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The AirSR two-component system
contributes to Staphylococcus
aureus survival in human blood and
transcriptionally regulates sspABC
operon
Jeffrey W. Hall†, Junshu Yang, Haiyong Guo and Yinduo Ji*

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul,
MN, USA

To date, genes identified and transcriptionally regulated by the AirSR TCS have been
involved in energy production and cellular homeostasis of the staphylococcal cell.
It is well accepted that the state of cellular metabolism impacts the expression of
virulence factors in Staphylococcus aureus. For this reason, we conducted experiments
to determine if the AirSR TCS contributes to the pathogenesis of S. aureus using
an antisense RNA interference technology, an inducible overexpression system, and
gene deletions. Depletion of AirSR by antisense RNA expression or deletion of the
genes, results in significant decrease in bacterial survival in human blood. Conversely,
overexpression of AirR significantly promotes survival of S. aureus in blood. AirR
promotes the secretion of virulence factors that inhibits opsonin-based phagocytosis.
This enhanced survival is partially linked to the transcriptional regulation of the sspABC
operon, encoding V8 protease (SspA), staphopain B (SspB) and staphostatin B (SspC).
SspA and SspB are known virulence factors which proteolytically digest opsonins and
inhibit killing of S. aureus by professional phagocytes. This is the first evidence linking
the AirSR TCS to pathogenesis of S. aureus.

Keywords: S. aureus, V8 protease, staphopain B, transcriptional regulation, AirSR (YhcSR)

Introduction

Staphylococcus aureus accounts for approximately 20% of bloodstream infections in the U.S.
(Wisplinghoff et al., 2004). The bacteria gain access to the bloodstream commonly from the result
of puncture wounds of the skin (Saravolatz et al., 1982; Control Centers for Disease Control
and Prevention [CDC], 2003; Begier et al., 2004), surgical site infections, or insertion of central
venous lines and catheters (Maki et al., 1997; Wisplinghoff et al., 2004). Once S. aureus enters the
bloodstream, the bacteria have the ability to enter almost any site of the human body (Gordon and
Lowy, 2008). S. aureus bloodstream infections often lead to septic shock and endocarditis (Lowy,
1998). Bacteremiawas responsible for 75% of invasive S. aureus infections, which were identified by
the Active Bacterial Core Surveillance program, a nationwide observation program of federal and
state health officials. Septic shock and endocarditis accounted for an additional 10% of invasive
infections (Klevens et al., 2007).
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The pathogenicity of S. aureus partially relies on the
coordinately regulated expression of virulence factors that allow
the bacterium to evade the host immune system and/or promote
survival during infection. Similar to other bacterial pathogens
(Crosa, 1997; Cotter and DiRita, 2000; Ollinger et al., 2008;
Tomaras et al., 2008; Hammerstrom et al., 2011; Ouyang
et al., 2011), S. aureus has evolved a series of regulatory
effectors (Crosa, 1997; Howell et al., 2003; Torres et al., 2007;
Zheng et al., 2007; Montgomery et al., 2010) which allow the
organism to sense and to adapt to changing environmental
stimuli and survive within a particular niche by modulating
specific cellular responses and virulence gene expression. Sixteen
two-component systems are encoded in the core S. aureus
genome, with many of them influencing the expression of
virulence factors (Novick et al., 1993; Brunskill and Bayles,
1996; Giraudo et al., 1999; Fournier et al., 2001; Kuroda
et al., 2003; Liang et al., 2005; Toledo-Arana et al., 2005;
Meehl et al., 2007; Watkins et al., 2011, 2013). Some of these
TCSs link cellular metabolism and virulence factor expression
to the availability of extracellular nutrients, such as KdpDE
and HssRS systems that sense extracellular K+ and heme,
respectively (Torres et al., 2007; Xue et al., 2011). Analysis
of AirSR to date has shown the two-component system to
be a sensor of oxygen (Sun et al., 2011) that modulates the
expression of pathways responsible for dissimilatory nitrate
reduction (Yan et al., 2011), cellular osmotic balance (Yan et al.,
2009) and alternative sugar catabolism pathways (Yan et al.,
2012). Moreover, the AirSR TCS is important for aerobic and
anaerobic growth of S. aureus (Sun et al., 2005; Hall and Ji,
2013).

The mechanisms by which S. aureus survives and subverts
the vertebrate immune system have been studied for many
decades. S. aureus produces various immune suppression factors,
including V8 protease (sspA, serine endopeptidase), staphopain
B (sspB, cysteine endopeptidase) and staphostatin B (sspC,
inhibitor of Staphopain B). These proteases have been linked to
a wide variety of innate immune system suppression pathways
by their ability to degrade complement components (Jusko
et al., 2013), induce vascular leakage and promote extracellular
matrix structural damage (Imamura et al., 2005; Ohbayashi
et al., 2011). In addition, the proteases inhibit neutrophil
chemotaxis and induce apoptosis of neutrophils or engulfment
of neutrophils by macrophages (Smagur et al., 2009a,b). The
circulating neutrophils and monocytes are key innate cellular
components to combat infection by S. aureus (Kapral and
Shayegani, 1959; Mandell, 1974; Fournier and Philpott, 2005;
DeLeo et al., 2009; Rigby and DeLeo, 2012; Spaan et al.,
2013).

