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Abstract

Recent work has combined cognitive neuroscience and control theory to make predictions about cognitive control
functions. Here, we test a link between whole-brain theories of semantics and the role of the left inferior frontal gyrus
(LIFG) in controlled language performance using network control theory (NCT), a branch of systems engineering.
Specifically, we examined whether two properties of node controllability, boundary and modal controllability, were
linked to semantic selection and retrieval on sentence completion and verb generation tasks. We tested whether the
controllability of the left IFG moderated language selection and retrieval costs and the effects of continuous u burst
stimulation (cTBS), an inhibitory form of transcranial magnetic stimulation (TMS) on behavior in 41 human subjects
(25 active, 16 sham). We predicted that boundary controllability, a measure of the theoretical ability of a node to inte-
grate and segregate brain networks, would be linked to word selection in the contextually-rich sentence completion
task. In contrast, we expected that modal controllability, a measure of the theoretical ability of a node to drive the
brain into specifically hard-to-reach states, would be linked to retrieval on the low-context verb generation task.
Boundary controllability was linked to selection and to the ability of TMS to reduce response latencies on the sen-
tence completion task. In contrast, modal controllability was not linked to performance on the tasks or TMS effects.
Overall, our results suggest a link between the network integrating role of the LIFG and selection and the overall se-
mantic demands of sentence completion.

Significance Statement

Our understanding of language systems and responses to neural stimulation is incomplete. Here, we dem-
onstrate that the effects of neuromodulation (transcranial magnetic stimulation; TMS) on verbal language
production are linked to the role of the left inferior frontal gyrus (LIFG) in mediating communication across
white matter anatomic networks. We replicate prior findings in weighted anatomic networks, and further
identify a link between the role of the LIFG in word selection demands. These findings provide a critical
basis to reconcile local and whole brain models of language in the brain.

Introduction
Effective language production requires cognitive con-

trol: the mental processes that support flexible, contextu-
ally driven thought and action (Snyder et al., 2011). In

contrast to cognitive control tasks that require inhibition
of single prepotent exemplars, language tasks are fre-
quently underdetermined, multiple responses might be
appropriate (Snyder et al., 2014). Fluent language requires
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the ability to meet word retrieval (recalling task-appropri-
ate words) and selection (selecting a subset of retrieved
words to speak) demands when speaking. However, se-
lection and retrieval demands vary based on the nature of
specific tasks, sentence structures, and word combina-
tions. In some cases, retrieving and selecting words is dif-
ficult and accompanied by a sense of subjective effort,
such as when the appropriate words do not readily come
to mind or when many appropriate, alternative words
compete for selection.
Cognitive control facilitates language production by ac-

tivating the relevant representations and resolving com-
petition among the activated representations (Badre and
Wagner, 2007). Broca’s area, part of the left inferior frontal
gyrus (LIFG), has been linked to retrieval and selection
via interactions with temporal lobe regions that mediate
semantic knowledge (Anwander et al., 2007; Harvey et
al., 2013). However, debates about the neuroanatomi-
cal basis of cognitive control in language remain. It is
unclear whether retrieval and selection localize to the
same region or different subdivisions within the LIFG,
reflecting the same or different mechanistic roles
(Souza et al., 2009; Fedorenko et al., 2012). Conflicting
accounts have asserted that the LIFG is implicated only
in selecting a single response from among competing
alternatives (Thompson-Schill et al., 1997; Botvinick et
al., 2001), only in effortful retrieval of responses from
semantic memory (Wagner et al., 2001; Martin and
Cheng, 2006), or in both retrieval and selection through
different neural substrates within the LIFG (Badre and
Wagner, 2007) or through shared neural substrates with
different, albeit not unrelated, mechanisms (Snyder et
al., 2011).
Whereas localizationist accounts focus on the role of

LIFG and left temporal regions in language production,
the role of domain general and specific cognitive control
and their representation in brain networks remains a per-
sistent issue (Crinion et al., 2006; Fedorenko and
Thompson-Schill, 2014; Diachek et al., 2019; Ryskin et
al., 2020). Moreover, the role of distributed brain networks
in semantic processing is an open question, with some
accounts contending that the entire brain contributes to
semantic representation (Patterson et al., 2007; Huth et
al., 2012; Çukur et al., 2013; Bruffaerts et al., 2019;
Shahdloo et al., 2020). The focus of the current study is
on multiple network roles the IFG may play based on its
anatomic position in brain networks. However, the extent

to which these roles relate to selection and retrieval de-
mands in language production has not been established.
To investigate the network roles of the LIFG relevant to

language demands, we applied an emerging area of engi-
neering called network control theory (NCT; Liu et al.,
2011) to brain networks. NCT evaluates the nature and
costs of control strategies in networks used to achieve
target states. Network controllability is the ability of parts
of a network (e.g., specific regions in the brain) to guide
the network to target states. In a broad sense, cognitive
control in the language domain is a special case of a net-
work control problem for the brain (Medaglia, 2019): how
does the brain achieve the neural states necessary to pro-
duce context-appropriate responses? Since the first the-
oretical network controllability analyses in large scale
diffusion MRI networks (Gu et al., 2015), NCT has been
used to characterize the energy required to integrate or
segregate network activity (Betzel et al., 2016; Gu et al.,
2017; Tang et al., 2017; Wu-Yan et al., 2020), identify cor-
relates of cognitive function in and out of the executive
domain (Kenett et al., 2018a,b; Cornblath et al., 2019; Lee
et al., 2020), and predict or correlate the effects of brain
stimulation on the brain and behavior (Medaglia et al.,
2018a; Khambhati et al., 2019; Stiso et al., 2019; Beynel
et al., 2020).
Building on our previous study (Medaglia et al., 2018a),

the current study specifically investigated (1) retrieval and
selection demands in verbal language production (2) task-
level differences in sentence completion and verb genera-
tion using weighted anatomic networks. We used NCT to
compute the controllability of the LIFG within distributed
brain networks. In NCT, a brain network can be repre-
sented as graphs that comprise nodes (e.g., brain regions)
and edges (e.g., anatomic connections between regions;
Gu et al., 2015; Medaglia et al., 2018a; Patankar et al.,
2020). We asked whether LIFG network controllability in-
fluenced language performance variability related to task-
level and item-level differences in demands. We expected
that LIFG controllability would predict performance vari-
ability during sentence completion and verb generation
tasks. We hypothesized that boundary controllability, the
theoretical ability of a region to drive networks into inte-
grated or segregated states, would be positively related
to sentence completion performance, facilitating seman-
tic processes that rely on multiple networks. For both
tasks, we predicted that higher boundary controllability
would be associated with reduced selection costs before
administering TMS. In contrast, we expected that modal
controllability, the ability of a region to easily drive the
brain into difficult-to-reach states, would be more related
to the decontextualized, single-exemplar retrieval de-
mands required in a verb generation task, since that task
requires subjects to generate a single word in response to
a cue, where there is no contextual information/meaning
(unlike a sentence). Regarding neuromodulation effects,
we expected that boundary controllability would moder-
ate transcranial magnetic stimulation (TMS) effects on
overall sentence completion performance and selection
demands. In contrast, we expected that TMS effects
would interact with retrieval demands in verb generation
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and would be moderated by modal controllability. These
relationships would provide further evidence of demand-
controllability associations within the LIFG.

Materials and Methods
Subjects
Forty-one healthy individuals (mean age=25.3, SD = 5.9,

23 female) were scanned on a 3T Prisma scanner at the
University of Pennsylvania in the present study. There were
16 subjects (age: 25.67, SD = 7.03) in the sham group and
25 subjects (age: 25.20, SD = 4.9) in the active group. Our
previous study included n=32 (12 sham, 20 active) subjects
(Medaglia et al., 2018a). From the previous n=32 sample,
two left-handed subjects (from the active group) and two
subjects with English as a Second Language (from the sham
group) were excluded for the current study, leaving 28 sub-
jects from the previous study included in the current study.
The 13 new subjects were right-handed native English
speakers with seven subjects in the sham group and six sub-
jects in the active group. All procedures were approved in a
convened review by the University of Pennsylvania’s
Institutional Review Board and were conducted in accord-
ance with the guidelines of the Institutional Review Board/
Human Subjects Committee, University of Pennsylvania. All
participants volunteered with informed consent in writing be-
fore data collection.

