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A B S T R A C T

Background: Amide proton transfer (APT) imaging may help identify the ischaemic penumbra in stroke patients,
the classical definition of which is a region of tissue around the ischaemic core that is hypoperfused and me-
tabolically stressed. Given the potential of APT imaging to complement existing imaging techniques to provide
clinically-relevant information, there is a need to develop analysis techniques that deliver a robust and re-
peatable APT metric. The challenge to accurate quantification of an APT metric has been the heterogeneous in-
vivo environment of human tissue, which exhibits several confounding magnetisation transfer effects including
spectrally-asymmetric nuclear Overhauser effects (NOEs). The recent literature has introduced various model-
free and model-based approaches to analysis that seek to overcome these limitations.
Objectives: The objective of this work was to compare quantification techniques for CEST imaging that speci-
fically separate APT and NOE effects for application in the clinical setting. Towards this end a methodological
comparison of different CEST quantification techniques was undertaken in healthy subjects, and around clinical
endpoints in a cohort of acute stroke patients.
Methods: MRI data from 12 patients presenting with ischaemic stroke were retrospectively analysed. Six APT
quantification techniques, comprising model-based and model-free techniques, were compared for repeatability
and ability for APT to distinguish pathological tissue in acute stroke.
Results: Robustness analysis of six quantification techniques indicated that the multi-pool model-based tech-
nique had the smallest contrast between grey and white matter (2%), whereas model-free techniques exhibited
the highest contrast (> 30%). Model-based techniques also exhibited the lowest spatial variability, of which 4-
pool APTR∗ was by far the most uniform (10% coefficient of variation, CoV), followed by 3-pool analysis (20%).
Four-pool analysis yielded the highest ischaemic core contrast-to-noise ratio (0.74). Four-pool modelling of APT
effects was more repeatable (3.2% CoV) than 3-pool modelling (4.6% CoV), but this appears to come at the cost
of reduced contrast between infarct growth tissue and normal tissue.
Conclusion: The multi-pool measures performed best across the analyses of repeatability, spatial variability,
contrast-to-noise ratio, and grey matter-white matter contrast, and might therefore be more suitable for use in
clinical imaging of acute stroke. Addition of a fourth pool that separates NOEs and semisolid effects appeared to
be more biophysically accurate and provided better separation of the APT signal compared to the 3-pool
equivalent, but this improvement appeared be accompanied by reduced contrast between infarct growth tissue
and normal tissue.

1. Introduction

AMIDE proton transfer (APT) imaging, where contrast originates from
backbone amide protons of mobile proteins and peptides within cells

resonating at 3.5 ppm downfield from water (Ward et al., 2000; Zhou
et al., 2003), is the most developed of the endogenous CEST contrast
modes (Li et al., 2015; Vinogradov et al., 2013). Quantification of APT
exchange rate in brain tissue has been used to measure pH-related
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changes associated with impaired metabolism and cell death, as in-
tracellular pH is exchange rate-dependent (Tee et al., 2014). This is
relevant to ischaemic stroke where a reduction in blood supply to brain
tissue leads to impaired metabolism, where APT imaging may help
identify the ischaemic penumbra in stroke patients (Harston et al.,
2015), the classical definition of which is a region of tissue around the
ischaemic core that is hypoperfused and metabolically stressed (Zhou
et al., 2003; Sun et al., 2007; Astrup et al., 1981).

However, the challenge to accurate quantification of an APT metric
has been the heterogeneous in-vivo environment of human tissue, which
exhibits several confounding magnetisation transfer (MT) effects in-
cluding spillover of direct water saturation, broadband magnetisation
transfer from semisolid tissue, an overlapping of metabolite peaks due
to their relatively broad spectra, as well as noise and artefact (Jin et al.,
2013; Zhou et al., 2013).

Early APT studies tended to employ relatively simple measures of
spectral asymmetry for quantification that assume a broad featureless
spectrum upfield of water as a fixed reference. This assumption has
been undermined by the realisation that the upfield spectrum is not a
good reference for asymmetry techniques due to the relatively promi-
nent asymmetric saturation effects in the aliphatic region of the spec-
trum from −2 to −5 ppm that are associated with intramolecular
magnetisation transfer processes, referred to as nuclear Overhauser
effects (NOEs).

The recent literature has introduced various approaches to CEST
analysis that seek to overcome these limitations. These include mod-
ifying the asymmetry approach, where instead of taking a reference
from the upfield part of the z-spectrum, frequencies adjacent to the APT
frequency in the downfield region are used (Li et al., 2015; Zhou et al.,
2013; Zaiss et al., 2013).

More complex model-based approaches have also been developed
using Bloch-McConnell and Lorentzian-based approaches (Ray et al.,
2016; Jones et al., 2011a) though such metrics have largely only been
applied in non-human preclinical studies, or at high field strengths (7 T)
that are, as yet, not routinely available in a clinical context. Where a
model-based approach has been tested on data derived from clinically
acute stroke patients (Tee et al., 2014), the model developed to isolate
the APT metric used 3 pools to model water, APT, and semisolid
MT+NOE contributions. However, the combination of magnetisation
transfer and NOE effects within a single pool might feasibly have in-
troduced bias into the measures of, or reduced sensitivity to, changes in
the APT effect, and as such might not be modelled well within a single
pool. Feasibly, a separation of the semisolid and NOE effects as two
independent pools might be more accurate based on recent clinical
literature (Jin et al., 2013; Zhou et al., 2013).