In this study, we found that the overproduction of
AirR resulted in enhanced survival of S. aureus in human
blood and inhibited opsonin-mediated phagocytosis. We
identified that AirSR activates expression of the sspABC
protease operon. Analysis of an sspAB mutant revealed
the proteases are only one of many, as yet unidentified,
proteins that contribute to AirSR-mediated survival in
blood and inhibition of opsonophagocytic clearance of the
bacteria.

Materials and Methods

Bacterial Strains, Plasmids, and Growth Media
The bacterial strains and plasmids used in this study are listed in
Tables 1 and 2. The S. aureus cells were cultured in trypticase soy
broth (TSB) at 37◦C with shaking. Escherichia coli strains were
grown in Luria-Bertani (LB) broth. Transformants containing
recombinant plasmids were selected on LB agar containing
ampicillin (100 µg/ml), kanamycin (50 µg/ml), or erythromycin
(300 µg/ml) for E. coli, and trypticase soy agar (TSA) containing
chloramphenicol (10 µg/ml), tetracycline (5 µg/ml), and/or
erythromycin (5µg/ml) for S. aureus. All overnight cultures grew
to similar OD600nm values.

Blood Survival Assay
Strains were cultured in TSB with appropriate antibiotics.
Inducer anhydrotetracycline (ATc) was added when indicated
to overnight cultures. Following 18 h of culturing, the bacteria
were washed twice in sterile PBS and suspended to an OD
of 0.14 using a Behring photometer in PBS. Fresh venous
human whole blood was collected using heparin containing
Vacutainer tubes (BD) from outwardly healthy adult donors. The
blood was then immediately used in the assay. Approximately
5 × 106 CFU in 50 µl of PBS were added to 450 µl of
blood per microcentrifuge tube with appropriate antibiotics
and ATc, where indicated. Microcentrifuge tubes were capped
and placed in a rotisserie incubator and incubated at 37◦C
with end-over-end mixing. At indicated time points a 20 µl
sample was removed from each sample, serially diluted, and
plated on TSA to determine the surviving CFU count for each
sample. The percentage of surviving bacteria was calculated as
CFUtimepoint/CFUinitialinput

∗100. Blood collection was approved
by the University of Minnesota Institutional Review Board.

Gene Deletion
Deletion of sspAB was carried out following the pKOR1 allelic
exchange protocol as described (Bae and Schneewind, 2006)
and primers in listed in Table 3. Plasmid pJB38 is a modified
version of pKOR1 (Bose et al., 2013) and pJB38-sspAB was kindly
provided by Alex Horswill (Mootz et al., 2013). All deletions were
confirmed by diagnostic PCR.

Cloning, Expression, and Purification of
AirR-His Tagged Fusion Protein in Escherichia
coli
The purification of AirR-6x His was carried out as described using
the previously constructed pETairR plasmid (Yan et al., 2012).
The only modification to the protocol was the use of Pro-LyseTM
Bacterial Lysis Buffer (Lamda Biotech) to lyse the E. coli.

SDS-PAGE Analysis of Exported Proteins,
Mass Spectrometry Peptide-Protein
Identification, and Immunoblotting
The culture supernatants were collected from the overnight
cultures of S. aureus strains grown in TSB medium with 5 µg/ml
of erythromycin and 250 ng/ml inducer ATc. Bacterial cells were
pelleted by centrifugation at 3900 × g for 20 min. The culture
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TABLE 1 | Bacterial strains.

Strain Description Reference

DC10B Dam− Escherichia coli which allows for direct
electroporation of purified plasmid DNA into wild-type
Staphylococcus aureus

Monk et al. (2012)

BL21(DE3) E. coli used for protein expression; IPTG inducible; Cmr

and Kanr
Invitrogen

RN4220 Laboratory S. aureus strain (RsbU− ) Kreiswirth et al. (1983)

WCUH29 Encapsulated human clinical HA-MRSA isolate NCIMB40771

AH1263 USA300 CA-MRSA Erms (LAC∗) (White et al., 2014)

AH2084 AH1263�airSR White et al. (2014)

JE2 Plasmid cured derivative of LAC strain, community-
acquired MRSA isolate

Fey et al. (2013)

MW2 USA300 Community acquired MRSA isolate

MRSA923 Community-acquired MRSA isolate

JSAS909 WCUH29 with pYJY909; Ermr Sun et al. (2005)

WAirR WCUH29 with pAirR; Ermr This Study

JE2/pYH4 JE2 with pYH4; Ermr This Study

JE2/pAirR JE2 with pAirR; Ermr This Study

MRSA923/pYH4 MRSA923 with pYH4; Ermr This Study

MRSA923/pAirR MRSA923 with pAirR; Ermr This Study

MW2/pYH4 MW2 with pYH4; Ermr This Study

MW2/pAirR MW2 with pAirR; Ermr This Study

NE1787 JE2 with bursa aurealis Tn in srtA Fey et al. (2013)

