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A substantial proportion of the adult United States population with type 2 diabetes (T2D)
are undiagnosed, calling into question the comprehensiveness of current screening
practices, which primarily rely on age, family history, and body mass index (BMI). We
hypothesized that a polygenic score (PGS) may serve as a complementary tool to identify
high-risk individuals. The T2D polygenic score maintained predictive utility after adjusting
for family history and combining genetics with family history led to even more improved
disease risk prediction. We observed that the PGS was meaningfully related to age of
onset with implications for screening practices: there was a linear and statistically
significant relationship between the PGS and T2D onset (−1.3 years per standard
deviation of the PGS). Evaluation of U.S. Preventive Task Force and a simplified
version of American Diabetes Association screening guidelines showed that addition of
a screening criterion for those above the 90th percentile of the PGS provided a small
increase the sensitivity of the screening algorithm. Among T2D-negative individuals, the
T2D PGSwas associated with prediabetes, where each standard deviation increase of the
PGS was associated with a 23% increase in the odds of prediabetes diagnosis.
Additionally, each standard deviation increase in the PGS corresponded to a 43%
increase in the odds of incident T2D at one-year follow-up. Using complications and
forms of clinical intervention (i.e., lifestyle modification, metformin treatment, or insulin
treatment) as proxies for advanced illness we also found statistically significant
associations between the T2D PGS and insulin treatment and diabetic neuropathy.
Importantly, we were able to replicate many findings in a Hispanic/Latino cohort from
our database, highlighting the value of the T2D PGS as a clinical tool for individuals with
ancestry other than European. In this group, the T2D PGS provided additional disease risk
information beyond that offered by traditional screeningmethodologies. The T2D PGS also
had predictive value for the age of onset and for prediabetes among T2D-negative
Hispanic/Latino participants. These findings strengthen the notion that a T2D PGS
could play a role in the clinical setting across multiple ancestries, potentially improving
T2D screening practices, risk stratification, and disease management.
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1 INTRODUCTION

The United States and other Western countries face an epidemic
of type 2 diabetes mellitus (T2D). Population-wide screening is
critical for identifying T2D-positive and prediabetic individuals
in order to prevent severe pathology associated with more severe
or protracted disease. Despite detailed screening guidelines
developed by The U.S. Preventive Services Task Force and the
American Diabetes Association (ADA), diagnostic delay in
prediabetes and T2D continues to hamper timely and effective
treatment (Samuels et al., 2006). In 2020, the Centers for Disease
Control (CDC) estimated that over 7 million undiagnosed T2D
cases exist among current U.S. residents, and a diagnostic rate of
only 15.3% for the 80 +million individuals living with prediabetes
(Centers for Disease Control and Prevention, 2020). By 2050, the
number of undiagnosed cases could be over 13 million, as T2D
prevalence is projected to increase to 25–28% of the U.S.
population (Boyle et al., 2010).

This high rate of progression can be mitigated with improved
screening and risk stratification methods. The T2D epidemic
described above is not only a case identification problem but a
resource allocation problem. Novel methods are needed to
improve screening and risk stratification in order to most
effectively allocate resources to healthcare providers managing
the prevention and treatment of the disease.

The heritability of T2D has been estimated at 25–72%
(Almgren et al., 2011; Florez et al., 2018), and genome-wide
association studies (GWAS) have shown a highly polygenic
architecture to be associated with risk for the disease (Xue
et al., 2018). Thus, predictive genetic models that produce a
polygenic score (PGS) containing many thousands of genetic
variants have been increasingly investigated (Reisberg et al., 2017;
Khera et al., 2018). Indeed, systematic reviews and an online
depository of PGS together provide information about dozens of
published distinct PGS for T2D, comprised of only three variants,
to nearly 7 million variants (Padilla-Martínez et al., 2020;
Lambert et al., 2021).

We hypothesized that a T2D PGS developed from a large-scale
database and consisting of over 11,000 T2D-associated genetic
variants would complement existing screening methods and
improve individuals’ stratification across the T2D risk
spectrum. First, we developed a novel PGS derived from a
very large multi-ancestry sample in the 23andMe database; the
PGS under study in this manuscript is not the one included in the
23andMe Personal Genome Service as of March 2022. Next, we
hypothesized that the PGS would add unique predictive value
over and above traditional factors that inform T2D screening
decisions in the clinic: family history, age, and body mass index
(BMI; Pippitt et al., 2016; American Diabetes Association, 2018;
USPSTF, 2021). We also hypothesized that the T2D PGS would
be associated with earlier age of onset of T2D, prevalence of
prediabetes among those without a T2D diagnosis, T2D incidence
after one year, and manifestations of severity including
differences in T2D treatments and complications of T2D.
Finally, given that PGS derived from samples of primarily
European descent have exhibited limited transferability when
assessed in other populations (Martin et al., 2019), we evaluated

the T2D PGS in a second 23andMe cohort consisting of
individuals with Hispanic/Latino ancestry to underscore the
value of the T2D PGS as a clinical tool applied to those with
ancestry other than European.

2 MATERIALS AND METHODS

2.1 Study Participants and Survey
Methodology
We recruited study participants from all genotyped 23andMe
customers who opted to participate in research with 23andMe.
All participants provided informed consent under a protocol
approved by the external AAHRPP-accredited IRB, Ethical &
Independent Review Services. Individual-level data from this
study are not publicly available per the IRB-approved study
protocol. Participants were included in the analysis on the
basis of consent status as checked at the time data analyses
were initiated.

