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Abstract
The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric mole-

cules, expressed in all eukaryotic cells. In human cells, this family consists of seven distinct

but highly homologous 14-3-3 isoforms. 14-3-3σ is the only isoform directly linked to cancer

in epithelial cells, which is regulated by major tumor suppressor genes. For each 14-3-3 iso-

form, we have 1,000 peptide motifs with experimental binding affinity values. In this paper,

we present a novel method for identifying peptide motifs binding to 14-3-3σ isoform. First,

we propose a sampling criteria to build a predictor for each new peptide sequence. Then,

we select nine physicochemical properties of amino acids to describe each peptide motif.

We also use auto-cross covariance to extract correlative properties of amino acids in any

two positions. Finally, we consider elastic net to predict affinity values of peptide motifs,

based on ridge regression and least absolute shrinkage and selection operator (LASSO).

Our method tests on the 1,000 known peptide motifs binding to seven 14-3-3 isoforms. On

the 14-3-3σ isoform, our method has overall pearson-product-moment correlation coeffi-

cient (PCC) and root mean squared error (RMSE) values of 0.84 and 252.31 for N–terminal

sublibrary, and 0.77 and 269.13 for C–terminal sublibrary. We predict affinity values of

16,000 peptide sequences and relative binding ability across six permutated positions simi-

lar with experimental values. We identify phosphopeptides that preferentially bind to 14-3-

3σ over other isoforms. Several positions on peptide motifs are in the same amino acid cate-

gory with experimental substrate specificity of phosphopeptides binding to 14-3-3σ. Our

method is fast and reliable and is a general computational method that can be used in pep-

tide-protein binding identification in proteomics research.

Introduction
The 14-3-3 proteins are a highly conserved family of homodimeric and heterodimeric mole-
cules, expressed in all eukaryotic cells [1]. As a key regulator of signal transduction, 14-3-3
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isoforms participate in important cellular events including regulation of apoptosis, adhesion-
dependent integrin signaling, cell cycle control, DNA damage, metabolism and transcriptional
regulation [2]. We have been particularly interested in understanding roles of different 14-3-3
isoforms in cell proliferation, cell cycle control, and human tumorigenesis.

In human cells, this family of proteins consists of seven distinct but highly homologous 14-
3-3 isoforms: β, �, η, γ, σ, τ, z [3]. Phosphate can bind to all of the 14-3-3 family and therefore
being present at high intracellular concentration [4, 5]. With roles of different 14-3-3 isoforms
in a wide variety of signal transduction processes, 14-3-3σ is the only isoform directly linked to
cancer in epithelial cells, which is regulated by major tumor suppressor genes [6–8]. The stabi-
lizing ring-ring and salt bridge interactions unique to the 14-3-3σ homodimer structure are
revealed by the x-ray crystal structure of 14-3-3σ with binding peptide, which potentially desta-
bilized electrostatic interactions between subunits in 14-3-3σ-containing heterodimers, and
rationalized preferential homodimerization of 14-3-3σ in vivo. The interaction of the phospho-
peptide with 14-3-3 reveals a conserved mechanism for phospho-dependent ligand binding,
implying that the phosphopeptide binding cleft is not the critical determinant of the unique
biological properties of 14-3-3σ.

There exist many approaches identify substrate specificity of phosphopeptides that prefer-
entially bind to 14-3-3σ over other isoforms. A major advance in understanding 14-3-3 phos-
phopeptide binding specificity was the recognition by Yaffe et al. [4] Using phosphoserine-
oriented peptide libraries, they identified a consensus hexapeptide binding motif, RXXpSXP,
binding to all known 14-3-3 isoforms. The basic residue Xmeans any of 20 amino acid types.
Erik et al. [9] solved the x-ray crystal structure of 14-3-3σ, which provided structure informa-
tion and demonstrated that 14-3-3σ preferentially form homodimers in cell. Unlike other six
isoforms, they identified a second ligand binding sites involved in 14-3-3σ-specific ligand dis-
crimination. In order to identify phosphopeptides that preferentially bind to 14-3-3σ over
other isoforms, Lu et al. [10] used fragment-based combinatorial peptide microarray platform,
dividing whole library into N–terminal and C–terminal sublibraries P−3 P−2 P−1 − p(S/T) − P+1
P+2 P+3. The (+/−) represents relative position of p(S/T), and P+/− represents ten or five individ-
ual amino acids in each position. Ten different amino acid building blocks (R, E, F, L, Q, A, G,
V, K, P) for P+/−1 P+/−2 and a total of five different amino acid building blocks (R, E, F, L, P) for
P+/−3 positions were used. The phosphopeptide library was synthesized to get 14-3-3σ-specific
binding peptide. They confirmed the previous consensus binding motif by Yaffe, and finally
identified two 14-3-3σ-specific binders. However, their experimental methods are expensive
and time consuming. Sequence variation at other positions near the phosphorylated site can
cause differences in binding affinities, thus we can use the physical-chemical information to
construct a computational model to extrapolate 14-3-3σ-specific binders from experimental
data.

