rate. A viable GSMN can be used to predict

the essentiality of genes, e.g. by simulating the effect on viability of a

gene knockout, which can be further validated against experimental

data (Imam et al., 2015; O’Brien et al., 2015; Simeonidis and Price,

2015). Model viability is sometimes referred to as model consistency

in the literature.

Existing methods for integrating RNA-seq data with GSMN can

be classified in two broad categories: those constraining FBA flux

distribution in the network and those extracting context-specific

sub-networks (Kim and Lun, 2014; Machado and Herrgård, 2014;

Opdam et al., 2017; Vijayakumar et al., 2017; Vivek-Ananth and

Samal, 2016). In Machado and Herrgård (2014), the first category

is benchmarked and the authors concluded with two ambiguous

observations: absolute and relative gene expression seem to perform

similarly; and using gene expression as additional FBA constraints is

not clearly superior to what is obtained with parsimonious FBA, an

algorithm that does not depend on transcriptomic data at all. The se-

cond category, reviewed by Opdam et al. (2017), contains methods

that: remove genes whose products are supposed to be absent in a

given condition, by minimizing the flux through reactions with low

gene expression [GIMME (Becker and Palsson, 2008)]; optimize the

trade-off between removing reactions with low gene expression and

keeping reactions with high gene expression [iMAT (Zur et al.,

2010), INIT (Agren et al., 2012)]; keep an active set of core reac-

tions while removing other reactions if possible [MBA (Jerby et al.,

2010), FASTCORE (Vlassis et al., 2014), mCADRE (Wang et al.,

2012)]. With all these methods, the choice of one or several cut-offs

for gene expression strongly impacts the sub-model produced and its

properties. Relatively little biological insight has been published

from contrasting such context-specific sub-networks, with the ex-

ception of the predictions and validations of the flux on a few

metabolites of interest (Machado and Herrgård, 2014) or gene es-

sentiality (Opdam et al., 2017).

The metaboGSE method presented here considers a whole series

of sub-networks built by successively removing genes from an initial

comprehensive network, rather than a single, possibly optimal sub-

network to avoid the choice of a particular cut-off for gene expres-

sion. The optimal ranking of the genes to remove is determined as

the most significant one when compared to random rankings, using

the gene expression data. The viability of any sub-network is

ensured by the introduction of artificial reactions and the minimiza-

tion of the flux on them. This rescue procedure also allows for the

formulation of a fitness function that measures how close an un-

viable sub-network is from a viable one. We then study how a gene

set, i.e. a collection of genes contributing to a common biological

function, is depleted in the series of sub-networks. Depletion curves

are integrated with respect to fitness and tested for statistical

significance given variations among experimental conditions and

replicates.

To validate the method, we first used public experimental data

and a metabolic model for Yarrowia lipolytica, a yeast that is widely

exploited in industrial microbiology for lipid production (Ledesma-

Amaro and Nicaud, 2016). The metabolic model iMK735 of Y. lipo-

lytica (Kav�s�cek et al., 2015) was used, as it can simulate growth and

production of lipids when oxygen consumption is limiting. Gene ex-

pression data were taken from the study of Maguire et al. (2014) on

the role of the sterol-regulatory element binding protein Sre1 and

the transcription factor Upc2 in sterol metabolism in hypoxic and

normoxic conditions. A mouse dataset was also investigated, com-

prising RNA-seq data from macrophages in adipose tissue (Hill

et al., 2018) and the metabolic model iMM1415 (Sigurdsson et al.,

2010).

2 Materials and methods

2.1 Datasets
The Y. lipolytica data analyzed is included in the metaboGSE R

package from CRAN along with a vignette of the analysis pipeline.

The mouse dataset is described in Supplementary Note S1.

2.1.1 RNA-seq data

For Y. lipolytica, 22 RNA-seq samples of normoxic and hypoxic

growth with sre1D, upc2D, sre1D/upc2D mutants and the wild-type

strain were obtained from Maguire et al. (2014)

(NCBI:PRJNA205557). These data are summarized in Table 1 and

processed with standard preliminary RNA-seq data analysis (see

Supplementary Note S3).