Overview of methods
Network controllability characterizes the theoretical

ability of a node in a network (e.g., a region in the brain) to
drive the state of network activity Liu et al. (2011). Here,
we built on our previous work linking boundary controll-
ability to performance on open-ended language tasks and
modal controllability to closed-ended language tasks
Medaglia et al. (2018a). Specifically, the current study fo-
cused on task-level differences between two open-ended
tasks, sentence completion and verb generation, and two
dimensions of language demands, selection and retrieval
(Snyder and Munakata, 2008; Snyder et al., 2014).
Sentence completion task stimuli contain additional
grammatical structure and contextual semantics than
verb generation task stimuli. Intuitively, we expected that
these processing demands would rely on multiple brain
networks, and the theoretical role of the LIFG in mediating
among networks could be measured with boundary con-
trollability. In contrast, verb generation task stimuli might
place greater demands on the LIFG when subjects must
obtain associations in the absence of additional task
structure or cues. We expected that if these demands are
reflected in the LIFG’s role in achieving difficult-to-reach
states (i.e., specifically states of activation that are other-
wise difficult to activate in the network), we would find a
relationship between performance on verb generation
and modal controllability. In addition, both tasks stratified
selection and retrieval demands at the item level, and we
expected that the effects of these demands on perform-
ance would be moderated by boundary and modal con-
trollability, respectively. We anticipated that boundary
controllability would facilitate the ability to activate and

select among multiple competing options according to
the associative, multinetwork demands of semantic
cognition. In contrast, we anticipated that modal con-
trollability would facilitate the ability to retrieve specific
exemplars from memory, perhaps facilitating cognitive
associations when cues are weaker.
To test our hypotheses, subjects participated in two ex-

perimental sessions (henceforth “pre-TMS” and “post-
TMS”) in which subjects performed two language tasks
with open-ended selection demands (verb generation and
sentence completion) and one number naming task with a
single appropriate response for comparison (not dis-
cussed here; see Medaglia et al., 2018a). Between the
two task sessions, we administered either active or sham
TMS. In the active TMS group, we administered continu-
ous u burst stimulation (cTBS), a form of TMS thought to
induce neural inhibition for 60min or more (Huang et al.,
2005), to the pars triangularis within the LIFG. We chose
this target given its role in generalized selection in seman-
tic processing (Badre et al., 2005; Badre and Wagner,
2007), mediating cross-modal representation of spoken
and written words (Liuzzi et al., 2017), and patient im-
provements in naming after inhibitory TMS to the right
hemispheric homotope (Naeser et al., 2011; Harvey et al.,
2017, 2019). In the sham TMS group, we administered
TMS to the vertex in each subject. After the experiment
was complete, we constructed anatomic brain networks
from diffusion spectrum imaging (DSI) data acquired from
each subject (Materials and Methods; Fig. 1A). Each net-
work contained 111 brain regions defined by the
Lausanne anatomic parcellation (Cammoun et al., 2012)
and cerebellum (Diedrichsen et al., 2009; Fig. 1B), and
each pair of regions was connected by an edge weighted
by the number of streamlines linking those regions (Fig.
1C). We defined a simplified model of brain dynamics and
simulated network control to quantify modal and bound-
ary controllability (Fig. 1D).

Neuroimaging: diffusion tractography
DSIs were acquired for all 41 subjects along with a T1-

weighted anatomic scan at each scanning session. We
followed a parallel strategy for data acquisition and con-
struction of streamline adjacency matrices as in previous
work applying network controllability statistics in human
diffusion imaging networks (Gu et al., 2015; Betzel et al.,
2016; Medaglia et al., 2018a). DSI scans sampled 257 di-
rections using a Q5 half-shell acquisition scheme with a
maximum b value of 5000 and an isotropic voxel size of
2.4 mm. We used an axial acquisition with the following
parameters: repetition time (TR) = 5 s, echo time
(TE) = 138ms, 52 slices, field of view (FoV; 231, 231,
125 mm).
DSI data were eddy distortion corrected and recon-

structed in DSI Studio (dsi-studio.labsolver.org) using q-
space diffeomorphic reconstruction (QSDR; Yeh et al.,
2011). QSDR first reconstructs diffusion-weighted images
in native space and computes the quantitative anisotropy
(QA) in each voxel. These QA values are used to warp the
brain to a template QA volume in Montreal Neurologic
Institute (MNI) space using a nonlinear registration
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algorithm. Once in MNI space, spin density functions
were again reconstructed with a mean diffusion distance
of 1.25 mm using three fiber orientations per voxel. Fiber
tracking was performed in DSI Studio with an angular cut-
off of 35°, step size of 1.0 mm, minimum length of 10 mm,
spin density function smoothing of 0.0, maximum length
of 400 mm and a QA threshold determined by DWI signal
in the cerebrospinal fluid. Deterministic fiber tracking
using a modified FACT algorithm was performed until
1,000,000 streamlines were reconstructed for each indi-
vidual. DSI Studio placed starting points within seeding
“voxels” at subvoxel resolution to account for potential
partial volume influences on the fiber estimates (Campbell
et al., 2005). The actual seeding points were determined
randomly and uniformly within the voxels. DSI Studio
used a deterministic random generator to place the
seeds, and thus, the seeding sequence was both deter-
ministic and random. These features ensured that the
tracking result is reproducible using the same tracking pa-
rameters. DSI Studio drew a point within the voxel range
using a uniform distribution. The point was then used as
the starting point within the selected voxel.
Anatomical (T1) scans were segmented using FreeSurfer

(Fischl, 2012) and parcellated using the connectome map-
ping toolkit (Cammoun et al., 2012) plus the Diedrichsen spa-
tially unbiased cerebellum atlas (Diedrichsen et al., 2009).
Compared with other functional parcellation schemes, our
anatomic parcellation scheme ensures that we obtained net-
works from a consistent anatomic location within each sub-
ject, which is essential to supporting anatomic inferences
and maintaining a consistent anatomic network location in
each subject. The final parcellation scheme including n=111

regions was registered to the B0 volume from each subject’s
DSI data. The B0 to MNI voxel mapping produced via QSDR
was used to map region labels from native space to MNI co-
ordinates. To extend region labels through the gray-white
matter interface, the atlas was dilated by 4 mm (Cieslak and
Grafton, 2014). Dilation was accomplished by filling non-la-
beled voxels with the statistical mode of their neighbors’ la-
bels. In the event of a tie, one of the modes was arbitrarily
selected. Each streamline was labeled according to its termi-
nal region pair. From these data, we constructed a anatomic
connectivity matrix, A whose element Aij represented the
number of streamlines connecting different regions, divided
by the sum of volumes for regions i and j (Hagmann et al.,
2008). Notably, there are numerous free parameters in diffu-
sion tractography, image parcellation, and graph representa-
tions of anatomic connectivity (e.g., weighted vs binarized or
unweighted graphs).