NE1787/pYH4 NE1787 with pYH4; Ermr

NE1787/pAirR NE1787 with pAirR; Ermr

WSspB WCUH29 with pSspB; Ermr This Study

Control Pssp-lux WCUH29/pYH4 with Pssp-lux; Ermr This Study

WAirR/Pssp-lux WAirR with Pssp-lux; Ermr This Study

AH1263/Pssp-lux AH1263/ with Pssp-lux; Ermr This Study

AH2084/Pssp-lux AH2084/ with Pssp-lux; Ermr This Study

�SspAB WCUH29 with in-frame deletion of sspAB This Study

�SspAB/pYH4 WCUH29�sspAB with pYH4; Ermr This Study

�SspAB/pAirR WCUH29�sspAB with pAirR; Ermr This Study

�SspAB/pSspABC WCUH29�sspAB with pSspABC; Ermr This Study

supernatants were then passed through a 0.2 µm syringe filter to
remove bacterial cells. The exported proteins were precipitated
from an equal volume of supernatant using ethanol as described
(Ji et al., 1999). The exported protein profiles were detected
by 12% SDS-PAGE and Coomassie Blue staining. Prominent
overproduced protein bands were cut from the gel and in-
gel digested (Shevchenko et al., 1996). Samples were submitted
to the University of Minnesota Mass Spectrometry Core for
mass spectrometry. Immunoblotting for SspB was conducted
as described previously (Liang et al., 2006) using a SspB
antibody kindly provided by Alex Horswill (Mootz et al., 2013)
and an alkaline phosphatase conjugated anti-chicken secondary
antibody (Sigma). Overnight cultures grew to similar OD600nm
values and equal volume of precipitated protein from each culture
supernatant was loaded rather than equal protein concentration
so that differences in protein concentration could be observed.

Zymography Analysis
Induced cultures were grown in TSB with appropriate antibiotics
and 250 ng/ml of inducer ATc overnight at 37◦C with shaking.

The following day the bacterial cells were pelleted and the TSB
culture supernatant was filter sterilized with a 0.2 µm syringe
filter. Twenty five milliliters of each culture supernatant, along
with sterile TSB as a vehicle control, were concentrated 50-fold
using a Millipore Centrifugal Protein Concentrator with a 10 kD
nominal molecular weight limit. Proteins were resolved using
12% SDS-PAGE, gelatin was added to a final concentration of
0.1% (v/v) for zymography analysis. An equal volume of each
concentrated culture supernatant sample was mixed with protein
solubilization buffer (5X, 50% glycerol, 10% (w/v) SDS, and 0.5 M
Tris-HCl, pH 6.8) and incubated at room temperature for 30min.

Each sample was loaded and resolved in the gelatin SDS-
PAGE. After electrophoresis, the gel was placed in a plastic wash
container and washed with 1X SDS removal buffer (2.5% Triton
X-100, 5 mMMgCl2, 25 mM Tris-Cl, pH 7.5) for 60 min at room
temperature. The SDS removal buffer was replaced after 30 min
with fresh removal buffer and then rinsed gently with deionized
(DI) water. Development buffer (0.1% Triton X-100, 5 mM
MgCl2, 25 mM Tris-Cl, and pH 7.5) was added until it covered
the gel and the container was incubated at 37◦C overnight. After
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TABLE 2 | Plasmids.

Plasmids Description Reference

pCY1006 Shuttle vector carrying agr
promoter-gfp-lux reporter, derives from
pSB2019; Cmr, Ampr

Liang et al. (2006)

pETairR pET24b based for production of AirR in
E. coli BL21(DE3)

Yan et al. (2012)

pSAS909 pYH3 with airSR antisense downstream
of TetR promoter; Ampr, Ermr

Sun et al. (2005)

pYH4 pYH3 with Ampr removed; Ermr Huang et al. (2004)

pAirR airR cloned downstream of pYH4 TetR
promoter for overproduction; Ermr

This Study

pSspB sspB cloned downstream of pYH4 TetR
promoter for overproduction; Ermr

This Study

Pssp-lux sspABC promoter cloned upstream of
promoterless luxABCDE; derived from
pCY1006; Cmr, Ampr

This Study

pJB38-sspAB pJB38 with in-frame sspAB
upstream/downstream deletion region

White et al. (2014)

pSspABC sspABC operon cloned downstream of
pYH4 TetR promoter for
overproduction; Ermr

This Study

TABLE 3 | Oligonucleotide sequencesa.