Given the potential of APT imaging to complement existing imaging
techniques to provide clinically-relevant information, there is a need to
develop analysis techniques that deliver a robust and repeatable APT
metric. Both model-free and model-based solutions exist. Hence, the
objectives of this work were: firstly, to determine whether substantial
differences are observed between 3- and 4-pool model-based analysis of
APT CEST in acute stroke; and secondly, to compare model-based and
model-free quantification techniques for CEST imaging that specifically
separate APT and NOE effects for application in the clinical setting.
Towards this end, a methodological comparison of different CEST
quantification techniques was undertaken using imaging data from
healthy volunteers and a cohort of acute stroke patients.

1.1. Theory

A wide range of quantification techniques has been proposed which,
to varying extents, try to deal with competing magnetisation transfer
effects and produce purely APT-weighted contrast. The model-free and
model-based quantification techniques compared in this study are de-
tailed in Tables 1 and 2. A brief description of each technique is pre-
sented below.

1.1.1. Model-free quantification techniques
The model-free quantification techniques compared in this study are

classical asymmetry analysis, local linear approximation, and spillover-
corrected MTR

1.1.1.1. Asymmetry analysis (MTRasym). The first studies that
investigated APT effects did so using a simple measure of spectral
asymmetry, MTRasym, which inherently captures changes on both sides
of the z-spectrum together, and in this case it thus relies on one side
being constant in the face of any change in APT (such as pH effects). It
has become evident that APT asymmetry can be strongly diluted in the
presence of competing saturation effects in pathology such as ischaemia
(Li et al., 2015). The conceptual and computational simplicity of
MTRasym means it continues to be widely used for measuring CEST
effects (Zhou et al., 2013; Zaiss et al., 2013; Paech et al., 2014).

1.1.1.2. Local linear approximation technique (APT∗). Larger B0 fields
result in larger-amplitude CEST effects due to proportionality with
water T1. Wider spectral separation associated with larger B0 also
allows more accurate delineation of the spectral boundaries of the APT
peak. Jin et al. (2013) developed a quantification technique, used at 9.4
T, that identified upper and lower frequency boundaries for the APT
peak. A line segment connecting the two points gave a linear
approximation to non-APT effects over that narrow spectral range
(i.e. a local linear approximation), with the midpoint corresponding to
the location of the APT peak maximum, against which the APT effect
observed in the data at 3.5 ppm could be calculated. The APT∗

technique can be considered as an extreme simplification of z-
spectrum fitting where all effects apart from APT are locally linearly
approximated.

1.1.1.3. Spillover-corrected MTR (MTRRex). MTRRex is similar in form to
the APT∗ measure, the difference being that it inverts the z-spectrum in
order to analytically eliminate relaxation terms arising from direct
water saturation (RF spillover) and semisolid MT (Zaiss et al., 2014),
yielding a less contaminated measure of APT.

1.1.2. Model-based quantification techniques
The model-based techniques used in this study are Lorentzian dif-

ference analysis and multi-pool modelling

1.1.2.1. Lorentzian difference analysis (LDA). The conventional LDA
technique is based on steady-state saturation of tissue with low-
amplitude RF pulses. This minimises the broadband CEST effects from
semisolid tissue, and the resulting z-spectrum can be described as
simply a combination of direct water saturation (a Lorentzian line
shape whose parameters are estimated from the data), and the solute
pools of interest (Jones et al., 2012). Thus, subtracting a fitted
Lorentzian from the acquired CEST data removes direct water
saturation and what remains are residuals that reveal the other
exchange effects and directly quantify saturation of the solute pools.

Table 1
Model-free APT quantification techniques. S(ω) is the sampled signal spectrum
interpolated onto the ω frequency axis. S0 is the unsaturated acquisition.

Model-free
technique

General form Parameters References

MTRasym(3.5
ppm)

− −ω ωS( 1) S( 1)
S0

ω1= 3.5 ppm Zhou et al. (2003)

APT∗
⎡
⎣

− ⎤
⎦

⋅+ ωS( )ω ωS( 1) S( 2)
2 3

1
S0

ω1= 2.9 ppm Jin et al. (2013)
ω2= 4.1 ppm
ω3= 3.5 ppm

MTRRex(APT) ⎡
⎣

− ⎤
⎦

⋅
+

S
ω ω ω
1

S( 3)
2

S( 1) S( 2) 0
ω1= 2.9 ppm Li et al. (2015),

Zaiss et al. (2014),
Zaiss and Bachert
(2013a, 2013b)

ω2= 4.1 ppm
ω3= 3.5 ppm
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At 7 T, a range of different z-spectral effects were observed across the
whole of the spectrum that could be associated with both chemical
exchange and relayed transfer effects.