Cognitive testing
Participants performed a verb generation and sentence

completion task administered with ePrime 3.0 software
on a desktop computer before and after receiving TMS
(Snyder and Munakata, 2008; Snyder et al., 2014;
Medaglia et al., 2018a; Fig. 2). All stimuli were written
words presented on the screen in English. Subjects were
asked to provide spoken responses to the tasks.
The order of tasks and order of task items (sentences/

words) were counterbalanced across subjects, but within
a subject’s session, the order of tasks remained the same
pre-TMS versus post-TMS. Each task required ;5min. In
addition, ;5min were required to set up and administer

Figure 1. Overview of methods. A, cTBS was administered to each subject’s pars triangularis (pictured with the bullseye) or the
cranial vertex. B, Diffusion tractography was computed for each subject. A cortical parcellation was registered to each individual’s
anatomic T1 image to identify anatomic divisions. C, A region � region anatomic adjacency matrix was constructed representing
the streamline counts between pairs of regions corrected for region volume. D, We applied a community detection algorithm to
identify an initial consensus partition based on partitions identified within subjects. E, Modal and boundary controllability were com-
puted for each node (brain region) in the network for each individual. Each node received a rank representing its strength of control
within the individual. F, Maps representing the variability in modal controllability (top) and boundary controllability (bottom). P1...N

represent different participants. The relationship between controllability values at the LIFG stimulation site and task RTs before and
after stimulation were examined using mixed effects models.
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the cTBS sequence. Thus, the pre-TMS session (two lan-
guage tasks), TMS administration, and post-TMS session
(two language tasks) lasted a total of;25min. Items (sen-
tences/words) were not repeated within or between the
sessions; half of the items per task were presented in
the pre-TMS session and the other half were presented in
the post-TMS session for a given subject. For the verb
generation task, a single written word was presented on
the screen, which remained on the screen for 10 s or until
the participant made a response. For the sentence com-
pletion task, segments of one to two words were pre-
sented serially (1000ms per segment) from left to right,
starting with the beginning of the sentence. The senten-
ces were presented accumulatively (the prior words re-
mained on the screen until the response was given). Then,
the whole sentence remained on the screen for 10 s start-
ing from the onset of the final segment or until the partici-
pant made a response. The proportion of acceptable verb
responses during the sentence completion task was low
(12/100) and stratified across selection demands. For
both tasks, trials were separated by the presentation of a
fixation cross “1” for 500ms. Subjects were given an ex-
ample and five practice trials in the first administration of
each language task (i.e., pre-TMS), and were reminded of
the instructions before performing the task a second time
(i.e., post-TMS). In each of the pre-TMS and post-TMS
sessions, subjects completed 50 trials for a total of 100
trials per task.
For the verb generation task, subjects were instructed

to generate the first verb that came to mind when pre-
sented with a noun stimulus (e.g., “cat”). The verb could
be either something the noun does (e.g., “meow”) or
something that is done with it (e.g., “feed”). Response
times (RTs) were collected from the onset of the noun cue

to the onset of the verb response. For the sentence com-
pletion task, participants were presented with a sentence,
such as “They left the dirty dishes in the ––-.”, and were
instructed to generate a single word that appropriately
completes the sentence, such as “sink.” RTs were com-
puted as the latency between the onset of the last seg-
ment, which always contained a two-word segment (i.e.,
a word and an underline), and the onset of the subject’s
response. For both tasks, all items in the high versus low
selection demand conditions were matched on retrieval
demands (association strength; Snyder and Munakata,
2008).
The items for the verb generation task were identical to

those used in Snyder et al. (2011) and the items for the
sentence completion task were those from Snyder et al.
(2014). The difficulty of items was sampled to cover a dis-
tribution of values computed via latent semantic analysis
(LSA) applied to corpus data. In particular, items were
sampled to represent a range of LSA entropy and LSA as-
sociation strength (Snyder and Munakata, 2008), which
represent the selection and retrieval demands of each
item, respectively (Snyder and Munakata, 2008). An LSA
association value of 0 means that the cue word or sen-
tence is not strongly associated with any word in particu-
lar, whereas a value of 1 means that the cue word or
sentence is strongly associated with at least one word,
implying that it is easy to retrieve. An LSA entropy value of
0 indicates that the word is not related to any words,
whereas higher values indicate higher relatedness to
many words, which theoretically increases competition
among appropriate words (Snyder and Munakata, 2008).
Verbal responses for all tasks were collected from a

computer headset microphone. The microphone was cali-
brated to reduce sensitivity to environment background
noise before the collection of data for each session such
that the recording software was not triggered without
clear verbalizations. List order was counterbalanced
across participants and session (before or after active or
sham stimulation). Item presentation order within each
task was fully randomized across participants.

TMS
The Brainsight system (Rogue Research) was used to

co-register MRI data with the location of the subject and
the TMS coil. The stimulation site was defined as the pos-
terior extent of the pars triangularis in each individual sub-
ject’s registered T1 image. A Magstim Super Rapid2 Plus1

stimulator (Magstim) was used to deliver cTBS via a 70-
mm diameter figure-eight coil. cTBS consisted of 50Hz
triplets administered every 200ms (i.e., 5Hz; Huang et al.,
2005) for 600 total pulses. To calibrate the intensity of
stimulation, cTBS was delivered at 80% of each partici-
pant’s active motor threshold (Huang et al., 2005). Each
subject’s threshold was determined before the start of the
experimental session using a standard up-down staircase
procedure with stimulation to the motor cortex (M1). In
the sham condition, the coil was held against the head at
a 90° angle at the subject’s vertex to introduce a degree
of induced electrical stimulation of the scalp. We adminis-
tered sham at vertex to reduce the possibility that

Figure 2. Selection and retrieval demands within the tasks.
Items with high selection and low retrieval demands are those
with many highly associated responses, and items with low se-
lection and high retrieval demands are those with one weakly
associated response. The stimuli were either verb cues in the
verb generation task, or sentence cues in the sentence comple-
tion task. Even if selection and retrieval demands are similar in
LSAs, each task places different predictive and syntactic de-
mands on the semantic system that could influence perform-
ance. Selection and retrieval demands were measured
continuously in a relative semantic space using LSA entropy
and association strength, respectively, computed at the item
level separately for each task.
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subjects could see the orientation of the coil in the sham
condition, as subjects were not naive to TMS.

Network controllability
To study the ability of a certain brain region to influence

other regions in arbitrary ways we adopt the control theo-
retic notion of controllability. Controllability of a dynamical
system refers to the possibility of driving the state of a dy-
namical system to a specific target state by means of an
external control input (Liu et al., 2011; Pasqualetti et al.,
2014; Ruths and Ruths, 2014). In the current paper, we
follow the procedures applied in (Gu et al., 2015;
Medaglia et al., 2018a) and focus on two network controll-
ability statistics: boundary and modal controllability.
Consistent with prior studies, we note that these statistics
use linear discrete time dynamics that approximate non-
linear effects in simulations (Muldoon et al., 2016; Tiberi et
al., 2017).

Mathematical models
NCT
All network controllability measures were computed in

MATLAB. We follow previous applications of NCT in diffu-
sion weighted imaging data as the basis for our examina-
tion of controllability and cognitive control. We briefly
describe the mathematical basis for the approach taken
here. For a full discussion of anatomic network controll-
ability in the context of diffusion weighted imaging net-
works, see (Gu et al., 2015). For a full discussion of the
mathematical basis for anatomic network controllability
see (Liu et al., 2011; Pasqualetti et al., 2014; Ruths and
Ruths, 2014). In contrast to traditional graph theory, NCT
offers mechanistic predictors of network dynamics.
Mechanistic models can provide rich tests of causal dy-
namics in the human connectome by explicitly including a
dynamic model (Medaglia et al., 2015).
The controllability of a networked system can be exam-

ined by defining a network represented by the graph G =
(V,E), where V and E are the vertex (node, or here, brain re-
gion) and edge (connection, here anatomic streamline
density) sets, respectively. Let aij be the weight associ-
ated with the edge (i,j) [ E, and define the weighted adja-
cency matrix of G as A = [aij], where aij = 0 whenever (i,j) 62
E. We associate a real numeric value (state) with each
node, collect the node states into a vector (network state),
and define the map x:N�0 ! Rn to describe the evolution
(network dynamics) of the network state over time. Using
the observed network and node dynamics, NCT can theo-
retically examine how the anatomic network structure re-
lates to the types of control that nodes can exert.