A series of questions asked if a participant had ever been
diagnosed with T2D by a physician. Those who answered
affirmatively were considered cases, whereas those who
indicated no personal history of T2D were considered
controls. Participants who reported latent autoimmune
diabetes in adults (LADA), maturity onset diabetes of the
young (MODY), or only history of gestational diabetes were
not counted as T2D cases. Participants without history of T2D
diagnosis who reported any history of diagnosis of “high blood
sugar or prediabetes” were counted as cases of prediabetes.

Those who reported a history of T2D diagnosis were asked
follow-up questions about history of prescription treatment
(metformin, insulin) and physician-directed lifestyle
modifications. These participants were also asked about
history of diagnosis of diabetes microvascular complications:
neuropathy, nephropathy, and retinopathy.

Follow up surveys were made available one year later to
ascertain if any participants had received a new diagnosis of
T2D in the past 12 months. Incident cases were defined as those
who had no existing diagnosis of type 2 diabetes at the baseline
measurement at the time of enrollment, but who indicated a new
diagnosis that occurred at least one but no more than two years
after the initial question was answered. Additional questions
asked about age of diagnosis of T2D, height and weight, and
birth year. Ancestry category (European, Hispanic/Latino) was
self-reported. Participants were required to have a minimum age
of 20 and maximum age of 79 years old. Additional exclusions
were: providing conceptually inconsistent responses like an age of
T2D onset older than a currently reported age, reporting age of
onset younger than age 20, reporting underweight or extreme
obese BMI (BMI <18.5 or >69), or reporting a duration of time
between initial diagnosis and current age greater than three
standard deviations from the mean of this metric (>40 years).
Individuals who were in the sample used for the GWAS or to train
the PGS were excluded from the study.

Because a question from a separate survey was used to assess
family history of T2D among first degree relatives, there were
fewer available responses to this question relative to others,
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reflected in the participant flow diagram (Figure 1). To maximize
sample size, descriptive analyses of the data (i.e., prevalence of
T2D along the spectrum of the PGS) and unadjusted odds ratios
between factors like the PGS and T2D prevalence include all
available data (the Descriptive Sample), whereas regression
analysis involving family history were performed in a subset of
the full data set with family history data (Analytical Sample).
Lastly, due to loss of participation with time, the sample used to
assess incidence of T2D (Incidence Sample) also represents a
subset of the full data, and there was only sufficient data to
perform the analysis among those of self-reported European
descent (Figure 1).

2.2 Genotyping and Polygenic Score
Development
DNA extracted from saliva samples was assayed on the Illumina
Infinium Global Screening Array (Illumina, San Diego, CA),
consisting of approximately 640,000 common variants
supplemented with ~50,000 custom probes. This platform is
referred to as 23andMe platform V5, and underwent quality
controls as described previously (Nakka et al., 2019). Only
participants genotyped on this platform are included in this
analysis. A polygenic score associated with the likelihood of

having T2D was developed using the methods described in
23andMe White Paper 23–21 (Ashenhurst et al., 2020). In
brief, single nucleotide polymorphisms (SNPs) were selected
from a meta-analysis of three GWAS conducted in individuals
of European, Black/African American, and Hispanic/Latino
descent. Candidate models based on nine variant sets
determined by varying p-value and window distances were
evaluated in tuning sets that were not included in the GWAS.
Finally, based on best performance in the tuning cohorts, one
variant set was chosen for final assessment in the European and
Hispanic/Latino test cohorts, which were not included in the
GWAS or model training.

The final model containing 11,999 SNPs showed a significant
association with the likelihood of having T2D among participants
of European descent [area under the receiver operator curve,
AUC = 0.656, CI (0.654,0.659), Supplementary Table S2] as well
as Hispanic/Latino individuals [AUC = 0.635, CI (0.628,0.642)].
Age and sex variables provided more information than the PGS
alone in both the European descent [AUC = 0.774, CI
(0.773,0.776)] and Hispanic/Latino [AUC = 0.811, CI
(0.806,0.816)] subsamples. The combined model with
demographic features and the PGS were the most predictive
[European AUC = 0.814, CI (0.812,0.816), Hispanic/Latino
AUC = 0.841, CI (0.837,0.845)]. The discriminative

FIGURE 1 | Participant recruitment and analysis flow diagram. Three data sets were used for components of this analysis. The Descriptive Sample was used to
generate plots, to estimate raw prevalences, or to estimate unadjusted odds ratios. The Incident Diagnosis Sample was used to assess the association between the
polygenic score (PGS) and incident diagnosis over time. The Analytical Sample was used for regression models that included family history as a predictor. Sub-sampling
was required due to missing data in key survey questions required for analysis, and participant attrition over time.
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performance of this model ranks it among the leading models
cited in the PGS Catalog as of March 2022 (Lambert et al., 2021).
For complete detail about the PGS, see information in
Supplemental Materials.