2.1.2 Genome-scale metabolic networks

The Y. lipolytica iMK735 model (http://www.ebi.ac.uk/biomodels,

Kav�s�cek et al., 2015) with a production of 40% lipid content in the

biomass was studied. The genome, proteome, GO annotations and

model were integrated within the framework of MetaNetX (Moretti

et al., 2016). The external reactions of the model were adapted to

approximately simulate growth in Yeast extract Peptone Dextrose

medium in hypoxic (anaerobic) or normoxic (aerobic) environments

(Maguire et al., 2014) by modifying the oxygen supply. For nor-

moxia, oxygen consumption was unrestricted as in the original

model and took a value of 244 mmol�gDW�1�h�1 as given by the

Minimum Total Flux algorithm where the sum of absolute values of

fluxes was minimized. We then arbitrarily limited the available

oxygen to 50 mmol�gDW�1�h�1 to simulate hypoxic conditions.

Preliminary investigation showed that the model behavior did not

significantly depend on the exact value of this setting. The model

was cleaned by removing dead-end metabolites, which were only ei-

ther produced or consumed. Blocked reactions as given by flux vari-

ability analysis (Mahadevan and Schilling, 2003) were also

Table 1. Designation of RNA-seq data obtained from Maguire et al

#replicate Code Genotype Oxygen

4 WN Wild-type Normoxia 21%

3 SN sre1D
3 UN upc2D
2 DN sre1D /upc2D
5 WH Wild-type Hypoxia 1%

2 SH sre1D
3 UH upc2D
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removed, as explained below. The final investigated model con-

tained 818 reactions, 469 genes and 605 metabolites after cleaning,

and was referred to as the comprehensive model in our analysis.

2.2 Metabolic sub-model construction
Sub-model construction by removing genes refers to the process of

(i) removing an initial set of genes (input) and their associated reac-

tions, (ii) determining the blocked reactions (see Supplementary

Note S2), (iii) removing the blocked reactions with their associated

genes, if any. A similar procedure named deleteModelGenes is avail-

able from the COBRA Toolbox (Heirendt et al., 2017). Below, we

refer to a particular sub-model with the number of initially removed

genes, but all presented analysis results have been obtained after

gene removal propagation through the blocked reactions.

2.2.1 Measure of metabolic model fitness

Viability, for instance growth capacity, is crucial for the usability of

a metabolic model. Removing a few reactions from a viable network

is often sufficient to render it unviable. Here we propose a measure

to assess how close an unviable model is to a viable one, which will

be defined as the fitness of the model.

2.2.1.1 Principle of growth rescue. In this section, we introduce a

procedure to restore the viability of an unviable metabolic network

by the introduction of artificial reactions and minimizing the flux on

them. It consists first in modifying the input network around the

growth reaction as illustrated in Figure 1. An artificial metabolite is

created to replace each of those present in the growth reaction ex-

cept biomass itself. Each artificial metabolite x’ is linked to the ori-

ginal metabolite x through a directed help reaction denoted hx. In

addition, x’ can be produced or consumed via a rescue external reac-

tion denoted rx. Note that the purpose of any help reaction is to

avoid artificially supplying x as a side effect of rescuing x’. No con-

straints are applied on the fluxes of the rescue and help reactions

apart from their directions. The same network modifications could

be applied to the non-growth associated maintenance reaction that

does not allow for a zero flux.

Let M0 be the expanded version of a GSMNM with the modi-

fied growth reaction and the full set of rescue and help reactions, S0

is the corresponding stoichiometric matrix (see basic notions on

GSMN in Supplementary Note S2). The flux distribution v0 is con-

strained by the bound vectors lb0 and ub0 that account for the direc-

tionality of newly added reactions and constraint the growth

reaction at a fixed rate, arbitrarily chosen as 20% the original model

growth objective, i.e. lb0Biomass ¼ ub0Biomass ¼ 1
�

5
v�Biomass.