1.1.2.2. Multi-pool model fitting (APTR∗). Multi-pool model fitting is
distinct from the aforementioned quantification techniques in that the
fitted z-spectra are generated from a set of model parameters that
directly describe the underlying physical parameters, such as exchange
rate, relaxation times, and metabolite concentrations. Magnetisation
exchange interactions between bulk water and different metabolites are
described by separate exchange pools, with each pool transferring
saturation to the main water pool on which a signal accumulates. Each
pool is described by a set of Bloch Equations coupled together through
mass-conserving exchange rates. Model fitting can be performed using a
least-squares or Bayesian approach. Bayesian fitting in particular allows
the use of parameter priors that are relevant for in-vivo data where
knowledge of the statistical distribution of tissue parameter values can
be incorporated. There is a risk of over-fitting and the fitting process is
computationally expensive. The advantage of model fitting is that it
allows the spectral contributions of different species to be isolated by
subtracting unwanted saturation components from the pools of interest.
This has been exploited previously to define the APTR∗ metric (Tee
et al., 2014; Harston et al., 2015). After fitting multiple pools to the
spectral data, only a subset are simulated to predict the effect arising
from a single pool, or a combination thereof. The apparent APT ratio,
APTR∗, is obtained by simulating the combined amide and bulk water
pools, ignoring any other pools included in the fit to the original z-
spectral data, and comparing this to a simulation of only the water pool.
APTR∗ is then the difference between the two predictions at 3.5 ppm.

In our previous study (Tee et al., 2014) where we compared a range
of APT quantification metrics at 3 T, this model-based approach to APT
quantification was found to be more repeatable and robust than
asymmetry measures. The model-based technique was subsequently
used in the clinical study of ref. (Harston et al., 2015). In principle, the
model-based quantification approach used was less sensitive to down-
field NOE effects than asymmetry.

The 3-pool model used in this study comprises a bulk water pool, an
amide pool, and a third pool that attempts to account for both semisolid
and NOE effects. The third pool, thus, groups together saturation effects
from NOE and semisolid MT exchanges without distinguishing between
these two signal sources. This may be sub-optimal given the observed
differences in the line shape of semisolid MT and the region over which
NOE effects have been observed. The 4-pool model used in this study
extends the model such that semisolid MT and NOE exchanges are
described as follows: a pool that models semisolid MT as a classic
Lorentzian effect centred at the water resonance, and pool that models
NOEs, with a resonance frequency downfield of water based on ob-
servations in the literature. This was done with the aim of achieving a
better separation of CEST effects.

2. Methods

2.1. Study details

Six healthy volunteers (median age: 34 years) were recruited and
imaged under an agreed technical development protocol approved by
the institution's Research Governance Office. These volunteers under-
went imaging with four repeated CEST scans at three separate time
points (initial, at 24 h and at 1 week).

Eighteen patients presenting with acute ischaemic stroke were re-
cruited into a prospective observational imaging study according to
research protocols agreed by the UK National Research Ethics Service
Committee (references 12/SC/0292 and 13/SC/0362) as previously
described (Harston et al., 2015). After exclusions on the grounds of
motion corruption, imaging artefacts, and secondary heamorrhage, this
left 12 datasets for analysis as described in the original study. The
median time from onset was 2 h 59 min, 58% female, with a median
patient age of 79.5 years, and a median NIHSS score at presentation of
11. Individual patient demographics are detailed in ref. (Harston et al.,
2015).

2.2. Image acquisition

All patient scans were performed on a 3 T Siemens Verio scanner
using a 32-channel head coil. Each patient underwent a T1-weighted
MP-RAGE structural scan (voxel dimensions 1.8× 1.8× 1.0 mm3,
FOV=228 mm, TR=2040 ms, TE= 4.55 ms, T1=900 ms), diffu-
sion-weighted imaging (DWI) in three directions (b=0, b=1000 s/
mm2), multiple post-labelling delay vessel-encoded pseudo-continuous
arterial spin labelling perfusion-weighted imaging (Okell et al., 2013),
and single-slice CEST imaging with voxel dimensions 3×3×5 mm3.
The single-slice CEST imaging plane was localised by a clinician based
on the DWI lesion at the time of scanning. Pulsed CEST preparation was
performed with 50 Gaussian pulses at a flip angle of 184∘ and a 50%
duty cycle (each pulse 20 ms duration, with 20 ms inter-pulse delay) to
achieve an average B1 power of 0.55 μT. Crusher gradients were applied
between pulses to spoil the residual transverse magnetisation. A spin
echo echo planar imaging readout (TR=5 s, TE=23 ms, 64×64
matrix size, 6/8 partial Fourier) was performed after the CEST pre-
paration pulses. An evenly distributed sampling (EDS) scheme was used
up to Patient 4, where 32 saturation frequencies were used from −4.5
ppm to 4.5 ppm in steps of 0.3 ppm, and 300 ppm. For Patient 5 to
Patient 12 (and all the healthy volunteers), a semi-optimal sampling
scheme (semi-OSS) that had a higher density of points around the
amide resonance frequency was used (−300, −50, −30, −4.1, −3.8,
−3.5, −3.2, −2.9, −0.9, −0.6, −0.3, 0.0, 0.3, 0.6, 0.9, 2.9, 3.1, 3.2,
3.3, 3.4, 3.4, 3.5, 3.5, 3.6, 3.6, 3.7, 3.8, 3.9, 4.1, 30, 50, 300 ppm)
(Harston et al., 2015; Tee et al., 2013). Data The total acquisition time
for the CEST sequence was 2min 45 s. A DWI (at 24 h) and/or T2-
weighted FLAIR (at 1 week) follow-up scan to enable the definition of
tissue outcome was taken.