2.3 Statistical Analyses
Statistical analyses were conducted in statsmodels (v0.12.1) in
Python (Seabold and Perktold, 2010). A study-wise significance
threshold was defined as p < 0.0018 based on 28 independent
comparisons and a Bonferroni correction. Reported odds ratios
and linear model betas are adjusted for age, BMI (log transformed
and standardized), sex, and first-degree relative family history of
T2D unless otherwise described. All confidence intervals (CIs)
provided are 95% CIs. To maintain participant privacy, counts or
statistics that could uniquely identify fewer than five people are
not provided in this manuscript.

3 RESULTS

3.1 Participant Characteristics
The final Descriptive Analysis sample consisted of N = 1,528,668
individuals of European descent and N = 156,4274 of Hispanic/
Latino descent. The subsample with available family history data
(the European Analytical Sample, N = 113,126, Hispanic/Latino
N = 7,616) was smaller, as was the sample with available repeated
measures (European Incidence Sample, N = 319,803). Full sample
descriptives are provided in Table 1, and participant exclusions
are shown with a flowchart in Figure 1. The prevalence of self-
reported T2D within each sex and decade of age in the multi-
ancestry sample used to train the PGS are shown in
Supplementary Figure S1. The median age of T2D diagnosis
was 50 (mean = 48.3, SD = 11.2), and 43 (mean = 42.9, SD = 11.4)
in the European-descent and Latino sub-samples, respectively.

3.2 The Polygenic Score Provides
Information Not Captured by Family History
Current clinical practices rely heavily on family history of disease
(FH) to identify patients at increased risk of developing
conditions. But the full scope of heritability cannot be
captured by FH alone, and not all individuals know their
family history (e.g., those who were adopted), leaving open the
possibility of under-identifying disease risk. We hypothesized
that the T2D PGS combined with FH would improve the
prediction of disease development more than either factor

alone. This analysis was performed in the Analytical Sample
(Figure 1).

Among those in the lowest genetic risk ventile, 20.8% of
controls and 65.2% of cases reported positive FH. Among
those in the highest risk ventile, positive FH prevalence was
42.9% for controls and 73.1% for cases (Figure 2A). There was a
significant relationship between family history status and the PGS
across the Analytical Sample as estimated in a logistic regression
model; each standard deviation in the PGS was associated with
32% greater odds of reporting family history of the condition [β =
0.27, p < 0.0018, OR = 1.32, CI (1.30,1.33)]

We next assessed several logistic regression models of T2D
diagnosis as a function of the T2D PGS, positive FH, and the
common T2D screening factors of age and BMI (Pippitt et al.,
2016; Zheng et al., 2018) in a training sample, comprised of 75%
of the analytic sample; a test set of 25% was reserved for model
evaluation. Both FH and the PGS were statistically significant as
predictors in separate models (Table 2) as well as in a model
including both FH and PGS as predictors. The combined model
had the best predictive performance [as assessed by Cox-Snell’s
pseudo R2 statistic = 0.21, and by AUC in the out-of-sample test
set, AUC = 0.85 (0.85,0.86)], compared to models with only FH
[R2 = 0.19, AUC = 0.83 (0.83,0.84)] or only the PGS [R2 = 0.17,
AUC = 0.83 (0.82,0.84)], showing that FH and PGS contribute
unique information as predictors in each other’s presence.

3.3 Potential Contribution of the Polygenic
Score to Screening Practices
Although individual health care systems may use their own
criteria, current screening guidelines often use two main
sources: The U.S. Preventive Services Task Force (USPSTF,
2021) and the American Diabetes Association (ADA, 2018).
The USPSTF currently recommends screening for abnormal
blood glucose and T2D in adults 35–70 years of age who are
overweight or obese and repeating blood glucose testing every
3 years if results are typical. Individuals from populations with
higher prevalence of diabetes (American Indian/Alaska Native,
Black, Hawaiian/Pacific Islander, Hispanic/Latino) should be
considered for earlier screening (USPSTF). The ADA proposes
screening for T2D beginning at age 45 for all people. Screening for
prediabetes and onset of future T2D in asymptomatic people
should be considered in adults of any age who are overweight and
have one or more additional risk factors for diabetes (ADA).
These risk factors include overweight and obesity, physical
inactivity, abnormal lipid levels, high blood pressure, and

TABLE 1 | Sample descriptives.

Self-reported Ancestry N Age mean (SD) Sex (%) (Female) T2D Prevalence (%)

European 1,528,668 47.6 (15.8) 60.4 3.2
Hispanic/Latino 156,274 41.0 (14.2) 60.6 2.6
European sub-sample with family history data 113,126 53.3 (15.8) 66.5 4.6
Hispanic/Latino subsample with family history data 7,616 45.2 (14.9) 64.2 3.7
European sub-sample with one-year incidence data 319,803 50.5 (16.0) 68.3 0.9

The incidence sub-sample was composed of those who were T2D-negative at baseline and provided one year follow-up data.
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smoking. Despite both screening recommendations, many at-risk
individuals, as well as prediabetic and T2D cases, are beingmissed
annually. We hypothesized that the T2D PGS could identify
individuals who would benefit from earlier screening for T2D
solely based on their genetic risk.