Roughly speaking, three categories of computational methods for detecting protein interac-
tions exist. They are based on the evolution of information, natural language processing, the
feature of the amino acid sequence and three-dimensional structural information. First, the
evolution information [11] is extracted from multiple sequence alignment of homologous pro-
teins. Family tree similarities are quantify tree similarities implemented a simple linear correla-
tion between distance matrices of two protein families, as a proxy of their phylogenetic trees
[12–15]. However, their computational tasks are huge. Second, methods based on Natural Lan-
guage Processing (NLP) [16] can find the evidence for protein interactions from relevant scien-
tific literatures. The problem is some binding information can not entirely appear in the
literature in time. Using the hidden internal structure buried into noisy amino acid sequences
[17–19] and some machine learning algorithms, some researchers propose prediction methods
only using protein sequence information. Using three-dimensional structural information,
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Zhang et al. [20] predicted protein interaction with a considerable accuracy and coverage that
are superior to predictions based non-structural evidence. Base on pairwise similarity method
and primary structure of protein, Zaki et al. [21] measured similarity between protein
sequences to predict protein binding residues. Since 14-3-3 phosphopeptide binders only have
six meaningful positions in binding motif sequences, the state-of-the-art methods must be not
suitable for this issue, how to dig the useful and important features is the first challenge.

In this paper, we propose the first computational method to identify and analysis 14-3-3
phosphopeptide binding specificity. We present a novel method for identifying peptide motifs
binding to 14-3-3 isoforms. First, we propose a sampling criteria to build a predictor for each
new peptide motif. Then, we select nine physicochemical properties of amino acids to describe
each peptide motif. We also use auto cross covariance [22, 23] to extract correlative properties
of amino acids in any two positions. Finally, we consider elastic net [24] to predict affinity val-
ues of peptide motifs, based on ridge regression and least absolute shrinkage and selection
operator (LASSO). Our method verifies 1,000 known peptide motifs binding to seven distinct
but highly homologous 14-3-3 isoforms. On 14-3-3σ isoform, our method has overall pearson-
product-moment correlation coefficient (PCC) and root mean squared error (RMSE) values of
0.84 and 252.31 for N–terminal sublibrary, and 0.77 and 269.13 for C–terminal sublibrary. It
demonstrates the rationality of our computational method. Our method tests on 16,000 pep-
tide sequences to predict binding affinity values, and relative binding ability across six permu-
tated positions similar with the experimental value. We identify phosphopeptides that
preferentially bind to 14-3-3σ over other isoforms. Several positions on peptide motifs are in
the same amino acid category with experimental substrate specificity of phosphopeptides bind-
ing to 14-3-3σ.

Materials and Methods
We present an affinity-based computational approach for identifying peptide motifs binding to
14-3-3 isoforms, and this novel method is also the first computational method of 14-3-3 pro-
teins phosphopeptide-binding specificity identification. For each 14-3-3 isoform, we have
1,000 peptide motifs with experimental binding affinity values, treated as known in this study.
We need to identify affinity values of 16,000 peptide sequences binding to seven 14-3-3 iso-
forms. First, we propose a sampling criteria to build a predictor for each new peptide motif.
Then, we select nine physicochemical properties of amino acids to describe each peptide motif.
We also use auto cross covariance to extract correlative properties of amino acids in any two
positions. Finally, we consider elastic net to predict affinity values of peptide motifs, based on
ridge regression and least absolute shrinkage and selection operator (LASSO). The method
flow is shown in Fig 1.