Dynamic model of neural processes
Following prior work, we define anatomic brain net-

works by subdividing the entire brain into anatomically
distinct brain areas (network nodes) in a commonly used
anatomic atlas (Hagmann et al., 2008). Consistent with
prior work (Bassett et al., 2011; Hermundstad et al., 2013,
2014; Gu et al., 2015), we connect nodes by the number
of white matter streamlines identified by a commonly
used deterministic tractography algorithm (Bassett et al.,

2011; Hermundstad et al., 2013, 2014; Gu et al., 2015;
Betzel et al., 2016; Tang et al., 2017; Cornblath et al.,
2018; Stiso et al., 2019; Medaglia et al., 2018b; for details
on the tractography implementation, see Medaglia et al.,
2018a). This procedure results in sparse, weighted, undir-
ected anatomic brain networks for each subject.
Properties of this network include high clustering, short
path length, and strong modularity, consistent with prior
studies of similar network data (Hagmann et al., 2008;
Bassett et al., 2011). The definition of anatomic brain net-
works based on tractography data in humans follows
from our primary hypothesis that control features of neural
dynamics are in part determined by the anatomic organi-
zation of the white matter in the brain.
As a simplified estimate of controllability at the region of

interest, we drew from intuitions applied in other work
linking network anatomy and function. (Honey et al., 2009,
2010; Abdelnour et al., 2014). Although neural activity
evolves through neural circuits as a collection of nonlinear
dynamic processes, these prior studies have demon-
strated that a significant amount of variance in neural dy-
namics as measured by resting state fMRI can be
predicted from simplified linear models. Based on this lit-
erature, we employ a simplified noise-free linear discrete-
time and time-invariant network model:

xðt11Þ ¼ AxðtÞ1BuðtÞ; (1)

where x:R�0 ! Rn describes the state (e.g., a measure of
the electrical charge, oxygen level, or firing rate) of brain
regions over time, and A [ RN�N is a symmetric and
weighted adjacency matrix. In this case, we construct a
weighted adjacency matrix whose elements indicate the
number of white matter streamlines connecting two differ-
ent brain regions, denoted here as i and j, and we stabilize
this matrix by dividing by the mean edge weight. While
the model used above is a discrete-time system, the con-
trollability Gramian is statistically similar to that obtained
in a continuous-time system (Gu et al., 2015).
The diagonal elements of the matrix A satisfy Aij = 0.

The input matrix BK identifies the control points K in the
brain, where K = {k1,...,km} and

BK ¼ ½ek1 :::ekm �; (2)

and ei denotes the i-th canonical vector of dimension N.
The input u:R�0 ! Rm denotes the control energy.

Boundary controllability
Boundary controllability, a metric developed in NCT,

quantifies the role of a network node in controlling dynam-
ics between modules in hierarchical modular networks
(Pasqualetti et al., 2014). Boundary controllability identi-
fies brain areas that can theoretically steer the system into
states where different cognitive systems are either
coupled or decoupled. A region’s boundary controllability
describes its theoretical ability to regulate the extent to
which it can drive major networks to increase or decrease
communication with one another. High boundary control-
lers are conceptually akin to the “gatekeepers” of com-
munication between major brain networks. Here, we
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applied a similar approach to that taken in (Gu et al.,
2015; Medaglia et al., 2018a) to quantify boundary con-
trollability in our diffusion tractography networks and
associate controllability variability with cognitive per-
formance. Specifically, we partition the brain into mod-
ules by maximizing the modularity quality function
(Newman, 2006) using a Louvain-like (Blondel et al.,
2008) locally greedy algorithm (Jutla et al., 2011).
Because the modularity quality function has many near-
degeneracies, we optimized the algorithm multiple
(100) times (Good et al., 2010).
Our approach differed from (Medaglia et al., 2018a) to

include (1) full, weighted streamline networks and (2) parti-
tions estimated within individuals. Given that anatomic
network topology can vary across subjects and is explic-
itly of interest in examining the relationship between brain
network organization, TMS, and behavior, we applied a
tiered strategy to obtain a consistent partition threshold.
First, we obtained partitions in each of 100 optimizations
per subject at each value of g from 1.0 to 4.0 in incre-
ments of 0.1. Next, we obtained the mean z-Rand coeffi-
cient for each subject and obtained the mean across
subjects. We observed that the peak z-Rand across the
sample was observed at g at 2.0 (mean z-Rand
score =74.06, SD=3.8). We therefore used the consen-
sus partition at g = 2.0 obtained from optimizations within
each subject for the remainder of the analysis in this
study. High-ranking boundary controllers were identified
as the highest-ranking set of boundary regions between
modules, and the remaining boundary regions were found
within modules in the network.

Modal controllability
Modal controllability refers to the ability of a node to

control each evolutionary mode of a dynamical network
(Hamdan and Nayfeh, 1989), and can be used to identify
the least controllable theoretical state from a set of control
nodes. Modal controllability is computed from the eigen-
vector matrix V = [vij] of the network adjacency matrix A.
By extension from the PBH test (Kailath, 1980), if the entry
vij is small, then the j-th mode is poorly controllable from
node i. Following Pasqualetti et al. (2014), we define

w i ¼
XN

j¼1

ð1� l 2
j ðAÞÞv2ij as a scaled measure of the con-

trollability of all N modes l 1(A),....,l N(A) from the brain re-
gion i. Regions with high modal controllability are able to
control all the dynamic configurations of the network, and
hence to drive the dynamics toward hard-to-reach config-
urations. A hard-to-reach state is one that requires a high
amount of energy to reach. In the case of human brain
networks, many competing and cooperating dynamics
occur over time. As a result, the high-energy states typi-
cally involve the activation of a few, specific regions in the
network that would otherwise express many coactivation
patterns. High modal controllers are conceptually akin to
dynamic “specialists” driving specific, otherwise un-
achievable states. Intuitively, a modal controller could
correspond to one that is specialized to activate a single
or small set of regions in the network, potentially

supporting a few specific computational processes at a
single location in the brain.

Statistical analysis: examining the relationship
between controllability, cognition, and TMS effects
This was a mixed study design with between-subjects

effects of stimulation condition (active or sham TMS) and
LIFG controllability, and within-subjects effects of item
and selection and retrieval demands. To account for the
study design, analyses were conducted using multilevel
modeling with maximum-likelihood estimation (Baayen et
al., 2008) implemented in the lme4 v.1.1-9 (Bates et al.,
2015) package of R version 3.2.1 (R Core Team, 2016).
This technique allows classical regression analyses to be
performed on repeated measures data by accounting for
the non-independence of observations collected from
each participant (i.e., multiple behavioral observations ob-
tained during the language tasks), without resorting to
computing separate regression equations for each sub-
ject (Lorch and Myers, 1990; Baayen, 2008; Baayen et al.,
2008). Critically, multilevel modeling accounts for the var-
iances of the conditions of interest across subjects when
estimating fixed effects, which is appropriate because of
the potentially different effects of TMS across subjects
(Lüders et al., 1985; Hamada et al., 2013). Multilevel mod-
eling also accounts for violations of the sphericity as-
sumption by modeling heteroskedasticity in the data
when necessary, improving statistical power over other
methods commonly employed for analyzing repeated-
measures data.
We excluded from analyses trials on which participants