Primers Sequence

ssp Pro For EcoRI 5′-TAGCGAATTCGATATGTTGAACT
GGACGTCGTGAAC-3′

ssp Pro Rev XmaI 5′-TTCCCGGGCTAAAAACCTCCAA
AAAATTTATTTACAAGTTAAATA TAACAC-3′

sspB-For 5′-AGGAGGTTTAAACTATGAATAGTTCATA
TAAATCTAGAGTATTCA ATATTATAAGC-3′

sspB-Rev-AscI 5′-TTGGCGCGCCTTAGTAACC
TATCATTGAACCATACCAG-3′

sspABC-For 5′-AGGAGGTTTAAACTATGAAAGGT
AAATTTTTAAAAGTTAGTTC TTTATTCG-3′

sspABC-Rev-AscI 5′-TT GGCGCGCCTTATACTAAGCG
CTCATAAACGATTGG-3′

AirROE-for 5′-AAACTATGGAACAAAGG
ACGCGAC-3′

AirROE-rev 5′-TTGGCGCGCCCTATTTTA
TAGGAATTGTGAATTG-3′

pJB38-ssp For 5′-GAATATGATATTAAGTC
ACTTGCGTCG-3′

pJB38-ssp Rev 5′-GCTTATGAAATGGATGTT
TTAAAAGAAGGTATG-3′

luxArev 5′-GCT CCA GTA ACC ATA CGG
TAT C- 3′

TetRfor 5′-CAA TAC AAT GTA GGC TGC -3′

TTrev 5′-CTC AGG AGA GCG TTC AC -3′

aPurchased from IDT DNA, Coralville, IA.

the development period, the development buffer was removed
and the gel was rinsed gently with DI water. Stain buffer (50% DI
water, 35% MetOH, 15% Glacial Acetic Acid, 0.25% Coomassie
Blue R-250) was added to cover the gel in the container. The gel
was incubated until it was no longer visible in the stain buffer.
Stain buffer was removed and the gel was rinsed gently with DI
water. Fixing buffer (2% Glacial Acetic Acid, 98% DI water) was

added to the container until it covered the gel and incubated at
room temperature for 24 h.

Analysis of Transcriptional Regulation Using a
Promoter-luxABCDE Reporter Fusion System
The upstream ssp promoter region was PCR amplified with
primers ssp Pro For/ssp Pro Rev listed in Table 3, digested with
EcoRI and XmaI (NEB) and replaced the agr promoter fragment
in pCY1006. The re-constructed ssp-lux promoter reporter was
confirmed by diagnostic PCR. Plasmids were purified from E. coli
DC10B and electroporated into the S. aureus strains as indicated
in Table 1. Bioluminescence intensity and optical density of the
cultures were measured at different times of the experiment in
duplicate. The Relative Light Units (RLU) were calculated by
dividing the average bioluminescence reading by the average
OD600nm reading (lum/OD600nm) at each time point. The
experiment was repeated three times with separate colonies of
each strain.

Construction of Overproduction Plasmids
Gene ORFs were obtained by PCR using Q5 high-fidelity
polymerase (NEB) with the primers (AirROE-for/AirROE-
rev; sspB-For/sspB-Rev-AscI; sspABC-For/sspABC-Rev-AscI) in
Table 3. Purified PCR fragments were digested with AscI.
The pYH4 plasmid carrying the TetR regulated, ATc inducible
promoter was digested with PmeI and AscI. Digested PCR
fragments were ligated into the digested pYH4 plasmid with T4
DNA ligase (Promega) and confirmed by diagnostic PCR using
the Tetfor/TTrev primer pair listed in Table 3 that are specific for
regions upstream and downstream of the MCS in pYH4.

HL-60 Opsonophagocytic Killing Assay
To determine the effect of S. aureus strains exported proteins
on the activity of serum antibodies and complement, induced
cultures were grown in TSB with appropriate antibiotics and
250 ng/ml of inducer ATc overnight at 37◦C with shaking. The
following day the bacterial cells were pelleted and the TSB culture
supernatant was filter sterilized with a 0.2 µm syringe filter.
Twenty five milliliters of each culture supernatant, along with
sterile TSB as a vehicle control, were concentrated 50-fold using a
Millipore Centrifugal Protein Concentrator with a 10 kD nominal
molecular weight limit. Before the HL-60 phagocytic assay, each
concentrated culture supernatant and TSB was mixed 1:1 with
the human serum or rabbit complement, incubated at 37◦C for
30 min, and then placed on ice. In the assay, 40 and 20 µl
of the serum mixture and complement mixture, respectively,
were added to each well. Additional buffer was added to the
complement mixture wells so all wells were of equal 100 µl
volume.

HL-60 pluripotent cells were differentiated to granulocytic
cells and cultured for 5 days as described (Kim et al., 2003).
The basic assay consisted of 1,000 CFUs of S. aureus WCUH29
placed in duplicate of a 96 well microtiter plate. Pre-treated
human serum and complement from 3 to 4 week of white rabbits
(Life Technologies), respectively, were added to each well. Lastly,
4 × 105 differentiated HL-60 granulocytes were added to each
well to initiate the assay. The plates were incubated for 60 min
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at 37◦C and with a CO2 concentration of 5%. Each well was
mixed gently and 10 µl of sample from each well was drop
plated in triplicate on TSA plates to determine surviving CFU.
The percent survival was calculated as the number of surviving
CFU/number of input CFUmultiplied by 100, (CFUf/CFUi

∗100).
The experiment was repeated at least 4 times.

Statistical Analysis
Statistical data analysis was performed inMicrosoft Excel for Mac
2011 using unpaired Student’s t-tests with a alpha level ≤ 0.05.
Significant differences are noted by the addition of the p-value
over the data being compared.