Table 2
Model-based APT quantification techniques. S(ω) is the sampled signal spectrum interpolated onto the ω frequency axis. S0 is the unsaturated acquisition. S(pools)model

is the signal spectrum obtained through model fitting, the subscript (pools) refers to the exchange pool for which the model fit is obtained.

Model-based technique General form Parameters References

APTRpaLDA
∫

−
dωω

ω pools
model ω raw ω

model1
2

S( ) ( ) S ( )

S0

ω1= 3.0 ppm Based on (Jones et al., 2011a; Jones et al., 2012; Jones et al., 2013; Jones et al., 2011b)
ω2= 4.0 ppm
pools≔water& semisolid

Multi− pool APTR∗
−water

model ω pools
model ω

model

S ( 1) S( ) ( 1)

S0

ω1= 3.5 ppm Tee et al. (2014), Chappell et al. (2013), Tee et al. (2015)
pools :water& amide
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2.3. Processing

Image processing and analysis was performed using the FMRIB
Software Library (FSL) (Smith et al., 2004; Jenkinson et al., 2012) and
MATLAB (Mathworks, Inc., Natick, MA).

2.3.1. Image processing
The Brain Extraction Tool in the FSL package (Smith, 2002) was

used to remove the skull and non-brain areas in all of the collected data.
All of the imaging modalities were transferred to the structural space,
and within time point image registration was performed using FMRIB's
Linear Image Registration Tool (FLIRT). Across time point image re-
gistration was done using FMRIB's Non-linear Image Registration Tool
(FNIRT) for patients, and FLIRT for healthy subjects, both available in
the FSL package (Jenkinson et al., 2012; Jenkinson et al., 2002;
Jenkinson and Smith, 2001). The different CEST frequency offsets were
motion-corrected using linear co-registration to the unsaturated ac-
quisition. The quantified APT effects using the different metrics were
transformed to the structural space using rigid body transformation
estimated using FLIRT. The T1 structural data were segmented using
FMRIB's Automated Segmentation Tool (FAST) into cerebrospinal fluid
(CSF), grey and white matter (GM and WM).

2.3.2. Region of interest (ROI) definitions in native space
In healthy subjects, the ROIs used were a whole slice mask, a grey

matter mask, and a white matter mask, defined as follows. Grey matter
and white matter masks were first generated from partial volume (PV)
estimates using the FSL tool FAST (Zhang et al., 2001) on the presenting
T1-weighted scan and the images were transformed to the resolution of
the CEST images. Thresholds were applied to create healthy subject
masks in the data space:

• Whole slice mask: PV threshold of 50% applied to the GM PVE map.

• GM mask: voxels with a GM PV threshold of 70%.

• WM mask: voxels with a WM PV threshold of 90%.

In stroke patients, infarct at presentation was defined using semi-
automated delineation of ADC below an externally validated threshold
of 620× 10−6 mm2/s (Purushotham et al., 2015). Final infarct was
defined preferentially on the 1 week FLAIR image, or, if not available,
the b=1000 DWI at 24 h (Harston et al., 2017). The mask representing
perfusion deficit was generated using a threshold approach where
voxels with a cerebral blood flow (CBF) threshold of less than 20 ml/
100g/min were identified and clustered, and then used as a guide for
manual delineation by an expert clinician (Harston et al., 2015). The
ROIs used in this study were:

• Ischaemic core: within both presenting and final infarct definitions.

• Infarct growth: within the final infarct, but not within the presenting
infarct.

• Oligaemia: tissue present in the perfusion deficit but not the final
infarct.

• Mirrored contralateral mask: contralateral ROIs were obtained by
non-linearly registering the pathological masks to standard MNI152
space, reflection in the sagittal plane, and transforming back to
CEST space.

These ROI definitions are in keeping with those used in ref. (Harston
et al., 2015) but have been updated to improve ROI fidelity with tissue
fate (Harston et al., 2017).

2.3.3. Model fitting
A continuous-wave approximation of the multi-pool Bloch-

McConnell model, including both 3 and 4 pools as described in Theory,
was fitted to the data (Chappell et al., 2013; Tee et al., 2012; Chappell
et al., 2011) using the implementation in the FSL tool BayCEST, which
uses the variational Bayes FABBER model-fitting routine (Tee et al.,
2014; Chappell et al., 2013; Chappell et al., 2009). The parameter prior
distributions are listed in Table 3. The CEST data were compensated for
B0 inhomogeneity via a variable in the model-fitting algorithm that
accounted for water resonance shift. The B0 map obtained from the 4-
pool model was used to correct the techniques listed in Table 1 by
voxel-wise interpolation of the acquired spectra. The model-based
metrics are implemented in Quantiphyse, made available for download
at www.quantiphyse.org (Croal et al., 2018).