Let cRescue be a vector of coefficients that are equal to 0 for all

but the rescue reactions that receive a coefficient of 1=Bx where Bx

is the stoichiometric coefficient for the metabolite x in the original

growth reaction. The rescue procedure can be stated as the following

linear programing (LP) problem:

find v0� ¼ argminv0 ðcT
Rescue � v0Þ

subject to S0 � v0 ¼ 0
lb
0 � v0 � ub0:

Only rescue reactions for metabolite x with non-zero flux v0�rx

�� �� >
0 are required to restore the model viability. A viable model M00

with a minimal flux of rescue reactions could be formulated as

shown in Figure 1. It must be noted that the above LP problem could

admit more than one solution v0� and different solutions might be

expected if cRescue was set differently. We investigated this problem

through simulation with the iMK735 model and observed that most

of the solutions are unique and do not depend on the precise values

of cRescue.

Figure 2A presents the fraction of metabolites in the growth reac-

tion that need to be rescued after randomly removing genes in the

model. This simulation shows the crucial property that the more

genes removed, the more the model is damaged. Figure 2B presents

the fraction of random models where each individual metabolite

needs to be rescued, clearly showing different behaviors among

metabolites in the growth reaction. This suggests that the different

metabolites should not be treated equally.

2.2.1.2 Weighting scheme for model fitness. A weighting scheme is

introduced to account for the variable importance of metabolites in

the growth reaction and possible dependencies among them. Model

fitness is defined as the realized objective of the following LP

problem:

find FðM0Þ ¼ 1� v0Biomass
�1:minv0

��
diagðwRescue� cRescueÞ

�T

� v0
�

subject to S0 � v0 ¼ 0
lb
0 � v0 � ub0

where v0Biomass ¼ 1
�

5
v�Biomass, diag(A) is the diagonal of a square ma-

trix A, wRescue is a vector of weights that are equal to 0 for all but

the rescue reactions and that are normalized to sum to 1. wRescue is

computed in the following procedure. For every gene in the model, a

single gene knockout is simulated, and the rescue procedure is per-

formed to determine which metabolites in the growth reaction are

Fig. 1. Schema of GSMN rescue process.M, original GSMN with growth re-

action XþY ! ZþBiomass. M0 , expanded GSMN with the full set of rescue

(rx) and help (hx) reactions for every metabolite x in the biomass reaction.

M00 , example of a minimal rescued GSMN in the particular case where only

metabolite Y needs to be rescued

2260 V.D.T.Tran et al.

Deleted Text: ,
Deleted Text: S
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty929#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty929#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty929#supplementary-data
Deleted Text: m


affected, using the previously presented LP problem. Hence, every

rescue reaction rx can be associated with a binary vector that

describes whether the reaction is needed to rescue each of the gene

knockouts. These binary vectors are used to compute Euclidean dis-

tances between rescue reactions, which are used in hierarchical clus-

tering with average linkage, and the Gerstein method (Gerstein

et al., 1994) is then applied to the resulting tree as a means to assign

a weight to each rescue reaction. Rescue reactions with similar bin-

ary vectors share weights, while those with unique profile receive a

larger weight. The weighting schema has two main effects: (i) it

reduces the importance of metabolites that are hardly affected by

slightly damaging the model, and (ii) assigns similar importance to

metabolites that appear on the same pathway, as shown in

Figure 2C. For instance, H2O has the smallest weight, ergosterol

and 5alpha-cholesta-8, 24-dien-3beta-ol in the same pathway share

the same weight. Other sampling schemes were investigated, e.g. by

removing several genes at once, but these did not yield very different

metabolite weights. Hence the simpler experimental setting was

used. The simulation of random gene removal in Figures 2A and 3

shows that the introduction of this weighting scheme produced the

fitness scores that are less dispersed than the fraction of rescued

reactions.

2.2.2 Optimal ranking of genes for removal

The proposed fitness function can be used to evaluate a series of

condition-specific sub-models constructed by removing genes in any

order. The question then arises as how to optimally rank genes for

removal, such as minimizing network disruption i.e. preserving its

fitness. In this section, we investigate different metrics to rank genes

according to their expression in a given experiment.