responded incorrectly (i.e., semantic and paraphasic er-
rors, hesitations, false starts) and experimenter error/
equipment failures (such as false triggers for voice record-
ing), constituting a mean of 4.25% and 4.67% of all trials,
respectively. In addition, responses of ,200 or .10,000
ms were excluded. We excluded responses below 200ms
because they are likely impulsive errors rather than those
that reflect fast cognitive selection and retrieval and oral
motor onsets (Indefrey and Levelt, 2004). In addition,
compared with closed-ended language tasks with a sin-
gle appropriate response, longer windows ensure that we
measure task-relevant responses. Higher selection and
retrieval demands tend to increase the central tendency
and tail of RTs (Snyder and Munakata, 2008; Snyder et al.,
2014). In early piloting we found that subjects occasional-
ly provided semantically relevant responses after an 8- to
9-s delay, and the 10-s cutoff allowed us to be inclusive of
some of these slower responses. See Table 1 for total trial
rejection percentages for each task, TMS session, and
group.
RTs were log-transformed because of non-normal dis-

tribution of raw RTs. For interactions with task variables,
we discretized association and entropy values with a me-
dian split before computing interactions. Association and
entropy values were centered and left continuous for in-
teractions with the continuous controllability values.
Our modeling strategy was designed to test whether we

replicated a prior finding that boundary controllability
moderated performance on the tasks when considered
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together (Medaglia et al., 2018a). Then, we tested whether
LIFG controllability was linked to TMS effects (1) be-
tween-task differences that suggest overall influences of
semantic processing demands or (2) the within task selec-
tion and retrieval demands. First, we tested whether LIFG
boundary controllability moderated TMS effects when
both tasks were examined together as observed in our
prior study (Medaglia et al., 2018a) in this larger sample
with a modified data processing stream (i.e., full, weighted
adjacency matrices and partitions for boundary controll-
ability computed within subjects).
Then, we tested whether selection and retrieval de-

mands, i.e., those measured by entropy and association
strength in LSAs (Snyder et al., 2011, 2014), induced the
same effect across the sentence completion and verb
generation tasks. This would determine whether task-
level distinctions because of differences in overall seman-
tic integration demands exist before neuromodulation. In
our models, a selection cost was represented by the main
effect of entropy on RTs: slowed RTs in items with higher
selection demands (i.e., greater entropy). Likewise, a re-
trieval cost was represented in our models by the main ef-
fect of association strength on RTs: slowed RTs for items
with higher retrieval demands (i.e., lower association
strengths). To test whether these costs were moderated
by controllability, we examined whether baseline selec-
tion and retrieval costs were moderated by LIFG bound-
ary and modal controllability in each task. Next, we tested
whether session effects in the sham group differed across
the tasks to examine whether interference observed in

Medaglia et al. (2018a) increased in both. This established
an important test for whether TMS alleviates interference
observed in successive runs of language production as
we speculated previously (Medaglia et al., 2018a). After
testing for session effects (i.e., pre-TMS vs post-TMS out-
come) in the sham group that could imply influences of in-
creasing semantic interference (as indicated by slowed
RTs (Medaglia et al., 2018a), we tested whether cTBS af-
fected RTs on each task. Then, we examined whether
LIFG controllability moderated observed TMS effects for
each task. This analysis allowed us to determine whether
the TMS effect was to mitigate this accumulated interfer-
ence. The random effects structure for all models in-
cluded a random slope for trial order nested within
subjects (Barr et al., 2013).

Code and data availability
Code for controllability measures can be found at:

https://github.com/johnmedaglia/eneuro_controllability/.
Data are available on request.

Results
Across all sentence completion and verb generation

data combined, we replicated the finding that LIFG
boundary controllability was related to performance when
both tasks were examined together (main effect of bound-
ary controllability: b =�0.002, p=0.004; Table 2). In addi-
tion, boundary controllability moderated the TMS effect
(stimulation � session � boundary controllability: b =
0.003, p=0.009; Table 2) In comparing the tasks, behav-
ioral evidence revealed that the costs of these demands
differed across the tasks overall before TMS. Selection
costs (the effects of higher selection demands on per-
formance) can be measured along a dimension as the pa-
rameter weight associated with item entropy values.
Accordingly, retrieval costs (the effects of higher retrieval
demands on performance) can be modeled as the param-
eter weight associated with item association strengths.
Behavioral data revealed a task dissociation in pre-TMS
selection and retrieval costs. Specifically, selection costs
were greater in sentence completion (task by selection
demand interaction: b = �0.180, p, 0.001; Table 3),
whereas retrieval costs were greater in verb generation
(b = 0.122, p, 0.001; Table 4). These differences suggest
that differences in semantic demands exist at the task-
level in addition to within-task variation in demands
across items. See Figure 3 for estimated effects of

Table 2: TMS effects depend on LIFG boundary controllability across both tasks

Predictors Estimates CI Df Statistic p
(Intercept) 7.233 7.206 to 7.260 5609.031 522.049 ,0.001
Stimulation �0.030 �0.065 to 0.005 5608.513 �1.706 0.088
Session 0.024 �0.013 to 0.061 5770.483 1.256 0.209
Boundary �0.002 �0.003 to �0.001 5675.063 �2.913 0.004
Stimulation � session �0.035 �0.083 to 0.012 5775.291 �1.464 0.143
Stimulation � boundary 0.004 0.002 to 0.005 5650.508 5.440 ,0.001
Session � boundary 0.001 �0.001 to 0.002 5824.119 0.718 0.473
Stimulation � session � boundary �0.003 �0.004 to �0.001 5809.284 �2.629 0.009

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 1: Total trial rejection percentages for each session,
task, and group

Session Task Group
Trial rejection
percentage

Pre-TMS Sentence completion Active 7.20
Sentence completion Sham 10.125

Pre-TMS Verb generation Active 13.44
Verb generation Sham 10.500

Post-TMS Sentence completion Active 3.36
Sentence completion Sham 4.500

Post-TMS Verb generation Active 8.48
Verb generation Sham 8.125

All tables report the model estimates and parameter significance tests using
Satterthwaite’s approximation. All mixed effects models included a random
intercept for trials nested within subjects. Significant p values are denoted by
bold text. The dependent variable in all models is the log of RTs during the
tasks. In all models, CI = 95% confidence interval for the fixed effects
estimates.
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selection and retrieval costs in the verb generation and
sentence completion tasks pre-TMS.
After detecting task differences in selection and re-

trieval demands, we investigated whether LIFG network
controllability moderated performance in response to
cognitive demands at baseline. Following our behavioral
data, we tested the link between LIFG boundary and
modal controllability on (1) sentence completion and se-
lection costs and (2) verb generation and retrieval costs.
We found that the baseline selection costs were moder-
ated by LIFG boundary controllability in sentence comple-
tion (LIFG boundary controllability by entropy interaction:
b = 0.001, p=0.002; Table 5). The moderating influence
of LIFG boundary controllability on the effects of entropy
is illustrated in Figure 4. Modal controllability did not mod-
erate selection demands during sentence completion (b
=�0.006, p=0.063; Table 6). Neither boundary nor modal
controllability significantly moderated baseline retrieval

costs on verb generation (b = �0.001, p=0.587; Table 7;
b = 0.003, p=0.702; Table 8).
In addition to differences in selection and retrieval costs

across the tasks, we were interested in whether semantic
interference in the sham group increased equally from the
first to second session in each task. Differences across
tasks could suggest that spreading activation causes in-
creased competition in one task relative to the other with
sustained task performance (Saunders and MacLeod,
2006; Nozari and Pinet, 2020). Session did not influence
performance in both tasks: sentence completion RTs in-
creased overall (b = 0.072, p=0.002) whereas verb gen-
eration did not (b = �0.022, p=0.319; Tables 9, 10).
Thus, the increased context-driven nature of this task
might induce more persistent, widespread activation of
the semantic system that slows performance (Fig. 5, blue
dots).
As illustrated in Figure 5, TMS influenced RTs only on

sentence completion (stimulation by session interaction:

Table 3: Selection costs differ across the tasks at baseline

Predictors Estimates CI df Statistic p
(Intercept) 6.846 6.818 to 6.874 3676.921 481.311 ,0.001
Task 0.580 0.541 to 0.619 2899.285 29.214 ,0.001
Selection 0.266 0.226 to 0.305 3638.267 13.177 ,0.001
Task � selection �0.180 �0.236 to �0.124 3615.092 �6.253 ,0.001

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 4: Retrieval costs differ across the tasks at baseline

Predictors Estimates CI df Statistic P
(Intercept) 6.925 6.897 to 6.952 3676.981 489.575 ,0.001
Task 0.432 0.393 to 0.471 2893.463 21.924 ,0.001
Retrieval 0.109 0.070 to 0.149 3644.480 5.394 ,0.001
Task � retrieval 0.122 0.066 to 0.179 3628.856 4.228 ,0.001

The bold numbers indicate the statistically significant p-value of ,0.05.