2.3.4. Post-acquisition LDA (paLDA)
In this retrospective study it was not possible to follow the acqui-

sition methodology from the original LDA approach. Instead, a post-
acquisition LDA technique was used where, rather than applying an
ultra-low B1 during the acquisition phase, the data acquired using a
conventional CEST scheme were used and only the data points that
were expected to exclude APT and NOEs were used for model fitting
within the BayCEST algorithm (Tee et al., 2014). The data points
at± 300 ppm,±50 ppm,± 30 ppm,±0.6 ppm,± 0.3 ppm, and 0
ppm, were assumed to exhibit contribution from the bulk water and
semisolid MT pools only and were fitted to a 2-pool model comprising
water and semisolid MT. Subtraction of the acquired z-spectrum (B0-
corrected) from the fitted spectra yielded a residual corresponding to
the APT effect. A final value at each voxel was obtained by integrating
the residual between 3.0 to 4.0 ppm (in increments of 0.01 ppm) using
trapezoidal integration. A study by ref. (Heo et al., 2016a) used a si-
milar approach but where offset frequencies from only one side of the z-
spectrum were used (EMR technique), exhibiting contrast in a human
glioma study at 3 T (Heo et al., 2016a, 2016b).

Table 3
Four-pool model priors expressed as a mean and standard deviation (SD). Tabulated values are those used for the clinical data. For 3-pool model priors refer to ref.
(Tee et al., 2014).

Parameter Water (Tee et al., 2014) APT (Tee et al., 2014) Symmetric semisolid NOE

Mean SD Mean SD Mean SDa Mean SDa

M0 (norm.) 0 1× 106 90 mM
112 M

20 mM
112 M

0a 1× 106 0a 1× 106

kex (Hz) − − 20 e1.0 60b e1.0 20c e1.0

T1 (s) 1.3 0.15 0.77 0.15 1.0 (Tee et al., 2014; Liu et al., 2013) 0.15 0.77c 0.15
T2 (ms) 70 14 10 2 0.1b 0.02 0.3 (Liu et al., 2013) 0.06
Δω (ppm) 0 0.1 3.5 1× 10−6 0 (Liu et al., 2013) 1× 10−6 −3.5 (Liu et al., 2013) 1× 10−6

Glossary – M0: pool concentration relative to water pool (water pool M0 is absolute), kex: pool→bulk water exchange rate, T1: longitudinal relaxation time, T2:
transverse relaxation time, Δω: chemical shift with respect to water pool.

a Same value from 3-pool model was used (Tee et al., 2014).
b Based on 4-pool model in ref. (Liu et al., 2013).
c Same value as APT pool was used (Liu et al., 2013).
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2.4. Analysis

The analysis plan was first to define the reproducibility and contrast
characteristics of healthy and pathological tissues. The optimal image
analysis approach as defined by these metrics was then evaluated across
pathological tissue types. All analyses were done in the native space of
the data.

2.4.1. Repeatability analysis
The repeatability of each technique between time points and be-

tween individuals was assessed separately in healthy subjects and in
patient contralateral tissue. Repeatability was quantified using the
coefficient of variation (CoV, standard deviation divided by the mean).

2.4.2. Spatial variability
Spatial variability (CoV within an ROI) was used as a measure of an

ROI's spatial heterogeneity and was found in healthy subjects and pa-
tient contralateral tissue.

2.4.3. Grey versus white matter APT signal
The difference in the mean APT signal between grey and white

matter was expressed as a percentage relative to the grey matter signal
mean.

2.4.4. Contrast-to-noise ratio (CNR)
CNR was defined as follows: pathological ROI contrast using a given

technique was defined as the difference in mean signal between the ROI
(mROI) and contralateral (mCO) tissue, and noise was defined as the
standard deviation (SD) in the contralateral hemisphere (SDCO):
CNR= (mROI−mCO)/SDCO.

2.4.5. Comparison of the optimum technique in patients
The optimal technique was chosen according to the best perfor-

mance across repeatability, spatial variability, and CNR. For pooled
analysis across tissue types, data were normalised to their mean in the
contralateral hemisphere to produce a relative measure. This accounted
for systematic variability between individuals not already controlled for
by the quantification technique. The contralateral-normalised in-
dividual patient means were weighted by the number of contributing
voxels and pooled to give a voxel-weighted group mean for each tissue
outcome.

2.4.6. Statistical analysis
Appropriate statistical tests were used including: two-tailed paired t-

test; comparisons between multiple groups (ROIs and/or quantification
techniques) were preceded with a one-way ANOVA test for significance;
and, post-hoc pairwise testing was done using the Tukey-Kramer method
with αcrit=0.05. The number of degrees of freedom (DOF) used in the
statistical tests was based on the number of patients.

3. Results

Images from representative patients are shown in Fig. 1 for each of
the six quantification techniques.