We tested the following transformations of the raw expression

data to rank the genes:

expr raw expression in log2-counts

pkmExpr expression in RPKM

(see Supplementary Note S3)

relExpr1¼ expr/<expr> relative expression

zExpr ¼ (expr 2 <expr>)/sd(expr) z-score

revExpr ¼ 1/(1þexpr) reverse expression (control),

Fig. 2. Rescue in metabolic sub-models obtained by removing different numbers of random genes (N¼50 draws) from Y. lipolytica model iMK735. (A) Fraction of

metabolites that need to be rescued via corresponding rescue reactions. Blue darkness in the scatter plot represents the density of fractions of rescued reactions.

Black curve indicates average fractions. Gray region represents 20–80% quantiles of random fractions. (B) Fraction of draws where each individual metabolite is

rescued. (C) Weights of rescue reactions obtained via our weighting schema

Fig. 3. Fitness decrease while removing genes from the iMK735 model with

different rankings in the UH condition (UH2 sample). random: random draw,

expr: voom-normalized expression, pkmExpr: voom-normalized expression

in RPKM, relExpr1: relative expression expr/<expr>, revExpr: reverse expres-

sion, zExpr: z-score. Blue darkness in the scatter plot represents the density of

random fitness. Gray region represents 20–80% quantiles of random fitness
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where <expr> and sd(expr) denote the average and standard devi-

ation across conditions, respectively.

Let q be a ranking of the genes. Sub-models are constructed by

removing genes in the order given by q. The resulting fitness scores

decrease when more genes are removed, and the decreasing trend

depends on q. Figure 3 illustrates such reductions obtained by suc-

cessively removing genes from the comprehensive model iMK735

for the UH condition (upc2D in hypoxic condition, UH2 sample). In

this example, expr is the most fitness-preserving ranking and

revExpr is the worst one.

We assess a ranking q by performance index Zq, which indicates

the percentage of random draws yielding sub-model fitness higher

than that of sub-models created by q-based removal of the same

number of genes and which is weighted by the average random

fitness. Zq is computed as follows:

Zq ¼100�
X

i

F Mrandom
i

� �D E

P
j F Mrandom

j

� �D E X
N draws

1

N
1 FðMrandom

i Þ�FðMq
i Þ

� �
0
B@

1
CA

where Mq
i denotes the rescued sub-model of the comprehensive net-

work M obtained after removing the i genes using ranking q, and

Mrandom
i the rescued sub-model by randomly removing i genes,

Fð. . .Þ
� �

the average fitness on N draws. The lower the performance

index, the better the ranking. The optimal ranking is the one domi-

nating the others by producing the lowest performance index for all

investigated RNA-seq samples. For instance, the absolute expression

ranking expr is determined as the best one for 19 of 22 the Y. lipoly-

tica samples, whereas it is pkmExpr for the mouse dataset (see

Supplementary Table S1). Other rankings such as (expr2/<expr>)1/2

and (expr3/<expr>)1/3 were also investigated, yet not outperformed

the selected ones. In the rest of this article, the expr and pkmExpr

rankings will be used in the Y. lipolytica and mouse study,

respectively.

2.3 metaboGSE: contrasting gene set enrichment in

condition-specific sub-models
We introduce here the metaboGSE method, which aims at identify-

ing gene sets that are differentially enriched. The method consists of

three steps depicted in Figure 4 and illustrated in Figure 5 for

GO:0006635—fatty acid beta-oxidation. The first step consists in

constructing a series of sub-models for every sample and computing

their fitness profile.

In the second step, for a given gene set g, we compute the deple-

tion fraction f ðMexpr
i ; gÞ, i.e. fraction of g-associated genes remain-

ing in each sub-model, where Mexpr
i denotes the rescued sub-model

after the removal of i genes. The evolution of f ðMexpr
i ; gÞ is plotted

as a function of 1� i=kð Þ � F Mexpr
i

� 	
, defining a depletion curve,

where k denotes the total number of genes in M. The depletion curve

for each condition is the average curve on all replicates. As shown in

Figure 5A, the fraction f of genes associated with fatty acid beta-

oxidation decreases rapidly in all conditions, but the depletion curve

clearly separates hypoxic wild-type from the other conditions

(Fig. 5B). The down-regulation of several but not all GO:0006635

genes in the WH condition is illustrated in Figure 5C.