Figure 3. Selection and retrieval costs differ across language tasks. Selection costs were higher during the sentence completion
task, whereas retrieval costs were higher in the verb generation task.
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b = �0.092, p=0.001; Table 11; stimulation by session
interaction in verb generation: b = 0.009, p=0.750; Table
12), improving performance by removing the slowing ef-
fect observed in the sham group. Further dissociating the
tasks, LIFG boundary controllability moderated the effect
of inhibitory TMS only in sentence completion (LIFG
boundary controllability by TMS by session interaction:
b = �0.002, p=0.046; Table 13; verb generation: b =
�0.002, p=0.146; Table 14). Thus, TMS effects were
moderated by LIFG boundary controllability in the more
semantically context-rich task. See Figure 6 for the esti-
mated influence of boundary controllability on the TMS ef-
fect. Given the complex interaction, we conducted post
hoc analyses of the boundary controllability values
across individuals, finding that subjects in the active
group had higher average boundary controllability values
than those in the sham group (Wilcoxon unpaired two-
samples ranked-sum test: W= 1,776,167, p� 0.001; see
Extended Data Fig. 6-1).
For further evaluation of whether accumulating interfer-

ence or other temporal effects occurred during the tasks
before and after TMS, we additionally explored trial-wise
effects in the pre-TMS and post-TMS sentence comple-
tion data. Pre-TMS, subjects did not exhibit slowing over-
all (main effect of trial: b = 0.001, p=0.113), but greater

slowing was observed among the items with higher selec-
tion demands (trial by selection interaction: b = 0.002,
p=0.005). Post-TMS, subjects exhibited slowing overall
(main effect of trial: b = 0.003, p=0.002), which was also
greater among items with higher selection demands (trial
by selection interaction: b = 0.002, p=0.001). See
Extended Data Figure 6-2 for RT distributions for all con-
ditions of the data. See also Extended Data Figures 6-3
and 6-4 for the complete modeling results for the trialwise
pre-TMS and post-TMS effects.

Discussion
We revealed novel associations between network con-

trollability at the LIFG and controlled language functions.
We found evidence linking boundary controllability to
word selection and TMS effects during sentence comple-
tion. In partial agreement with our hypotheses, we re-
vealed a link in the IFG between boundary controllability,
the capacity for integrating and segregating activity
across brain networks, and word selection in the context
of the semantic demands of sentence processing. We did
not find links between modal controllability and perform-
ance on either task or on selection and retrieval demands.
Consistent with theories that take a broad, whole-brain

perspective on semantic processing (Patterson et al.,
2007; Huth et al., 2012; Çukur et al., 2013; Bruffaerts et
al., 2019; Shahdloo et al., 2020), part of the LIFG’s role in
controlled language function could be to mediate the
complex task of selecting context-dependent responses.
In individuals whose LIFG is positioned to mediate be-
tween major brain networks (i.e., those with high LIFG
boundary controllability), selection costs are increased.
This suggests that as the LIFG increasingly mediates be-
tween brain networks, it is less able to either mitigate co-
activation across semantic representations (Collins and
Loftus, 1975; Anderson and Pirolli, 1984; Masson, 1995;
De Deyne et al., 2016; Griffis et al., 2017; Mattheiss et al.,
2018) or select among them (Canini et al., 2016; Beaty et
al., 2017; Musz and Thompson-Schill, 2017; Abdel
Rahman and Melinger, 2019). Moreover, task perform-
ance tends to slow on the second task administration in
the sham group among individuals, especially on the sen-
tence completion task. This effect could represent overall
competition among representations increases over time
on this task because of semantic priming. In addition, be-
cause higher boundary controllability indicates a stronger
role in mediating inter-network communication, higher
boundary controllability in the LIFG could imply that it is
involved in managing additional demands in or outside
the language domain (de Bruin et al., 2014). Although we
cannot fully distinguish between the potential influences

Table 5: LIFG boundary controllability moderates baseline selection costs in sentence completion

Predictors Estimates CI df Statistic p
(Intercept) 6.998 6.938 to 7.059 44.004 226.817 ,0.001
Boundary 0.001 �0.001 to 0.004 40.167 1.284 0.199
Entropy 0.155 0.135 to 0.175 1833.751 15.293 ,0.001
Boundary � entropy 0.001 0.000 to 0.002 1826.762 3.150 0.002

The bold numbers indicate the statistically significant p-value of ,0.05.

Figure 4. Boundary controllability moderates selection costs
during sentence completion. Increased entropy values are as-
sociated with higher selection demands. A steeper positive
slope of the relationship between entropy and RTs represents
higher selection costs. Selection costs were higher at baseline
in individuals with higher boundary controllability. To visualize
the effects of the continuous boundary controllability values as
a third dimension, we used a split of estimated regression lines
from the models at �1 and 1 SDs of boundary controllability
across the sample at baseline. For the exact model estimates
for the main effects of entropy and LIFG boundary controllability
and their interaction, see Table 5. SD, standard deviation.
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of fatigue or cognitive control in the absence of feedback
and reward (Hockey, 2011; Dreisbach and Fischer, 2012;
Shenhav et al., 2017), these possibilities could also ex-
plain part of the TMS effect that we observed.
Our results did not suggest a clear link between LIFG

modal controllability and performance on either task or a
relationship with either selection or retrieval demands. In
anatomic brain networks, high modal controllability is
strongly inversely related to node weighted degree (i.e.,
overall connectivity with nearest neighbors in the network;
Gu et al., 2015). Thus, in persons with high LIFG modal
controllability, the LIFG is more weakly connected with
anatomic sites one step away in the network. These
weaker connections may facilitate more limited, specific
interactions with a few regions. This anatomic property
might be especially relevant to retrieval demands when
subjects attempt to recall single noun-verb pairs without
the additional context provided by a complete sentence.
For instance, when a noun is presented without context, it
is potentially advantageous to interact with a smaller set
of brain regions to increase the speed with which a simple
association with an appropriate word can occur. This
stands in contrast to the much richer semantic context

Table 6. LIFG modal controllability does not moderate baseline selection costs in sentence completion

Predictors Estimates CI df Statistic p
(Intercept) 7.422 7.353 to 7.490 53.769 211.851 ,0.001
Modal 0.005 �0.004 to 0.013 42.251 1.106 0.269
Entropy 0.221 0.173 to 0.269 1757.626 8.990 ,0.001
Modal � entropy �0.006 �0.012 to 0.000 1736.954 �1.862 0.063

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 7: LIFG boundary controllability does not moderate baseline retrieval costs in verb generation

Predictors Estimates CI df Statistic p
(Intercept) 7.521 7.453 to 7.588 52.950 217.976 ,0.001
Boundary 0.001 �0.001 to 0.003 43.007 0.772 0.440
Association �0.666 �0.774 to �0.557 1757.621 �12.029 ,0.001
Boundary � association �0.001 �0.005 to 0.003 1747.836 �0.543 0.587

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 8: LIFG modal controllability does not moderate retrieval costs in verb generation

Predictors Estimates CI df Statistic p
(Intercept) 7.521 7.453 to 7.588 52.957 218.841 ,0.001
Modal 0.003 �0.005 to 0.012 43.028 0.826 0.409
Association �0.665 �0.773 to �0.556 1757.606 �12.018 ,0.001
Modal � association 0.003 �0.011 to 0.017 1741.315 0.383 0.702

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 9: Performance on sentence completion slows in the sham group across sessions

Predictors Estimates CI df Statistic p
(Intercept) 6.993 6.959 to 7.027 1474.687 398.217 ,0.001
Session 0.072 0.026 to 0.117 763.964 3.057 0.002

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 10: Performance on verb generation does not change in the sham group across sessions

Predictors Estimates CI df Statistic p
(Intercept) 7.482 7.448 to 7.516 1409.983 432.892 ,0.001
Session �0.022 �0.064 to 0.021 744.236 �0.997 0.319

The bold numbers indicate the statistically significant p-value of ,0.05.