Results

AirSR Contributes to the Survival of S. aureus
in Human Blood
The AirSR TCS is essential for growth in S. aureus WCUH29
(Sun et al., 2005), and it is important to validate the in
vivo essentiality of any gene as some genes found to be
essential in vitro may not be essential in vivo (Gandotra et al.,
2007; Brinster et al., 2009). Survival of the airS antisense
RNA strain (JSAS909) in human blood was examined as an
initial step to determine the importance of airSR for survival
the human host. An equal number of colony forming units
(CFUs) per strain were inoculated into a defined volume
of freshly isolated venous blood and depletion of AirSR by
induction of airSR antisense RNA with ATc (Sun et al.,
2005) resulted in a significantly decreased percentage of ATc
induced JSAS909 CFUs surviving in the first half hour of
incubation in human blood compared to the non-induced
inoculum (Figure 1A, 18% vs. 40%). After 1 h, fewer ATc
induced JSAS909 CFUs survived compared to the non-induced
JSAS909, but was not statistically different. After 2 h of
incubation, a similar percentage of CFUs survived for both
strains (Figure 1A). Uninduced (–ATc) and induced (+ATc)

empty plasmid control strains survived equally well (data not
shown).

The induction of airSR antisense RNA, results in a delayed
growth phenotype in WCUH29 (Sun et al., 2005). To eliminate
impact of growth factors on bacterial survival in human blood,
we determined if the overproduction of the AirR response
regulator could promote survival in blood using an inducible
overproduction strain (WAirR). ATc induced overproduction
of AirR promoted survival of S. aureus WCUH29 over the
course of the 3-h experiment compared to non-induced WAirR
(Figure 1A). By hour two of the experiment, a significantly
greater percentage of the initial inoculum of the induced
WAirR strain survived in the blood compared to the uninduced
WAirR strain (Figure 1A, 24% vs. 5%) and the increased
survival of induced WAirR continued into hour three of the
experiment.

To determine if the enhanced survival of S. aureus
during AirR overproduction was applicable to other genetic
backgrounds of S. aureus, we examined the effect of AirR
overproduction in community-acquired methicillin resistant
S. aureus (CA-MRSA) strains, MW2, MRSA923, and JE2.
Similar to the results found with WCUH29, ATc induced
overproduction of AirR greatly increased the percentage of CFUs
that survived in human blood for all strains (Supplementary
Figure S1).

Since the first publication on the identification and essentiality
of airSR in strain WCUH29 (Sun et al., 2005), there have
been several other research articles published investigating
various aspects of the biological function of AirSR and the
essentiality of airSR in other S. aureus strains has been
disputed in these articles (Sun et al., 2011; White et al.,
2014). This difference in essentiality may be due to distinct
genetic differences between the strains of S. aureus used in
each study. Most recently, the clean deletion of airSR was
reported in S. aureus AH1263, a derivative of LAC (White
et al., 2014). Following this publication, the pJB38-airSR deletion
plasmid was introduced into both WCUH29 and S. aureus
JE2, respectively. Approximately 100 colonies of WCUH29

FIGURE 1 | The AirSR TCS is important for survival in human blood.
(A) Percent survival of the induced Staphylococcus aureus airSR antisense
strain (JSAS909, 500 ng/ml ATc) and AirR overproduction strain (WAirR, 250
ng/ml ATc) in human blood during induction. (B) Percent survival of the

wildtype LAC∗ (AH1263/pYH4), LAC∗�airSR (AH2084/pYH4), and
LAC∗�airSR /AirR overproduction strain (AH2084/pAirR) in human blood
during with 250 ng/ml of inducer ATc. Data represents the mean and SEM of
at least three experiments.
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and JE2 were screened for deletion of airSR using diagnostic
colony PCR. Deletion of airSR was not detected in strain
WCUH29 but was readily detected in the JE2 strain (data
not shown), indicating the essentiality of airSR is strain
dependent.

To determine if the airSR null deletion in AH1263 impacted
bacterial survival in human blood, we conducted blood survival
assays. Similar to our results with strain JSAS909, deletion of
airSR significantly impaired the ability of AH1263/pYH4 to
survive in whole blood (Figure 1B). The decreased survival
of the AH2084/pYH4 strain was more than complemented by
introduction and ATc induction of the AirR overproduction
plasmid, with AH2084/pAirR having significantly enhanced
survival relative to the AH1263/pYH4 and AH2084/pYH4
(Figure 1B). All three strains were assayed as group, thus the
empty pYH4 control strain was introduced into the AH1263
and AH2084 to control for potential effects caused by the use of
erythromycin and inducer ATc during the blood survival assay.