3.3.1 Univariate and Multivariate Associations
Between T2D Prevalence and Screening Factors
Using the T2D PGS in the Descriptive Sample, we calculated the
unadjusted odds ratio (OR) of having T2D for a given PGS
percentile range relative to the total population. We compared
this outcome to the OR of the risk factors highlighted in both
guidelines, age and BMI (Figure 2B), which were also calculated
relative to the total study population. Age was scored as age of
diagnosis for cases, and current age for controls. We observed

substantial overlap in the unadjusted OR magnitudes associated
with the three variables: The range of risk associated with the
PGS, OR = 0.41 [CI (0.38,0.44)] at the 1st-5th percentile to OR =
3.25 [CI (3.16,3.35)] at the 95th-99th percentile, was comparable
to the range associated with BMI, OR = 0.22 [CI (0.21,0.23)] at
BMI 18.5–24.9 to OR = 3.19 [CI (3.11,3.28)] at BMI 40–50. Risk
of prevalent T2D was highest for ages 50–59 [OR = 1.49, CI
(1.45,1.52)] and lowest for ages 70–79 [OR = 0.11, CI (0.10,0.12)].

Age, BMI, and the PGS were statistically significant and
independent predictors of T2D prevalence in a multivariate
logistic regression model described in the prior section
comparing competing models (Table 2). The jointly estimated
odds were as follows: decade of age [OR = 1.07, CI (1.06,1.07)],
log-transformed standardized BMI [OR = 1.90, CI (1.84,1.96)], and
the standardized PGS [OR = 1.54, CI (1.50,1.58)], all ps <0.0018.

FIGURE 2 | The T2D PGS is a predictor on par with traditional risk factors. Error bars here represent empirically derived 95% confidence intervals. (A): Research
participants who self-reported their family history were binarized into two groups: those with a first-degree relative with T2D and those without. The fraction of participants
with a positive family history of T2D (y-axis) is plotted as a function of PGS ventile (x-axis) among T2D cases (left panel) and T2D controls (right panel). (B): Unadjusted
odds ratios (y-axis) of having T2D relative to the entire study population were calculated for each decade of age (left panel), BMI category (center panel), and PGS
percentile (right panel). Error bars represent analytically computed 95% confidence intervals.

TABLE 2 | Logistic regression between prevalent T2D, family history, and the PGS among those of European descent.

Model Base model Family history only Polygenic score only Combined model

Intercept −6.34 −6.82 −6.7 −7.13
Family History - 1.34 - 1.23
Standardized Polygenic Score - - 0.48 0.43
Female Sex −0.46 −0.57 −0.50 −0.60
Decade of Age 0.06 0.05 0.07 0.06
Standardized Log Body Mass Index 0.72 0.66 0.68 0.64
Cox-Snell’s Pseudo R2 0.14 0.18 0.18 0.21
Test Set AUC (95% CIs) 0.80 (0.79, 0.80) 0.83 (0.83, 0.84) 0.83 (0.82, 0.84) 0.85 (0.85, 0.86)

All coefficients derived from logistic regression were significant p <0.0018 in all models. N = 84,844 for all models. The model that included both family history and the PGS was the most
predictive in terms of both pseudo R2 and out-of-sample AUC.
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3.3.2 Adding the Polygenic Score to Screening
Guidelines
Another way to understand the utility of the application of
specific screening guidelines is to estimate the sensitivity and
specificity of those decision trees. We evaluated the application of
USPSTF and ADA guidelines in our data with and without
including the PGS in screening decisions. For these analyses,
age of diagnosis was used for cases, and current age for controls.
Hypothetical updated guidelines divide the PGS at those at or
above the 90th percentile, versus those below.

The USPSTF criteria focus primarily on age and BMI. In our
sample, the sensitivity of those criteria was 0.79, and the
specificity was 0.58. To the USPSTF we added an additional
criterion to screen individuals who are 35 or older, have normal
BMI, but have a PGS at or greater than the 90th percentile. This
resulted in an incremental increase in sensitivity (0.81) as well as a
small decrease is specificity (0.56).

The ADA criteria include risk factors beyond the scope of this
analysis (e.g., physical inactivity, history of cardiovascular disease,
women with polycystic ovary syndrome, etc. (ADA, 2018). We
chose to evaluate a simpler model that includes only age, BMI,
and family history of T2D. Here, given the liberal criterion of
screening all individuals 45 or older, the sensitivity was high
(0.96) and the specificity was low (0.30). We added the additional

criterion to screen adults (age 18 or older) with normal range BMI
who have a PGS at or greater than the 90th percentile. This
addition provided a small increase to sensitivity (0.97) and a slight
decrease in specificity (0.28).

3.4 The Polygenic Score is Associated With
Age of Diagnosis
Earlier age of disease onset has been correlated with genetic risk
for various conditions (Seibert et al., 2018; Mars et al., 2020). We
examined the relationship between the T2D PGS and self-
reported T2D age of diagnosis (AOD) to assess how well the
model predicts disease development timing. In the Descriptive
Sample, individuals in the lowest ventile of the PGS reported a
mean AOD of 53.0 years compared to 45.2 years for those in the
highest ventile, a difference of 7.8 years (Figure 3A).
Furthermore, the T2D PGS was a statistically significant
predictor for T2D AOD in a linear regression model that
included BMI and family history of T2D in a subset of
Analytic Sample who were T2D-positive and reported age of
diagnosis (N = 4,663). Each standard deviation increase in the
PGS was associated with a 1.37-year decrease in AOD [CI (−1.60,
−1.16), p <0.0018], a relationship similar to that of standardized
log of BMI [β = −1.73, CI (−2.04, −1.43), p < 0.0018]. Positive