Figure 5. TMS Effects. In the sham group, responses on sen-
tence completion slowed, whereas responses on verb genera-
tion slightly quickened. Inhibitory TMS improved sentence
completion performance relative to sham.
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required for sentence processing, which requires se-
quenced, persistent engagement of large set of brain net-
works to guide responses (Ni et al., 2000; Friederici, 2002;
Cooke et al., 2006; Vigneau et al., 2006; Binder et al.,
2009; Rogalsky and Hickok, 2009; Fedorenko and
Thompson-Schill, 2014). In a prior study, modal controll-
ability was only linked to performance on the closed-
ended number reading task (Medaglia et al., 2018a).
Thus, it is possible that modal controllability at the LIFG is
restricted to cases without underdetermined competition,
such as when only a single, well-associated exemplar
(e.g., a number associated with a lexical form) is appropri-
ate. If modal controllability is more generally linked to spe-
cific, well-learned representations, it is possible that it is
more relevant to retrieving specific episodes and items
with no competition.
Our TMS effects further provide evidence that LIFG

boundary controllability moderates processing demands

in language tasks with multiple processing demands. Pre-
TMS, selection costs were more pronounced on sentence
completion than verb generation and higher in those with
stronger LIFG boundary controllability. Over sessions,
slowed RTs occurred in the sham group only on sen-
tence completion. Higher LIFG boundary controllability
was associated with improved sentence completion per-
formance after TMS. Thus, it is possible that the LIFG
manages multinetwork processing demands. Stronger
multinetwork anatomic connectivity could increase sub-
jects’ proneness to semantic satiation (a transient loss of
meaning) via repeated performance of the semantically
rich sentence completion task. Further, inhibitory stimu-
lation to the LIFG in individuals with higher boundary
controllability might reduce more general demands on
this region that are incurred by mediating among net-
works across the brain. For example, competition be-
tween the goal to stay on task versus attend to other

Table 11: TMS significantly speeds performance on sentence completion relative to the sham group

Predictors Estimates CI df Statistic p
(Intercept) 6.993 6.960 to 7.027 3802.523 406.959 ,0.001
Stimulation �0.025 �0.068 to 0.018 3800.211 �1.139 0.255
Session 0.071 0.028 to 0.115 2000.452 3.204 0.001
Stimulation � session �0.092 �0.148 to �0.036 1986.231 �3.245 0.001

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 12: TMS does not significantly affect performance on verb generation

Predictors Estimates CI df Statistic p
(Intercept) 7.477 7.385 to 7.570 46.143 158.547 ,0.001
Stimulation �0.022 �0.141 to 0.096 46.311 �0.367 0.713
Session �0.018 �0.062 to 0.025 3637.310 �0.829 0.407
Stimulation � session 0.009 �0.047 to 0.065 3637.744 0.318 0.750

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 13: LIFG boundary controllability moderates the TMS effect in sentence completion

Predictors Estimates CI df Statistic p
(Intercept) 6.992 6.958 to 7.025 3799.047 407.782 ,0.001
Stimulation �0.025 �0.068 to 0.018 3797.234 �1.157 0.247
Session 0.070 0.027 to 0.114 1993.170 3.156 0.002
Boundary �0.001 �0.003 to 0.000 3799.107 �1.837 0.066
Stimulation � session �0.088 �0.144 to �0.033 1982.086 �3.123 0.002
Stimulation � boundary 0.003 0.002 to 0.005 3796.519 3.775 ,0.001
Session � boundary �0.000 �0.002 to 0.002 2019.562 �0.196 0.845
Stimulation � session � boundary �0.002 �0.005 to �0.000 1996.384 �1.998 0.046

The bold numbers indicate the statistically significant p-value of ,0.05.

Table 14: LIFG boundary controllability does not interact with TMS in verb generation

Predictors Estimates CI df Statistic p
(Intercept) 7.478 7.445 to 7.512 3615.889 434.784 ,0.001
Stimulation �0.022 �0.065 to 0.021 3618.283 �0.993 0.321
Session �0.019 �0.063 to 0.024 1894.733 �0.871 0.384
Boundary �0.001 �0.003 to 0.000 3623.787 �1.571 0.116
Stimulation � session 0.010 �0.045 to 0.066 1902.848 0.368 0.713
Stimulation � boundary 0.003 0.001 to 0.005 3624.616 3.540 ,0.001
Session � boundary 0.001 �0.001 to 0.002 1942.348 0.558 0.577
Stimulation � session � boundary �0.002 �0.004 to 0.001 1940.439 �1.455 0.146

The bold numbers indicate the statistically significant p-value of ,0.05.
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tasks might further tax the LIFG in these individuals over
time. Alternatively, domain-general cognitive control
mechanisms could mediate slowed performance in the
absence of reward, which is one basis of widely ob-
served potential effort-reward tradeoffs in behavior
(Shenhav et al., 2017), and a potential explanation of
cognitive fatigue (Fukuda et al., 2010; Dobryakova et al.,
2013; Milyavskaya et al., 2019). To test these possibil-
ities, future studies could manipulate demands within
and out of the language domain over several interleaved
blocks of task performance. The role of reward on per-
formance could be strong when high effort is predicted
or required (Kool and Botvinick, 2014, 2018; Kool et al.,
2017). Manipulating task demands and rewards in neu-
romodulation studies could further distinguish how vari-
ability in the network role of the LIFG mediates domain
general and specific demands.
While our analyses focused on the anatomic connectiv-

ity of the LIFG, the mechanism of inhibitory TMS’s benefi-
cial effect presumably involves local effects at the site of
stimulation. Specifically, cTBS is thought to induce inhibi-
tion involving complex effects on GABAergic neurons
(Gong et al., 2009; Stagg et al., 2009; Trippe et al., 2009;
Cárdenas-Morales et al., 2010; Li et al., 2019). Previously,
behavioral and computational work suggested that word
selection can be facilitated using GABA agonists (Snyder
et al., 2011). Our current findings point to the intriguing
possibility that GABA-mediated mechanisms might parse
the multinetwork demands on the LIFG. For instance, the
LIFG’s ability to efficiently select task-relevant words
might be especially challenged with sustained task effort
when overall network demands on the LIFG are high. If
the LIFG is inhibited (e.g., with TMS), the neural gains on
task-relevant information in the network may be en-
hanced when the overall activity in this node is decreased
(Houghton and Tipper, 1996; Ingham and McAlpine,
2005; Katzner et al., 2011), facilitating task-relevant re-
sponses (Houghton and Tipper, 1996; Herd et al., 2006).
This benefit in healthy individuals could be linked to

evidence in individuals with aphasia after stroke. Some in-
dividuals with aphasia benefit from inhibitory TMS to
“noisy” node in the right inferior frontal gyrus, which
sometimes inherits the role of the damaged LIFG post-
stroke (Torres et al., 2013). This notion could be examined
by applying inhibitory stimulation to the right IFG post-
stroke in individuals with aphasia and observing whether
language task performance improves.
More broadly, we note that the task demands and cog-