AirR-Mediated Secreted Factors are Important
for Enhanced Survival and Inhibited
Opsonophagocytic Killing of S. aureus
WCUH29
Staphylococcus aureus produces numerous LPXTG cell-surface
linked MSCRAMMs and exported virulence factors involved in
inhibition of complement and antibody mediated phagocytosis
that enhance survival in blood and tissues (Zecconi and
Scali, 2013; Foster et al., 2014). Since the JE2 strain showed
similar enhanced survival to WCUH29, we utilized the srtA
JE2 bursa aurelis Tn mutant, NE1787, to determine which
surface factor(s) are involved in the enhanced survival in blood
mediated by AirR. Sortase A is a transpeptidase responsible for
proper LPXTG-MSCRAMM attachment to the cell surface. The
AirR overproduction plasmid (pAirR) was electroporated into
NE1787. We found Tn mutagenesis of srtA had no influence
on AirR enhanced bacterial survival in human blood (data

not shown), indicating SrtA processed MSCRAMMs are not
responsible for the AirR-mediated enhanced survival in blood.

To investigate if exported proteins contribute to AirSR
regulated anti-phagocytic mechanisms, we determined the effect
of culture supernatants on bacterial anti-phagocytic capacity
using a HL-60 opsonophagocytic killing assay (see Materials
and Methods). If the induced WAirR gives rise to more anti-
phagocytic virulence factors, a greater percentage of wild-
type S. aureus WCUH29 CFUs would be expected to survive
when the fractions are incubated with ATc induced WAirR
culture supernatant compared to sterile concentrated TSB or
concentrated ATc induced empty plasmid control supernatants.
Indeed, significantly more wild-type S. aureusWCUH29 survived
when the serum fraction (Figure 2A, 90% vs. 60%) or
complement fraction of the assay (Figure 2B, 90% vs. 75%)
was pre-incubated with concentrated induced WAirR culture
supernatant compared to the induced control supernatant. As
a control, concentrated TSB growth medium was included and
did not impact the killing S. aureus relative to the induced
control plasmid supernatant. These data suggest the AirSR two-
component system contributes to S. aureus survival in human
blood by promoting production of anti-opsonophagocytic
virulence factors that inhibit serum- and complement-mediated
mechanisms.

Identification of Overproduced Exported
Proteins Resulting from AirR Overproduction
in S. aureus
To identify which exported protein(s) are overexpressed resulting
from AirR overproduction, we prepared the exported proteins
from cell-free culture supernatants of ATc induced pYH4
control and WAirR strains. The exported proteins were visually
compared using SDS-PAGE, and protein bands that were
obviously over-represented or bands that only appeared in the
WAirR lane were processed for peptide identification by mass
spectrometry (see Materials and Methods).

FIGURE 2 | AirSR regulated exported proteins inhibit complement and
antibody mediated opsonophagocytic killing of S. aureus. Sterile TSB and
culture supernatants of ATc (250 ng/ml) induced control (Control Cult. Sup) and
AirR overproducing S. aureus (WAirR Cult. Sup) were concentrated 50-fold. The

serum (A) and complement (B) components of the assay were pre-incubated
30 min with concentrated sterile TSB or individual culture supernatants before
addition to the assay. Data represents the mean and standard error of four
individual experiments.
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The subsequently identified proteins were cross-referenced
with published studies to identify proteins that are involved
in innate immune suppression via inhibition of the humoral
and/or innate cellular response. Peptides from the cysteine
endopeptidase, staphopain B (SspB) dominated one of the
over-represented bands from ATc induced WAirR culture
supernatants. More than 80% of the processed active form of SspB
was identified by mass spectrometry (Supplementary Figure S2).

AirR Overproduction Results in Increased
Functional Staphopain B Production
To examine if the overproduced SspB is functional, we
conducted gelatin zymography assays using the cell-free culture
supernatants, as SspB is able to degrade collagen (Ohbayashi
et al., 2011). Coomassie Blue staining and gelatin zymography
analyzed was used to analyze an equal volume of concentrated
culture supernatant from each induced strain. A single band
in the induced WAirR lane and the disappearance of other
proteins relative to the pYH4 control lane was detected by
Coomassie Blue (Figure 3A). Gelatin zymography analysis of
the same samples revealed very little gelatin degradation in
the control strain, while a large, prominent band of gelatin
degradation appeared in the inducedWAirR sample (Figure 3B).
Importantly, both the Coomassie Blue stained protein band
and gelatin degradation in the zymogram resolve at the
same molecular weight from the induced WAirR, suggesting
the gelatin degradation is the result of this protein. These
data highly suggest that the overproduction of AirR results
in the overproduction of functional cysteine endopeptidase
SspB.

To test the hypothesis that the increased gelatin degradation
is the result of increased production of SspB and to confirm our
mass spectrometry identification data, we ethanol precipitated
the exported proteins from the cell-free culture supernatants
of the pYH4 control and WAirR strains without and with

inducer ATc. As seen in Figure 3C, the addition of ATc had
no apparent impact on the protein profile of the control strain,
while the addition of ATc to WAirR resulted in a stronger
detection of a protein band similar in size to the SspB zymogen
at 44 kD. Additionally, many protein bands were absent in
the stained SDS-PAGE from the induced WAirR supernatant,
consistent with previous reports that up-regulation of SspB
(and SspA) results in degradation of other exported proteins
(Karlsson et al., 2001; Jones et al., 2008). As a positive control,
the sspB gene was cloned into the same ATc inducible expression
vector (pSspB, strain WSspB). Further confirmation of SspB up-
regulation was carried out by immunoblotting using chicken egg
antibody specific for SspB (Kolar et al., 2013). In the control
strain, SspB production was low and appeared unaffected by
the addition of ATc (Figure 3D). In an ATc dose-dependent
manner, staphopain B production was up-regulated in theWAirR
supernatant (Figure 3D). SspB was readily detectable in the
induced positive control WSspB supernatant as well. The SspB
specific antibody detected the various processed and degraded
forms of the protein (Shaw et al., 2005, 2004). These data
clearly indicate a regulatory link between AirSR and SspB
production.