FIGURE 3 | The T2D PGS is associated with diagnosis and incidence. (A): Mean age at T2D diagnosis (y-axis) is plotted against PGS ventiles (x-axis) among
participants who self-reported their age at T2D diagnosis. (B): Prevalence of prediabetes (y-axis) is plotted for T2D-negative participants against ventiles of the PGS. (C):
A one-year incidence ratio was calculated among participants who were T2D negative at an initial time point and filled out a 1-year follow-up survey. T2D incidence
(y-axis) was found to increase with increasing BMI (x-axis, left panel), with age up to the 60s (x-axis, middle panel), and PGS percentile (x-axis, right panel).
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family history of T2D was not a significant predictor of AOD [β =
−1.06, CI (−1.71, −0.41), p = 0.001, total model R2 = 0.07].

3.5 Prediabetes in Type
2 Diabetes-Negative Individuals
We hypothesized that the PGS model could also be used to
predict the risk of prediabetes among those who were T2D-
negative. Stratified by the T2D PGS, the prevalence of prediabetes
in the highest PGS ventile in the Descriptive Sample was over 3-
times the prevalence in the lowest PGS ventile, 1.3 vs. 3.9%,
respectively (Figure 3B). We evaluated a logistic regression
model of prediabetes diagnosis using age, BMI, T2D family
history, and the T2D PGS as predictors among T2D-negative
individuals in the Analytic Sample (n = 107,923). Each standard
deviation increase of the PGS was associated with a 23% increase
in the odds of prediabetes diagnosis [OR = 1.23, CI (1.19, 1.26),
p <0.0018]. Prediabetes was also strongly associated with
standardized log of BMI, [OR = 1.60, CI (1.55, 1.65), p <
0.0018] and family history of T2D, [OR = 2.03, CI (1.89,2.18),
p < 0.0018], but not with female sex [OR = 1.05, CI
(0.97,1.13), p = 0.2].

3.6 Incident Cases
In the subset of data with responses to annual follow-up
surveys (Figure 1; Incident Diagnosis Sample), the mean
time difference between the baseline response and the
follow-up response was 446 days (SD = 102 days). The
overall one-year incidence proportion, 4.86 per
1,000 person-years, is lower than but comparable to the 6.9
per 1,000 person-years statistic reported by the CDC for 2018
(Centers for Disease Control and Prevention, 2020). The
incidence in the 23andMe database increased with decade of
age, BMI, and PGS (Figure 3C). Stratified by PGS, the one-year
incidence of T2D in the highest genetic risk ventile was over six
times that of individuals in the lowest ventile (1.97 vs. 11.97
cases per 1,000), and roughly three times of individuals in the
40th-60th percentile (3.80 vs. 11.97 cases per 1,000). This rate
of incidence among those with the greatest genetic risk was
higher than those with obese BMI (10.64 cases per 1,000
person-years).

We evaluated a logistic regression model with incident case
status as the outcome and age, standardized log BMI, T2D
family history, and the PGS as predictors. The PGS proved to
be a statistically significant predictor, where each standard
deviation increase in PGS corresponded to a 43% increase in
the odds of T2D incidence [OR = 1.43, CI (1.33,1.53), p <
0.0018], which was about half the incident risk associated with
family history [OR = 3.02, CI (2.41,3.78), p < 0.0018], but was
comparable to BMI [OR = 1.82, CI (1.67,1.99), p < 0.0018].

3.7 The Polygenic Score Informs Disease
Progression
We hypothesized that genetic risk for developing T2D as
determined by the T2D PRS would also be associated with the
risk of a more severe disease phenotype, as measured by the

escalation of treatment strategy and by the rate of the
development of T2D microvascular complications in a cohort
of T2D-positive individuals in the Analytic Sample (Figure 1).
We found that individuals with higher PGS values were more
likely to be prescribed insulin (Figure 4A). We evaluated logistic
regression models with the PGS, age, sex, and BMI to predict
prevalence of prescribed treatment. Each standard deviation
increase in the PGS was associated with 14% higher odds of
being prescribed insulin [OR = 1.14, CI (1.09,1.19), p < 0.0018].
The PGS was not a statistically significant predictor of metformin
treatment [OR = 1.05, CI (0.99,1.11), p = 0.09], or following only
lifestyle modifications [OR = 0.89, CI (0.82,0.96), p = 0.004],
Family history was significantly associated with metformin
treatment [OR = 1.33, CI (1.14,1.55), p < 0.0018], but not
insulin [OR = 1.21, CI (1.03,1.36), p = 0.02] or only lifestyle
modifications [OR = 1.22, CI (1.00,1.48), p = 0.11].

We next assessed the utility of the PGS for predicting the rate
of development of diabetes microvascular complications
(Figure 4B). For this analysis, both current reported age and
years since initial T2D diagnosis were entered into the logistic
model in addition to the PGS, age, BMI, and sex. Each standard
deviation increase in the PGS was associated with 10% higher
odds of diabetic neuropathy [OR = 1.10, CI (1.04,1.16), p <
0.0018]. However, the PGS was not significantly associated with
higher odds of diabetic nephropathy [OR = 1.05, CI (0.96,1.16),
p = 0.25] or with diabetic retinopathy [OR = 1.07, CI (0.98,1.18),
p = 0.12]. Family history was not associated with any of these
three outcomes. Together, these data show the T2D PGS is
associated with some but not all forms of disease severity as
measured by prescribed treatment and prevalence of
complications over time.