In the third step, we perform a permutation test for the signifi-

cance of discrepancy of the given gene set g across conditions. The test

statistic is defined as the maximum area between every pair of deple-

tion curves among all conditions. The resampling is performed by per-

muting replicates between conditions while keeping unchanged the

number of replicates in each condition. The resulting p-value indicates

whether the depletion evolution of g in one condition differs from at

least one of the others. For GO:0006635, the discrepancy of WH ver-

sus the other conditions is justified with a p-value of 0.007 and a test

statistic of 0.41 (Fig. 5). These p-values are subsequently adjusted by

Benjamini–Hochberg (BH) correction across all the studied gene sets

(Benjamini and Hochberg, 1995). A similar post-hoc permutation test

is also implemented for pairwise comparisons between conditions to

check for the pairwise differential signal.

3 Results

3.1 Condition-specific sub-model construction on

Y. lipolytica data
We applied the selected gene removal strategy to construct sub-

models for the seven conditions in Maguire et al. (2014) (Table 1).

The expr rankings are different between conditions despite a similar

distribution of gene expression values (Fig. 6A). The sub-model ser-

ies constructed based on expr, and thus their fitness, evolve differ-

ently across conditions (Fig. 6B). Figure 6C–F shows a high degree

of variation across conditions in the number of genes and reactions

(post-propagations through blocked reactions), as well as in the

fraction of genes and reactions that are essential. Besides, the erratic

evolutions of essential genes and reactions are noteworthy and

might be associated with the unexpectedly large spread in essential-

ity predictions recently reported in Opdam et al. (2017).

To compare the condition-specific sub-model construction from

the existing methods with that from our approach, we investigated

GIMME (Becker and Palsson, 2008) and iMAT (Zur et al., 2010).

These two methods were benchmarked in Opdam et al. (2017) and

Fig. 4. metaboGSE algorithm
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could be used with information that is deduced only from GSMN

and transcriptomics data. We built a sequence of sub-models with

GIMME using 12 gene expression cut-offs (in log2 RPKM) from 0

to 11 for each of the 22 samples. For iMAT, these cut-offs were used

as threshold_lb while threshold_ub was determined as threshold_lb

þ 2*standard_deviation(expression), as recommended in the

Supplementary Material of Zur et al. (2010). The choice of such a

limited number of cut-offs was due to highly time-consuming model

construction process of the two methods in Matlab. Indeed, the par-

allelization implemented in metaboGSE using the sybil and parallel

R packages allowed us to construct the complete list of all sub-

models in almost one hour on a 64-processor Intel Xeon E5-4620 of

2.6 GHz. The MatLab implementations of iMAT and GIMMME

were much slower in our hands. Intersections and unions of genes in

each 22 sub-models were investigated to evaluate the difference be-

tween them. Supplementary Figure S1 shows 1�Intersection/Union

plotted as a function of k�Union, where k denotes the number of

genes in the comprehensive GSMN. Interestingly, the sub-models

produced with metaboGSE were quite similar to those produced by

iMAT, a method that relies on a MILP algorithm. GIMME pro-

duced sub-models that were less distinct across conditions.

3.2 Gene set enrichment on Y. lipolytica data
To validate the biological findings produced by our approach, we

investigated 135 gene sets defined as GO135 (see Supplementary

Note S4). Maguire et al. (2014) studied the role of Sre1 and Upc2 in

regulating sterol metabolism in hypoxic and normoxic conditions in

Y. lipolytica by performing GO term enrichment analysis of differen-

tially expressed genes using DAVID. Among the 116 biological-

process GO terms they reported, only 8 were found in GO135, but

none had a reported BH-adjusted p-value < 0.15. Here we compare

our results with those of topGO weight01 and GSEA on the

iMK735 genes (see Supplementary Note S4).