Transcription from the ssp Promoter is
Regulated by AirR
Staphopain B is produced from the middle gene of a three gene
operon and is bordered upstream by sspA, encoding the V8
serine endopeptidase and downstream by sspC which encodes
staphostatin B, a cytoplasmic inhibitor of SspB (Rice et al., 2001).
To determine if the up-regulation of SspB production occurs
post-transcriptionally or if transcription from the ssp promoter
is increased in the induced WAirR strain, we examined the
effect of AirR overproduction and deletion of airSR on the
transcription of the ssp operon using a ssp promoter-luxABCDE
reporter system. The induction of AirR production with inducer

FIGURE 3 | Zymographic and immunoblot analysis of concentrated
control and WAirR exported proteins. Equal volumes of concentrated
culture supernatant were resolved by (A) 12% SDS-PAGE and proteins
stained with Coomassie Blue or (B) 0.1% gelatin-12% SDS-PAGE and
processed for zymography, (←−, indicates point of gelatin degradation).

(C) SDS-PAGE analysis of precipitated culture supernatant proteins from
control and WAirR strains without and with ATc and WSspB with ATc.
(D) Immunoblot detection of SspB from precipitated culture supernatants
showing increased amounts of SspB with increasing induction of AirR by
inducer ATc.
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FIGURE 4 | ssp promoter–reporter analysis. All strains harbor the
Pssp-lux reporter plasmid. (A) Uninduced overnight cultures of control
and WAirR were diluted 1:300, incubated at 37◦C with 25 ng/ml of
inducer ATc. (B) Uninduced overnight cultures AH1263 and AH2084
were diluted 1:1000 and incubated at 37◦C. OD600nm and

bioluminescence readings were measured every 30 min with 1 min of
mixing before each reading in a BioTek Synergy II spectrophotometer.
The light intensity values for each time point are given as relative light
units (RLU), Lum reading/OD600nm reading for each time point. Data
presented are the mean of three independent colonies.

ATc resulted in a fivefold maximal increase in bioluminescence
intensity compared to the control (Figure 4A). Furthermore,
bioluminescence driven by the ssp promoter was higher and
sustained throughout the growth of WAirR, demonstrating
that continued and prolonged AirR overproduction results in
increased transcription from the ssp promoter (Figure 4A).
To examine if the absence of AirSR impacts the ssp promoter
driven bioluminescence, the ssp-lux reporter was electroporated
into the wild-type AH1263 and �airSR, AH2084, strains.
Maximum ssp-driven bioluminescence was reduced fivefold in
AH2084 compared to AH1263 (Figure 4B). These data indicate

AirSR is a positive transcriptional regulator of the sspABC
operon.

SspABC is Not the Only Virulence Factor
Involved in AirSR Mediated Survival in Human
Blood
To investigate if AirR mediated enhanced survival and
antiphagocytosis is due only to up-regulation of the Ssp
proteases, we created a sspAB null mutant in S. aureusWCUH29
using an in-frame sspAB deletion plasmid (Mootz et al.,
2013; kindly provided by Alex Horswill). We examined the
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survival of ATc induced wild-type WCUH29 and �SspAB
without and with AirR overproduction in human blood. As
seen previously, the overproduction of AirR increased the
percentage of CFU that survived throughout the experiment
(Figure 5, WCUH29/pYH4 vs. WAirR). However, deletion
of sspAB did not result in decreased survival compared to
wild-type WCUH29. The �SspAB/pAirR strain survived
better compared to �SspAB/pYH4, but the percentage of
surviving CFUs was statistically reduced when compared
to induce WAirR in the first half hour of the assay only
(Figure 5, WAirR vs. �SspAB/pAirR). After the first half
hour, the deletion of sspAB had a minimal impact on the
enhanced survival mediated by AirR overproduction and
by two hours, WAirR and �SspAB/pAirR had similar
percentages of surviving CFUs. Complementation of the
�SspAB with an sspABC expression plasmid, on average,
increased the percentage of bacteria that survived in human
blood, but was not statistically different from WCUH29 or
�SspAB. These data suggest, overall, SspAB contributes
minimally to AirSR-mediated survival of S. aureus in human
blood in the absence of AirR overproduction. Nonetheless,
observing that the ATc induced �SspAB/pAirR strain had
enhanced survival compared to �SspAB/pYH4 indicates
additional, as yet unidentified virulence factors, are regulated by
AirSR.