3.8 Polygenic Score Associations are
Transferable to Hispanic/Latino Individuals
We hypothesized that the findings showing the relevance of the
T2D PGS would replicate in other ethnicities. We were able to
repeat many, but not all, of the specific analyses in the self-
reported 23andMe Hispanic/Latino cohort (N = 156,410, see
Methods and Materials and Figure 1 for participant recruitment
flowchart).

Among those who were T2D-negative at the time of the
survey, family history of T2D was more common among those
with higher genetic risk as indexed by the PGS than lower
(Figure 5A; data for T2D-positive cases not shown due to
smaller sample size and privacy requirements). As in the
European-descent sample, family history was associated but
not redundant with the PGS in a logistic model [OR = 1.42,
CI (1.35,1.49), p <0.0018]. We examined the PGS performance as
a predictor of T2D while controlling for T2D family history. This
analysis showed the PGS to be a statistically significant predictor
of T2D that provides unique information in a model containing
age, BMI, family history, and the PGS [OR = 1.51, CI (1.37,1.67),
p <0.0018; Table 3]. As in the sample of European descent, the
model containing both the PGS and family history had the
highest AUC in the Hispanic/Latino test set [AUC = 0.87, CI
(0.85,0.91)].
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FIGURE 4 | Among participants with T2D, the PGS is associated with some forms of treatment and disease complications. (A): In a dataset restricted to
participants who reported a T2D diagnosis and provided information on prescribed treatments, insulin, metformin, and lifestyle only are plotted (y-axis) for participants in
the 5th, 40–60th, and 95th percentiles of the PGS (x-axis). Error bars represent empirically derived 95% confidence intervals. Insulin prescriptions were significantly
associated with the PGS in multivariate models controlling for age, sex, BMI, and family history of T2D. (B): Data shown are the relationship between years since
T2D diagnosis and microvascular complications, stratified by PGS percentile in a logistic model. Shaded areas represent 95% confidence intervals. Neuropathy was
significantly associated with the PGS in multivariate models controlling for age, sex, BMI, and family history of T2D.
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We also examined the PGS’s ability to stratify Hispanic/
Latino individuals by an unadjusted odds ratio of having T2D
as compared to age and BMI (Figure 5B). Similar trends were
observed as reported in the European cohort; the range of risk
associated with the PGS, OR = 0.24 [CI (0.18,0.33)] at the 1st-
5th percentile to OR = 3.32 [CI (3.02,3.64)] at the 95th-99th
percentile, was comparable to the range associated with BMI,
OR = 0.23 [CI (0.20,0.25)] at BMI 18.5 to 24.9 to OR = 3.01 [CI
(2.75,3.29)] at BMI 40–50. Risk of prevalent T2D was highest
for ages 40–49 [OR = 1.36, CI (1.26,1.47)] and lowest for ages
70–79 [OR = 0.07, CI (0.04,0.14)].

Addition of a hypothetical screening criterion at the 90th
percentile of the PGS (as described in Section 3.3.2) to both the
USPSTF and ADA criteria slightly increased sensitivity and reduced
sensitivity. Our estimation of the sensitivity of USPSTF increased
from 0.69 to 0.70 and reduced the specificity from 0.61 to 0.60. The
addition to the simplified ADA criteria increased the sensitivity from
0.93 to 0.95, and decreased the specificity from 0.43 to 0.40.

We observed a correlation between increasing PGS and
younger age of T2D diagnosis in the Hispanic/Latino cohort
Figure 5C). Mean AOD ranged from 48.8 to 40.4 years from
lowest to highest PGS ventile, a difference of 8.4 years. However,
this relationship was not statistically significant [β = −0.61, CI

FIGURE 5 | Repeated analysis in the Hispanic/Latino sample. (A): The prevalence of family history of T2D among T2D-negative participants. Data among T2D-
positive participants are not provided due to privacy practices. (B): Odds ratios (y-axis) of having T2D relative to the Hispanic/Latino study population were calculated for
each decade of age, BMI category, and Latino-specific PGS percentile. Error bars represent analytically computed 95% confidence intervals. (C): Mean age at T2D
diagnosis among cases (y-axis) is plotted against Hispanic/Latino-specific PGS ventiles (x-axis) among participants who self-reported their age at T2D diagnosis.
Error bars represent empirically derived 95% confidence intervals. (D): The prevalence of prediabetes among T2D-negative participants was significantly associated with
the PGS, as shown with increasing ventiles of the PGS distribution. Data among T2D-positive participants are not provided due to privacy practices.
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(−1.62,0.40), p = 0.24] in a linear model trained to predict AOD
from BMI, family history of T2D, and genetics in a small subset of
the Hispanic/Latino cohort with complete data (N = 248).