3.1. Repeatability analysis

None of the measures exhibited significant variation between
healthy subjects or between time points, except for the 4-pool technique
(significant interaction), and the paLDA technique (significant inter-
action and time point variability). Repeatability between subjects is
shown in Fig. 2a. The model-based techniques had the lowest CoV.

Four-pool APTR∗ had the lowest CoV in both healthy subjects and
patient contralateral tissue (3.16%, 5.34%). This was followed by the
paLDA technique (4.22% in healthy subjects), and 3-pool APTR∗

(4.63%). Using classical asymmetry, the healthy subject CoV was

9.45%.

3.2. Spatial variability

The spatial variability of each technique in healthy subjects and
patient contralateral tissue is shown in Fig. 2b. Model-based APT

Fig. 1. Images from representative patients, showing (from left): presenting
ADC image, slices from each of the six quantification techniques, and the ROIs
overlaid on a T1 image. Red: ischaemic core, green: oligaemia, and cyan: infarct
growth.
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measures exhibited lower spatial variability than the model-free tech-
niques. Four-pool APTR∗ had the lowest spatial variability (10.0% in
healthy subjects), followed by 3-pool APTR∗ (20.17%) and APTRpaLDA

(28.4%).

3.3. Grey versus white matter APT signal

Contrast between grey and white matter in healthy subjects when
analysed using the various APT quantification techniques examined
here is shown in Fig. 2. The multi-pool techniques exhibited the smal-
lest difference between grey and white matter; 4-pool APTR∗ contrast
was 1.88%, and contrast was 2.48% using 3 pools. The remaining
techniques exhibited contrast of at least 30%. Model-free techniques
had the highest contrast between grey and white matter.

3.4. Ischaemic core CNR

Ischaemic core CNR is shown for the different techniques in Fig. 3.
Four-pool APTR∗ exhibited the highest CNR (0.74). Three-pool APTR∗

had a CNR of 0.55, and APTRpaLDA had a CNR of 0.37. Three- and 4-pool
APTR∗ exhibited similar absolute contrast (0.0024, 0.0019), but 3-pool
APTR∗ had the lower CNR owing to a larger noise term (a contralateral
SD of 0.0035 v.s. 0.0021) compared to the 4-pool model. The paLDA
technique exhibited larger absolute contrast (0.0034) but this was
dominated by a noise term which was approximately an order of
magnitude larger (0.03) than the 3-pool measure. The APT∗ technique

Fig. 2. (a) Subject repeatability of the APT signal in healthy subjects and patient contralateral tissue using different techniques, (b) spatial variability of APT
measures in healthy subjects and patient contralateral tissue using different quantification techniques.

Fig. 3. Contrast between grey and white matter in healthy subjects using dif-
ferent techniques for quantifying APTR.
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and MTRRex exhibited a similar CNR (0.36).

3.5. Choice of optimal technique

Based on all four groups of analyses presented above, the multi-pool
models performed best across all of the metrics, and so, proceed on for
further analyses.

3.6. Effects of adding a fourth pool to multi-pool analysis

The relative (to contralateral tissue) mean APTR∗ in patients is
presented in Fig. 4. Within the grey matter mask, there was significant
differentiation between the ROIs using both 3-pool and 4-pool analysis.
In white matter voxels, however, there was no significant differentia-
tion between ROIs.

In terms of the pattern of contrast, in grey matter the 3-pool and 4-
pool ischaemic core signals were significantly different from oligaemic
tissue. In the ischaemic core, 3-pool relative APTR∗ was nearly identical
to the 4 pool measure (0.87 ± 0.09 v.s. 0.87 ± 0.07); likewise in
oligaemic tissue (relative APTR∗ 1.03 ± 0.15 using 3 pools, and
1.01 ± 0.10 using 4 pools). In the whole slice, infarct growth tissue
exhibited an intermediate value using 3-pool analysis (relative mean:
0.95 ± 0.04) that put it approximately mid-way between ischaemic
core and oligaemic relative APTR∗, corresponding to an infarct growth
CNR of 0.23. This contrast of the the infarct growth ROI signal was
reduced, CNR=0.08, using 4-pool analysis as the relative mean within
the infarct growth ROI included unity (0.98 ± 0.04).

4. Discussion

4.1. Choice of optimal technique

Robustness analysis of the six quantification techniques indicated
that the multi-pool model-based technique had the smallest contrast
between grey and white matter, whereas model-free techniques ex-
hibited the highest contrast. Model-based techniques were the most
repeatable across time points and between subjects, the lowest CoV
being achieved using 4-pool APTR∗, followed by 3-pool APTR∗ and
paLDA. Model-based techniques also exhibited the lowest spatial
variability, of which 4-pool APTR∗ was by far the most uniform, fol-
lowed by 3 pools and paLDA. Four-pool analysis yielded the highest
ischaemic core CNR, followed by the 3-pool technique.

Requirements of a technique in a clinical imaging context are that it
is repeatable and maximises ischaemic core contrast. In these respects,

4-pool APTR∗ was the optimal technique. Model-based techniques,
multi-pool in particular, were more robust than model-free techniques.
Similar APTR∗ in grey and white matter was expected on the basis of
uniform brain tissue pH; however, it is not known whether chemical
properties of amides, such as concentration and exchange rate, ought to
be the same in grey and white matter. APTR∗ has shown minimal tissue
contrast (Fig. 2), and similar patterns of change in response to
ischaemia.