Discussion

In this study, our data is the first to show that the AirSR two-
component regulator is involved in pathogenesis of S. aureus.
We utilized the inducible airSR antisense RNA and AirR
overproduction approaches to alter the intracellular level of
AirR and analyzed the impact of AirSR on bacterial survival
and resistance to phagocytosis in healthy human whole blood.

FIGURE 5 | Blood survival analysis of the wildtype and �SspABC
without and with AirR and SspABC overproduction. Percent survival of
the wild-type S. aureus WCUH29 and �SspAB mutant strain with pYH4
control, pAirR, and pSspABC overproduction plasmids in human blood with
250 ng/ml inducer ATc. Data is the mean and SEM of at least three
experiments per strain.

We revealed that the depletion of AirSR significantly inhibited
the ability of the HA-MRSA isolate WCUH29 to survive in
human blood during the first half hour of the assay in diverse
staphylococcal genetic backgrounds, whereas the overproduction
of AirR significantly enhanced survival in blood over 2 h. It
was believed that airSR was essential for S. aureus growth, but
this appears to a property of the WCUH29 strain. Recently, a
�airSRmutant in the USA300 CA-MRSA lineage of S. aureuswas
constructed (White et al., 2014). Whereas airSR is not essential
in this strain, the strain does appear to have a growth defect,
as it grew much slower in the Pssp-reporter assay (Figure 3B),
suggesting that AirSR, while dispensable in USA300 AH1263, is
likely an important two-component system for S. aureus growth.
These data indicate that the essentiality of airSR appears to be
strain dependent. Similar to the WCUH29 yhcSR antisense RNA
strain, the USA300 AH2084�airSRmutant survived significantly
worse than the wild-type control (AH1263) in human blood.
Furthermore, the overproduction of AirR in this mutant resulted
in significantly enhanced survival of the strain in blood. These
data clearly indicate, regardless of genetic background, the AirSR
two-component system is important for survival in human whole
blood. Additionally, analysis of a srtA mutant indicates that
AirSR contributes to S. aureus survival in blood by regulating
secreted factors, independent of cell wall-attached LPXTG-
MSCRAMMS.

Our study indicates that one of these contributing AirR-
regulated secreted factors is the cysteine endopeptidase, SspB, and
possibly the serine protease, SspA, due to co-transcription. Our
results show that AirSR mediates the production of staphopain
B (SspB) using mass spectrometry, which was further supported
by immunoblotting and gelatin zymographic assays. Moreover,
using a promoter–reporter system it was demonstrated that
AirR regulates the transcription of the sspABC operon, encoding
V8 protease and staphopain B, both of which are known to
promote survival in serum and inhibit opsonophagocytosis (Ryan
et al., 2008; Smagur et al., 2009a,b; Jusko et al., 2013). This
information corresponds well with the finding that the WAirR
culture supernatant inhibits opsonophagocytic killing of S. aureus
relative to the control extraordinarily well.

The AirSR TCS system regulates gene expression in response
to the presence or absence of oxygen, and possibly reactive
oxygen species (Sun et al., 2011). The regulation of sspABC by
AirSR is of interest in the context of biofilm formation and
stability and abscess formation, in addition to its apparent role
in survival in blood. Biofilms and wound sites are known to
have varying degrees of hypoxia (Sawyer et al., 1991; Beenken
et al., 2004; Resch et al., 2005), thus, it is conceivable that AirSR
may regulate expression of sspABC in response to the oxygen
levels in the surrounding microenvironment. This regulation
has implications in biofilm formation and stability, extracellular
matrix destruction and wound healing, as well as neutrophil
infiltration and immune response to infections (Imamura et al.,
2005; Vincents et al., 2007; Smagur et al., 2009b; Ohbayashi et al.,
2011; Chen et al., 2013; Jusko et al., 2013; Kolar et al., 2013;
Mootz et al., 2013). Further investigation is needed to define the
role of AirSR during systemic and abscess infections in relation
to oxygen levels in these microenvironments and how AirSR
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regulation of sspABC and additional secreted virulence factors
impacts the pathogenesis of S. aureus in these environments.

To elucidate whether the enhanced bacterial survival in
human blood by overexpression of AirR is attributable to
its positive regulation of the sspABC operon, we determined
the impact of the sspABC null mutation on AirR-mediated
anti-phagocytosis. We found the deletion of the sspABC
operon did not significantly alter the survival capacity of
wild-type WCUH29 strain, but did significantly reduce
survival for the WAirR strain in the first half of the
assay. Our studies indicate, as yet unidentified secreted
AirSR regulated virulence factors, contribute to the ability
S. aureus to resist phagocytosis and survive in human
blood.

Conclusion

The AirSR two-component system is involved in the modulation
of S. aureus survival in human blood. The AirSR system
positively regulates the expression of the sspABC operon at the

transcriptional level and additional secreted virulence factors.
Studies are ongoing to identify the additional factors that
are regulated by AirSR, how oxygen impacts AirSR-mediated
pathogenesis, and the contribution of these factors to anti-
phagocytosis and pathogenesis of S. aureus.
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