Prediabetes in Hispanic/Latino T2D-negative participants was
nearly four times more prevalent in those in the highest PGS
ventile (3.9%) compared to the lowest ventile (1.0%; Figure 5D).
We evaluated a logistic regression model of prediabetes diagnosis
among T2D-negative individuals using age, BMI, T2D family
history, and the T2D PGS as predictors. One standard deviation
in the PGS was associated with a 36% increase in the odds of
prediabetes among those without T2D [OR = 1.36, CI (1.22,1.51),
p <0.0018], which was comparable to that of standardized log-
BMI [OR = 1.64, CI (1.46,1.86), p <0.0018] and family history of
T2D [OR = 1.60, CI (1.22,2.11), p < 0.0018].

Insufficient data were available in the Hispanic/Latino cohort
to evaluate the association between the T2D PGS and incident
diagnosis, treatment prevalences, or microvascular disease
complications.

4 DISCUSSION

Type 2 diabetes is a disease of metabolic dysregulation that begins
years before symptoms are evident and complications arise. An
estimated 1 in 3 American adults have prediabetes and 5–10% of
these individuals will receive a T2D diagnosis within one year
(Tabák et al., 2012). Lifestyle can be extremely successful in
reversing the course of the disease, mostly when initiated early
(Glechner et al., 2018). Thus, there is potential for polygenic
scores to identify additional people who may be overlooked by
traditional screening methods and who could benefit from earlier
lifestyle modifications and medical intervention. Although the
real-world impact of incorporating a T2D PGS in clinical practice
remains to be thoroughly studied, we demonstrate its utility in
identifying individuals with increased risk for prediabetes among
the T2D-negative population. Furthermore, the PGS is also highly
correlated with earlier age of T2D onset and can be used to predict
incident T2D cases from a population of susceptible individuals.
We also found the risk profile conferred by increasing PGS to be
comparable to risk associated with increasing age and BMI.
Taken together, these findings argue strongly for including a
T2D PGS in a clinical assessment of T2D risk and prophylactic
decision-making if available.

4.1 Incorporating Genetic Risk Into
Screening Tools
Studies are beginning to hint at the clinical utility of PGS. Still, the
combination of FH and PGS as a more robust method of
predicting the individual likelihood of developing a complex
disease has yet to be fully explored. Clinicians recognize that
at-risk individuals may be missed when relying on FH alone for
disease prediction and that gathering a FH is time-consuming
and often neglected. Furthermore, not all individuals have
knowledge of family history. A clinical tool encompassing FH
and PGS may improve disease prediction.

Previous publications have employed several methods to
assess whether polygenic scores add predictive utility when
used jointly with family history, including examining
predictive model performance (Sun et al., 2013; Helfand, 2016;
Hughes et al., 2021) and determining whether risk estimates for
PGS remained significant after adjustment for family history
(Tada et al., 2016). In the present study, we observed an
increasing relationship between both T2D genetic risk and
positive family history among European-descent and Hispanic/
Latino-descent T2D-negative individuals. We also found,
however, that family history is associated with but not
equivalent to genetic risk. Factors other than genetics, such as
common environment, may also contribute to the risk conferred
by family history, and polygenic inheritance results in more
generational variability than monogenic patterns
(i.e., Mendelian inheritance). Ultimately, a model including
both family history and the PGS proved better at predicting
T2D than each factor separately in terms of pseudo R2, out-of-
sample AUC, and sensitivity when added to both USPSTF and
ADA guidelines in both the European-descent and Hispanic/
Latino cohorts. These results indicate that information captured
in the PGS is not completely redundant with family history, and
that disease risk is most comprehensively assessed when genetic
analysis is combined with standard clinical risk factors.

Screening for prediabetes and T2D is often based on a set of
guidelines that determine eligibility based on well-documented
risk factors such as age, BMI, positive family history, membership
in a high-risk race or ethnic group, and environmental or
behavioral factors (Pippitt et al., 2016). In the present study,
we have demonstrated the validity of the T2D PGS as a risk factor
that contributes information over and above family history.

TABLE 3 | Logistic regression between prevalent T2D, family history, and the PGS in the Hispanic/Latino replication sample.

Model Base model Family history only Polygenic score only Combined model

Intercept −5.82 −6.58 −6.15 −6.83
Family History - 1.72 - 1.58
Standardized Polygenic Score - - 0.48 0.42
Female Sex −0.46 −0.55 −0.48 −0.55
Decade of Age 0.06 0.05 0.06 0.05
Standardized Log Body Mass Index 0.74 0.69 0.70 0.67
Cox-Snell’s Pseudo R2 0.14 0.20 0.18 0.23
Test Set AUC (95% CIs) 0.83 (0.80, 0.87) 0.86 (0.83, 0.90) 0.86 (0.82, 0.90) 0.88 (0.85, 0.91)

All coefficients derived from logistic regression were significant p <0.0018 in all models. N = 5,712 for all models. The model that included both family history and the PGS, was the most
predictive in terms of pseudo R2 and out-of-sample AUC.
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Addition of the PGS to the USPSTF screening guidelines
incrementally improved sensitivity, with a corresponding small
decrease in specificity. We note that ADA guidelines, however,
have very high sensitivity with or without the PGS.