In the original APT∗ study by Jin et al. (2013), the APT∗ technique
demonstrated good detection sensitivity at 9.4 T. In the present clinical
study, a relatively widely-available 3 T field was used, rather than a
more exotic ultra-high-field strength, making it difficult to accurately
identify the spectral boundaries of the solute pools. This is compounded
by the use of pulsed, versus continuous-wave, CEST schemes that are
necessary to limit tissue heating within clinical safety bounds at the
expense of being less frequency-selective. It is also necessary to have
sufficient sampling points at the boundaries, and at the peak, for them
to be accurately located. Higher saturation powers also broaden the
CEST peaks, which reduces the accuracy of quantification using this
technique.

The inverse z-spectrum analysis technique, MTRRex, is designed to
remove direct water saturation and semisolid MT effects. However,
MTRRex(APT) exhibited the highest grey-white matter contrast, where
water relaxation times and semisolid MT concentrations are sig-
nificantly different. This is likely because the conditions under which
MTRRex was evaluated deviate from three assumptions made in its de-
rivation. Firstly, at 3 T, the NOE pool exhibits a non-negligible tail of
saturation that overlaps with downfield APT (Zaiss et al., 2016). This
causes the APT MTRRex label scan at 3.5 ppm (Zlab) to be contaminated
by non-zero exchange-dependent relaxation terms from aromatic NOE-
related protons, meaning MTRRex is no longer selective for APT-only
saturation. NOEs, associated with lipids, may be imparting the grey
matter-white matter contrast to the MTRRex APT measure. However,
reference images (Zref) at −3.5 ppm for CEST metrics can be generated
from Bloch equation fitting or Lorentzian fitting by taking only MT data
(water+semisolid MT) far from the water signal, such as beyond±10
ppm. Secondly, in the original MTRRex study by Zaiss et al. (Zaiss and
Bachert, 2013a), it was assumed that B1 > > kamide (in particular, B1

at least 10× kamide). In the present study, however, a relatively low B1

of 0.55 μT was used, where the former assumption holds only weakly
(B1 approx. 5× kamide). Finally, the dependence of MTRRex on inverse
analysis means that its usage is limited in cases where spectral resolu-
tion is relatively low such as at 3 T (or in the presence of large direct
water saturation and semisolid MT effects due to B1 > > 1 μT), where
the inversion can break down close to 0 ppm (Heo et al., 2017; Wang
et al., 2017). With respect to the paLDA technique, the Lorentzian
difference signal was small at 3 T compared to the study at 7 T using
conventional LDA in ref. (Jones et al., 2012). Thus, the present study
was limited to evaluating these techniques in sub-optimal conditions,
and different results might have been found for an equivalent high-field
preclinical CEST study.

4.2. Effects of adding a fourth pool to multi-pool analysis

In assessing the effects of adding a fourth pool to multi-pool mod-
elling of APT, neither 3- nor 4-pool APTR∗ varied significantly between
healthy subjects or time points, and both exhibited a decreased
ischaemic core signal with respect to healthy subjects and patient
contralateral tissue which was significantly different from oligaemic
tissue. In healthy subjects, the 4-pool model had lower contrast be-
tween grey and white matter, and was the most repeatable technique
between subjects and across time points. Four-pool analysis also ex-
hibited lower spatial variability and yielded a higher ischaemic core
CNR.

The improvements offered by the 4-pool model appear be accom-
panied by reduced contrast between infarct growth tissue and normal

Fig. 4. Ischaemic core CNR using different APT quantification techniques.
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tissue. Three-pool analysis yielded an intermediate infarct growth
APTR∗, appearing to exhibit gradation in APTR∗ as a function of tissue
outcome, offering the potential to use the metric to identify ‘tissue at
risk’, i.e. tissue that is viable according to diffusion measures on pre-
sentation, but that does go on to infarct. This pattern was not observed
using 4-pool analysis where contrast was largely confined to the
ischaemic core. Since this reduction in contrast was the result of se-
parately modelling NOEs and semisolid effects (hence decoupling the
effects of NOEs from other metabolite peaks), it suggests that the origin
of infarct growth contrast might be associated with NOEs, and, there-
fore, the changes in NOEs in acute stroke need to be examined further.
In white matter voxels, 3-pool analysis retained a decreased ischaemic

core signal, whereas when using 4-pool analysis the ischaemic core
signal was closer to unity. Spatial variability of the ischaemic core
signal in white matter was also higher using 3-pool analysis compared
to 4 pools. NOEs have been shown to exhibit statistically significant
change in stroke (Msayib et al., 2017) and to be more strongly asso-
ciated with white matter compared to grey matter (Jin et al., 2013;
Jones et al., 2011a; Zhang et al., 2016). This all implies that the re-
duction in infarct growth contrast using 4 pools represents a trade-off
between identifying tissue to target for treatment and biophysically
more accurate modelling of CEST effects. The 3-pool model-based
analysis, whilst less biophysically accurate, may still be useful for
identifying penumbra, not purely because of gradation in APT effects,

Fig. 5. Multi-pool relative APTR∗ within different ROIs using 3-pool (left column) and 4-pool (right column) analysis in (a) the whole slice, (b) grey matter voxels,
and (c) white matter voxels. Error bars are the 95% CI. Significance between ROIs is denoted by an asterisk.
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for example associated with changes in pH, but also by incorporating a
degree of changes associated with NOEs.