nitive control in sentence completion and verb generation
remain incompletely understood. Selection and retrieval
demands might recruit anatomically different brain net-
works, which could explain the relative lack of findings
linking retrieval to LIFG controllability. In addition, while
we focused on the role of the LIFG with respect to the en-
tire brain to be consistent with broad, whole-brain seman-
tic theories, it is reasonable to suspect that classic
theories of more specialized, left-lateralized language
functions implicate a smaller set of networks to mediate
these demands (Fedorenko, 2014). For example, circuits
involving LIFG-anterior temporal lobe might be most rele-
vant to selection (Musz and Thompson-Schill, 2017; Piai
and Knight, 2018), while those involving the hippocampus
might be more relevant to retrieval (Eldridge et al., 2000;
Greenberg et al., 2005; Whitney et al., 2009). However, in-
vasive neural recordings also suggest that these proc-
esses transiently recruit a wide swath of the cortex across
the entire brain (Riès et al., 2017), challenging the as-
sumption that a single-circuit model will be sufficient to
account for these functions. Future studies could examine
the role of single circuits and networks (Chai et al., 2016)
with EEG and especially electrocorticography paired with
anatomic diffusion tractography to obtain a more compre-
hensive, multinetwork model with good spatial and tem-
poral resolution. Moreover, finer distinctions between
domain-general and language domain-specific processes
and regions could improve how we conceptualize task-
level, selection, and retrieval demands (Ridderinkhof et
al., 2004; Fedorenko, 2014; Fedorenko and Thompson-

Figure 6. LIFG boundary controllability moderates TMS effects. TMS effects were moderated by LIFG boundary controllability spe-
cifically in sentence completion, where a crossover interaction was observed. Inhibitory TMS in individuals with higher boundary
controllability attenuated the slowed performance observed pre-TMS among the active subjects. However, in verb generation,
changes in RTs were consistently related to baseline performance in both the active and sham condition. Boundary controllability is
plotted as the zero-centered rank controllability values at the LIFG across the sample. See Extended Data Figure 6-1 illustrating
baseline differences in boundary controllability values between the active and sham groups. See Extended Data Figure 6-2 for a
plot of all raw RT distributions by group, session, task, and selection and retrieval demands. See also Extended Data Figures 6-3
and 6-4 for trialwise modeling effects.
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Schill, 2014; Blank and Fedorenko, 2017; Diachek et al.,
2019). For instance, prior work applying TMS has dissoci-
ated semantic processing and phonological processing in
the anterior and posterior LIFG, respectively (Hartwigsen
et al., 2010; Ishkhanyan et al., 2020), with both contribut-
ing to grammatical sentence production (Hartwigsen et
al., 2016). In addition, an important difference between
the sentence completion and verb generation tasks is that
sentences could be more likely to recruit predictive proc-
esses mediated through the LIFG (Altmann and Mirkovi�c,
2009; Arai and Keller, 2013; Yoshida et al., 2013; Grisoni
et al., 2017; Vasishth et al., 2019), which we are not able
to fully distinguish in the current study. Thus, investigating
specific anatomic and functional pathways with tasks that
dissociate these processes would further inform the rela-
tionship between LIFG anatomic connectivity and selec-
tion, retrieval, and other language production processes.
Last and significantly, reward could be manipulated to
dissociate task-related semantic satiation in the sentence
completion task from reward-related processes (Shenhav
et al., 2013; Kool and Botvinick, 2014, 2018; Kool et al.,
2017).
Several limitations could be addressed with future stud-

ies. While our use of mixed effects modeling statistically
accounts for unequal sample sizes and variances, the be-
tween-subject design and unequal samples are limita-
tions. Future studies could use within-subjects crossover
research designs with equal simple sizes. We used an
anatomically-based approach to investigate the link be-
tween LIFG controllability and demands in controlled lan-
guage performance. Here, our findings suggest that
investigators should consider matching network measures
of interest (controllability or others) across active and sham
groups at the site of stimulation when feasible. As men-
tioned above, additional tasks that manipulate demand
within and outside the language domain might further eluci-
date the relationship between the network control role of the
LIFG and cognitive control. In addition, while we chose our
anatomic network and tractography approach to be consist-
ent with prior work using an anatomically-based atlas, diffu-
sion tractography is fundamentally limited (Thomas et al.,
2014; Maier-Hein et al., 2017) and other tractography and
parcellation schemes are available. In particular, integrating
well-established functional parcellations to focus on specific
networks and their interactions could refine system-level
predictions about the relationships between network con-
trollability, language performance, and TMS-induced net-
work effects (Beynel et al., 2020).
In our behavioral data, we also observed some pre-

TMS differences across individuals with high and low
boundary controllability in the active and sham groups.
Most notably, boundary controllability was higher on av-
erage in the active group that was accompanied by an
inversion in the model-estimated brain-behavior relation-
ship in sentence completion pre-TMS. The TMS effect
on this task appears to mitigate the slowing effect of
boundary controllability on RTs in the active group sub-
jects. In the current data, our results are unlikely to be
accounted for by these pre-TMS differences. Our mixed
effects modeling accounted for deviations in the active

relative to the sham group. In the pre-TMS session, the
relationship between boundary controllability and time
was positive, meaning that subjects with higher bound-
ary controllability were slower. Post-TMS, the relation-
ship between boundary controllability and RTs was
flattened. Thus, among individuals with relatively stronger
boundary controllability in the LIFG, TMS could mitigate the
influence of inter-network processing demands on average
RTs during sentence completion. Nevertheless, it is clear
that additional studies would be beneficial. Specifically, if
sampling effects introduced pre-TMS differences at ran-
dom, larger or prospectively assigned studies could obtain
better matched pre-TMS for controllability or other network
measures of interest. In addition, it is possible that other
psychological differences that moderate controlled lan-
guage functions such as anxiety could influence results
(Snyder et al., 2014). Further, subjects responded to the
verb generation task with verbs, whereas most responses to
sentence completion were nouns. While we are unaware of
specific prior data suggesting that the cognitive processes
mediating spoken noun and verb production differ specifi-
cally with respect to the selection and retrieval demands
studied here, this could be a topic for future studies.
Moreover, our choice to stimulate pars triangularis might be
more relevant to word selection than retrieval, and future
studies could investigate whether controllability in the pars
opercularis moderates performance in retrieval (Badre et al.,
2005; Badre and Wagner, 2007). Lastly, the use of network
controllability in diffusion tractography has several chal-
lenges. Questions remain about the appropriateness of line-
ar approximations (Friston, 2008; Schiff, 2012; Gu et al.,
2015), single-node control schemes (Tu et al., 2018;
Pasqualetti et al., 2019; Suweis et al., 2019), and the rele-
vance of network-wide estimations to processes involving
local (cognitive) computations (Medaglia, 2019).
In conclusion, the emerging synergy between cognitive

neuroscience and neural engineering provides many op-
portunities. Here, drawing from whole-brain theories of
semantics, a potential link between the role of the LIFG in
internetwork communication was examined with NCT.
Overall, we found evidence that an increased role for the
LIFG at the boundaries of major networks is potentially as-
sociated with resolving competition when processing sen-
tences. This effect can be mitigated with inhibitory TMS in
individuals whose LIFG serves a stronger role in inter-net-
work connectivity. The mapping between general measures
of node controllability and specific regional cognitive func-
tions will require us to refine our models of cognitive control
in language alongside our network imaging. Combining stat-
ic anatomic measures with dynamic data (fMRI, EEG, elec-
trocorticography) and neuromodulation could allow us to
more specifically parse the distributed neural signals that
mediate controlled language performance. In the long-term,
refined models could allow us to enhance this critical human
function in health and disease.
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