Optimization of the sensitivity and specificity of these
guidelines within medical systems could include the PGS as a
risk factor, considering that it does provide some information that
is independent of family history. It is beyond the scope of the
present study, but medical economic analysis could find that
screening younger people who may not have traditional risk
factors but do have a higher PGS, and perhaps delaying screening
for older people with no risk factors and a low PGS could balance
sensitivity, specificity, and screening costs. This optimization is
even more plausible as costs for genome-wide genotyping
continue to decrease. Indeed, a single genomic assay could be
used for multiple purposes beyond T2D screening throughout a
person’s life.

4.2 Genetic Risk and Disease Severity
In addition to identifying more cases of T2D, several studies have
suggested that genetic screening could be useful for predicting
disease severity (Paul et al., 2018; Oetjens et al., 2019; Chen et al.,
2020). T2D impacts individuals differently; some experience mild
symptoms, controlled relatively easily by lifestyle intervention
and minimal therapeutic intervention, while others experience
severe complications and have a difficult time with disease
management. Many patients progress from nonmedical,
lifestyle-only treatment to medications like metformin, and
some require insulin as their condition shifts from impaired
glucose tolerance to insulin insufficiency. T2D severity is also
closely associated with diabetic microvascular complications, the
most common of which are diabetic retinopathy, nephropathy,
and neuropathy.

In the present study, we found the T2D PGS to correlate with
treatment options where those at higher PGS were more likely to
be treated with insulin. Metformin treatment or lifestyle-only
interventions were not significantly associated with the PGS. Yet
for complications of T2D, the PGS was markedly related to the
rate of neuropathy diagnosis, but not to nephropathy and
retinopathy. Further work may identify sub-scales within a
T2D PGS that associate with specific biological pathways or
systems, illuminating specific causes of genetic risk and
complications (Udler et al., 2018; Tremblay et al., 2021).
Together, these findings are only an initial indication that the
T2D PGS may be indicative of specific forms of disease progress,
but further studies are needed to explore this thoroughly.

4.3 Assessing Genetic Risk in People of all
Ancestral Backgrounds
Type 2 diabetes is on the rise across the world and in the
United States its burden is disproportionately felt by Black/
African Americans and Hispanic/Latino individuals (Centers for
Disease Control and Prevention, 2020). Thus, the clinical utility of
the T2D PGS is especially relevant for non-European individuals.
Taken in the context of the massive Euro-centric bias in the field of
polygenic risk prediction (Martin et al., 2019), we considered it

important to evaluate the application of the PGS in a non-European
population with a sufficient sample size for most of this analysis. It is
critical that individuals from all backgrounds be provided the
opportunity to participate in genomic research, and that all
efforts are made to assess and calibrate PGS in diverse samples.

We selected the 23andMe Hispanic/Latino cohort because this
T2D PGS has roughly comparable performance in this group as
in European-descent individuals, as evidenced by the AUROC
(0.656 in European-descent and 0.635 in Hispanic/Latino-
descent individuals) and other risk stratification statistics, and
because we had sufficient family history data in this cohort for a
sufficiently powered study. Our analyses show that, as in the
European cohort, the PGS provides valuable information for
identifying at-risk Hispanic/Latino individuals, on par with
risk factors already used for clinical decision-making. These
findings serve as an important proof of principle for the
application of polygenic prediction to assessing risk in
underserved populations. 23andMe’s efforts to recruit a more
diverse pool of study participants (23andMe, 2019) will enable
additional follow-up studies with population-specific versions of
the T2D PGS in order to deliver better value to our customers and
provide more accurate tools for clinicians and their patients.

4.4 Limitations and Conclusions
The present study has several limitations that should be considered
when interpreting the results. All phenotypes were obtained through
participant self-report, although 23andMe’s previous work has
shown the accuracy and robustness of this form of data
collection at scale (Eriksson et al., 2010; Tung et al., 2011). We
expect the additional granularity into treatments, disease
complications, and biomarker/fasting glucose data obtained
through clinical health records would likely improve the ability of
the PGS to predict these phenotypes in T2D-positive individuals, as
well as more precision in the definition of a participant with
“prediabetes.” Missing data across survey instruments resulted in
smaller subsamples used for regression modeling compared to the
larger sample with T2D diagnostic and demographic information.
Models assumed linear relationships between the outcomes and age
or BMI, whereas non-linear relationships may better explain the
data. Additionally, due to limited family history and incident data,
we were unable to expand our analyses beyond those of European
and Hispanic/Latino descent.

Typically, PGS (including this one) do not include rare
variants with large effects, which, if present, would contribute
far more risk than the polygenic background of common variants;
nonetheless, being rare, most people do not carry these variants,
and a PGS based on common variants would be relevant for most
of the population. To maintain the scope of the present study, our
evaluation of the sensitivity and specificity of the ADA guidelines
did not include all risk factors included in the guidelines, and we
did not attempt optimization of screening decision thresholds,
including economic analyses. The analysis of microvascular
complications of diabetes did not account for individual
differences in treatment history, which would also affect the
rate of development of these complications. We did not have
data representing the age of onset of these complications,
precluding survival analysis.
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In this paper we present the possible clinical relevance of a
T2D PGS as a predictor of disease risk and severity that provides
some information that is independent of family history. Given
this, the PGS could be considered as an additional risk factor in
screening guidelines and could be used to help inform clinical
decision making. The replication of many findings in a Hispanic/
Latino cohort indicates the transferability across other
populations when datasets of sufficient size exist and PGS with
sufficient performance can be developed.
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