Condition contrast is predominantly hypoxia-normoxia. The de-

pletion curves of the top 50 GO terms found to be significantly

enriched with metaboGSE (ordered by permutation test statistic

with FDR < 0.05) (see Supplementary Fig. S2) suggest that the de-

gree of oxygen limitation is the most likely explanation for the en-

richment of 36 GO terms, which is expected for this dataset—where

hypoxia is the only environmental variable. Interestingly, for 24 of

them, normoxic double-mutant condition is likely grouped with

hypoxic conditions while contrasting with other normoxic

conditions.

metaboGSE reveals GO terms of higher specificity. A GO term

is considered of higher specificity compared to another one when it

is an offspring of the latter (Ashburner et al., 2000). The top 50 GO

terms found to be significantly enriched by metaboGSE (ordered by

permutation test statistic with FDR < 0.05), topGO and GSEA

(ordered by FDR) unite into 99 GO terms and are summarized in

Supplementary Figure S3 and Table S2. These 99 terms also

included the eight found in Maguire et al. All terms from

metaboGSE are of higher or equal specificity, i.e. offspring or identi-

cal, to those found by topGO and/or GSEA. A total of 35 among the

A

C

B

Fig. 5. Enrichment of GO:0006635 fatty acid beta-oxidation in Y. lipolytica sub-models in seven RNA-seq conditions. (A) Depletion fraction in function of number

of removed genes. (B) Depletion curve: depletion fraction in function of fitness times fraction of remaining genes in the model. (C) Expression of associated

genes
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50 GO terms from metaboGSE are related to those found by the

other methods yet include 9 terms of higher specificity:

GO:0034637 (cellular carbohydrate biosynthetic process),

GO:0015937 (coenzyme A biosynthetic process), GO:0071265

(L-\methionine biosynthetic process), GO:0046474 (glycerophos-

pholipid biosynthetic process), GO:0097164 (ammonium ion bio-

synthetic process), GO:0006656 (phosphatidyl choline biosynthetic

process), GO:0001676 (long-chain fatty acid metabolic process),

GO:0043649 (dicarboxylic acid catabolic process) and

GO:0009098 (leucine biosynthetic process). Six of them are found

in the three largest connected DAGs of enriched GO terms depicted

in Figure 7.

Difference in sterol biosynthesis is confirmed. Ergosterol biosyn-

thetic process (GO:0006696) is enriched by all methods. Along with

GSEA and topGO, we also discover GO:0045337 (farnesyl diphos-

phate biosynthetic process) (Fig. 7), which is part of the ergosterol

synthesis pathway. This reflects the experimental design investigated

in Maguire et al. (2014), i.e. the regulation of sterol metabolism. In

Supplementary Figure S4AB, the sudden drop from 100 to 0% of 19

ergosterol-associated genes indicates that either all these genes or

none of them exist in each sub-model. This sudden drop is caused by

the propagation through the blocked reactions in the linear pathway

of ergosterol biosynthesis (Parks and Casey, 1995). Interestingly, a

detailed manual investigation of this case revealed that the sudden

drops in the different conditions are actually caused by the altered

ranks of YALI0D17050g, YALI0E18634g or YALI0F26323g,

which do not belong to GO:0006696 gene set. Supplementary

Figure S4C presents the expression profiles of all those genes.

metaboGSE identifies contrasts other than hypoxia-normoxia.

All GO terms relating to fatty acid metabolism (GO:0001676 long-

chain fatty acid metabolic process, GO:0009062 fatty acid catabolic

process, GO:0006635 fatty acid beta-oxidation, GO:0006631 fatty

acid metabolic process) show an earlier drop in their depletion curve

in the hypoxic wild-type comparing to the remaining conditions that

stay similar (Supplementary Fig. S2). This might suggest that the

presence of both Sre1 and Upc2 in low-oxygen growth condition

reduces the expression of YALI0E03058g, which causes the earlier

drop in WH (Fig. 5).

3.3 Application of metaboGSE to mouse data
metaboGSE was also applied to the mouse dataset from Hill et al.

(2018) using the iMM1415 model (Sigurdsson et al., 2010) (see

Supplementary Note S1). The pkmExpr ranking was figured as the

best ranking among those investigated (see Supplementary Table

S1). Only four genes of iMM1415 were found to be differentially

expressed between phosphate-buffered saline and Ly6C (fold-

change � 2, FDR < 0.05), resulting in no significantly enriched GO

terms with topGO weight01 and GSEA. We then applied these two

methods to all differentially expressed genes in the genome, but not

only to those in iMM1415, to increase the number of differentially

expressed genes. We scrutinized a list of 24 GO terms related to in-

flammatory response, cholesterol and lipid biosynthesis as reported

in Hill et al. (2018) and associated to at least one iMM1415 gene.