In multi-pool models, exchange pools are distinct from one another
in that direct transfer of magnetisation only occurs with the bulk water
pool. However, broad spectral phenomena such as semisolid effects can
overlap with peaks from other pools and may therefore indirectly in-
fluence the distribution of saturation between pools. Asymmetry in the
z-spectrum upfield of water has been attributed NOEs (Zhou et al.,
2013). Since NOEs can account for spectral asymmetry, it allows
semisolid effects to be described as a symmetric phenomenon centred at
the water resonance (Zaiss and Bachert, 2013b).

In order to explore the way in which addition of the NOE pool af-
fected quantification of the downfield APT signal, the model-fitted
spectra averaged over healthy subjects are presented in Fig. 5. In the 3-
pool model, the line shapes downfield of water are 3-pool NOE
+semisolid effects (dotted blue), representing combined NOEs and an
asymmetric semisolid pool, and 3-pool APTR∗ (dotted green). A fourth
pool is added to separately model NOEs (4-pool NOE, orange) and a
symmetric semisolid pool (solid blue). The semisolid pool line shape
described a similar profile to 3-pool NOE (solid blue v.s. dotted blue).
The main difference was that the 4-pool NOE line shape, owing to a
longer T2, was narrower than the 3-pool NOE line shape, and exhibited
a weaker tail of saturation overlapping with the APT peak. This led to a
lesser degree of coupling between upfield and downfield spectra. The
downfield NOE tail phenomenon has also been recently observed
though water exchange (WEX) spectroscopy of BSA phantoms as well as
higher-field healthy subject studies (Liu et al., 2013; Zaiss et al., 2016).

Increasing the number pools, and therefore the number of model
parameters, can lead to overfitting or fitting to noise that would result
in higher spatial variation. However, in this case, adding a fourth pool
yielded more repeatable APTR∗ in healthy subjects, which also ex-
hibited lower spatial variability compared to 3-pool APTR∗. This is
more consistent with the expectation that APT would be uniform across
healthy subjects and within a given subject, and supports the

appropriateness of using a 4-pool model for the analysis of APT CEST
data at 3 T.

Even using 4 pools is still very much an approximation to the many
processes going on in the spectrum (Jones et al., 2012). For example,
pH-dependent amine resonances are reported around 1.8–1.9 ppm
(Haris et al., 2012; Desmond et al., 2014) but their close proximity to
the water resonance makes them difficult to detect in a clinical setting.
In light of this, adding further pools increases the risk of over-fitting and
is hard to justify on clinical data, considering field strength, number of
samples, and patient motion.

The effects of amide proton pool concentration and exchange rate
have very similar effects on the appearance of the z-spectrum which are
difficult to isolate in data acquired a single B1 power. APTR∗ is a non-
rate-specific metric which seeks to explain overall changes driven by
any combination of exchange rate and concentration (Chappell et al.,
2013), thus enabling detection of an APT effect irrespective of its origin,
and is not dissimilar to non-rate-specific metrics reported in this study.
Acquiring data at multiple B1 powers provides a way for separating
exchange rate and concentration, explored using multi-pool model fit-
ting in (Chappell et al., 2013) at the expense of longer scan time, and
using a dictionary-based approach in (Heo et al., 2019). In the study of
ref. (Ray et al., 2016), pH was isolated using APTR∗ measures, though
this relied on acquiring quantitative T1 maps, and was shown in an in-
vitro setting employing BSA protein concentration phantoms.

5. Conclusion

The multi-pool measures performed best across the analyses of re-
peatability, spatial variability, CNR, and GM-WM contrast, and might
therefore be more suitable for use in clinical imaging of acute stroke.
Addition of a fourth pool that separates NOEs and semisolid effects
appeared to be more biophysically accurate and provided better se-
paration of the APT signal compared to the 3-pool equivalent, but this
improvement appeared be accompanied by reduced contrast between

Fig. 6. Simulated spectrum of healthy subject data. Dotted lines are the 3-pool spectra and solid lines are the 4-pool spectra. Sample points used in model fitting are
indicated by black dots. Error bars indicate the SD across simulations at representative points.
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infarct growth tissue and normal tissue. As such, the 3-pool model may
have more clinical utility in delineating the ischaemic penumbra pre-
cisely because it retained some NOE-based contribution. The reduction
in contrast between infarct growth tissue and contralateral tissue using
4 pools represents a trade-off between identifying tissue to target for
treatment and biophysically more accurate modelling of CEST effects.

Data statement

The underlying data associated with Figs. 2–6 are available from the
Oxford University Research Archive (ORA-Data) (DOI: https://doi.org/
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