The results shown in Supplementary Figure S5 reveal that

metaboGSE can detect GO terms that are located lower in the GO,

like GO:0050728 (negative regulation of inflammatory response),

GO:0002675 (positive regulation of acute inflammatory response)

and GO:1903725 (regulation of phospholipid metabolic process),

despite working on a much smaller collection of genes than the other

two methods. This confirms the ability of metaboGSE to capture

GO terms of higher specificity as observed above with Y. lipolytica.

4 Discussion

We present here a method for gene set enrichment analysis that uti-

lizes a GSMN as an additional source of information and that

focuses on genes expressed at low level. Our central working hy-

pothesis is that the correlation between gene expression levels and

fluxes on related reactions is very poor in general, but the low

expressed genes are plausibly associated with zeroed fluxes. This

method is complementary to established methods such as topGO

and GSEA that focus on differential expression of sufficiently

expressed genes. The introduction of a GSMN restricts the list of

investigated genes to those present in the model (i.e. related to me-

tabolism), and thus the list of gene sets that can be discovered. The

formulation of the external reactions of the GSMN and how well

they represent the experimental system are likely to affect

metaboGSE outcome, although this has not been investigated in de-

tail here. Tissue-specific models are not a pre-requisite to utilize

metaboGSE. The GSMN and the set of RNA-seq data both need to

be of high quality and the experimental design adequate. Our

method is capable of producing more informative GO terms (i.e.

that are located lower in the GO) than those returned by GSEA and

topGO. This might be because metaboGSE can increase the size of

investigated gene sets by considering structural constraints brought

by the propagation through blocked reactions, as for example the

linearity of the ergosterol biosynthesis pathway in the case reported

here. The genes affecting the discrepancy between conditions, which

are not necessarily differentially expressed, can be further

A B

C D

E F

Fig. 6. Gene expression (A), fitness (B), number of genes (C), number of reactions

(D), percentage of essential genes (E) and percentage of essential reactions (F) of

Y. lipolytica sub-models from seven RNA-seq conditions, obtained by removing

genes following the expr ranking. Only one replicate from each condition is

shown. The percentages represent the numbers of essential reactions or genes in

sub-models over the total number of those in the comprehensive model
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investigated for each enriched gene set. metaboGSE produces bio-

logically meaningful results to the extent one can interpret them.

Our method does not aim at producing a condition-specific sub-

model, but rather integrates on a series of them, thus avoiding the

choice of a particular number of genes to remove. A GSMN is a

drastic simplification of our understanding and knowledge of bio-

chemistry that neglects most kinetic aspects in its representation of

metabolism. On the modeling level, defining a sub-model by remov-

ing genes is equivalent to a gene knockout obtained from a molecu-

lar construct. It is likely that the metabolism dominating a given

physiological state owes more to kinetic regulation than can be

accounted for by only the metabolism structure. Moreover, it is very

hard to ascertain that a gene is not expressed at all and even in this

case, the absence of mRNA does not exclude that the protein is still

present at a low concentration, as a remnant of a previous growth

phase. Likewise, the presence of the protein does not ensure it is ac-

tive. The construction of a series of sub-models followed by their

rescue is essentially a way to circumvent the hard constraint caused

by model viability and exploit sub-model properties that would be

out of range. Our method to construct metabolic sub-networks

could also be performed with other omics data, such as proteomics

and metabolomics, and applied to other research problems.

The fitness function is the key component of our method. The

proposed measure of fitness shows its capacity to capture the health

status of a sub-model and thus suggests some control on our sub-

model construction. Despite the biologically meaningful results

obtained with the datasets studied, several lines of improvement can

be envisaged in future work, including: the formulation of the

growth reaction could be improved by considering more metabo-

lites; the proposed weighting scheme is likely suboptimal and other

dynamic properties of the model could be considered separately

from the score derived from the LP-based minimization.
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