Data Set
Lu [10] proposed a fragment-based combinatorial peptide microarray, which enables sufficient
coverage of all (P−3 P−2 P−1 − p(S/T) − P+1 P+2 P+3) sequences with only 1,000 peptide motifs
(500 N–terminal and C–terminal sublibraries). These peptide motifs are formed as a phospho-
peptide library. In a predefined manner, they use a total of ten different amino acid building
blocks (R, E, F, L, Q, A, G, V, K, P) for P+/−1 and P+/−2 positions, and a total of five different
amino acid building blocks (R, E, F, L, P) for P+/−3 position.

With respect to each N–terminal and C–terminal, there are 5 × 10 × 10 possibilities. For
each 14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values.
In order to study 14-3-3 proteins phosphopeptide-binding specificity from a global search
space, which means there are 20 × 20 × 20 possibilities in each N–terminal and C–terminal.

Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using a Computational Approach

PLOS ONE | DOI:10.1371/journal.pone.0147467 February 1, 2016 3 / 16



Fig 1. The architecture of the computational approach to identifying 14-3-3 Proteins Phosphopeptide-Binding Specificity.

doi:10.1371/journal.pone.0147467.g001
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We will identify affinity values of 16,000 peptide sequences binding for seven 14-3-3 isoforms.
To maximize the number of peptide motifs, twenty amino acids, instead of ten and five, are
used at P+/−1, P+/−2 and P+/−3 positions.

Sampling Criteria
We propose a sampling criteria to build a predictor for each new peptide motif. If all 500 pep-
tide motifs for one terminal are used to construct a regression model, the predictor would be
confused due to importing many irrelevant peptide sequences. For each new peptide sequence,
we only select relevant peptide motifs to construct a dynamic regression model, which can
improve average precision of the predictor.

All amino acids can be divided into five categories [25]: amino acids with positive charged
side chains, amino acids with negative charged side chains, amino acids with polar uncharged
side chains, amino acids with hydrophobic side chains and special cases. The details are shown
in Table 1. For each new peptide sequence, we select the relevant peptide motifs with at least
one P1/2/3 position in the same category.

Feature Extraction
Based on relevant peptide motifs, we extract a set of features from the peptide sequences. There
are two kinds of features in this study: one extracts nine physicochemical properties for each
position and this produces 27 features; the other extracts correlation of amino acids in any two
positions by auto-cross covariance, nine features for every two positions, thus leads to another
27 features [26].

We select nine physicochemical properties of all 20 amino acid types to describe each pep-
tide motif: hydrophobicity, hydrophicility, volumes of side chains, polarity, polarizability, sol-
vent-accessible surface area (SASA), net charge index (NCI) of side chains, mass, and
hydrogen bond. Details are shown in Table 2 [26]. These nine physicochemical properties are
normalized to zero mean and unit standard deviation [22, 26], and the first kind of 27 features
can be extracted by these normalized properties as follows:

P0
i;j ¼

Pi;j � Pj

Sj
ð1Þ

where Pj represents the mean of the j-th property, Pi,j is the j-th property of the i-th amino
acid, Sj is the corresponding unit standard deviation.

We also use auto-cross covariance to extract correlation of amino acids in any two positions.
Auto-cross covariance (ACC) can get two kinds of variables, auto cross (AC) between the same
descriptor, and cross covariance (CC) between two different descriptors. In this study, we only
use AC variables in order to avoid generating too large number of variants. We modify the AC

Table 1. Five categories of 20 amino acids.

Category Amino Acids a

Amino Acids with Positive Charged Side Chains R, H, K

Amino Acids with Negative Charged Side Chains D, E

Amino Acids with Polar Uncharged Side Chains S, T, N, Q

Amino Acids with Hydrophobic Side Chains A, I, L, M, F, W, Y, V

Special Cases C, G, P

a Standard abbreviations are used for all amino acids.

doi:10.1371/journal.pone.0147467.t001
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variables to get correlation of amino acids in any two positions as follows:

ACðm;n;jÞ ¼ Xm;j �
1

3

X3

i¼1

Xi;j

 !
� Xn;j �

1

3

X3
i¼1

Xi;j

 !
ð2Þ

wherem, n are different position of a peptide and j is the j-th property of residues, Xi,j is the j-
th property of residue on the i-th position.

Linear Regression
After feature extraction described above, a suitable regression model should be selected to built
an accurate predictor. Linear regression is one of the most widely used regression model in
mathematical statistics, which has very good interpretability [27]. It not only gets a series of
regression coefficient, but also explains how important one variable is, thus is very important
in this study. We consider naive linear regression model to built an accurate predictor. Given
feature vectors X1, � � �, Xp describing p features on each peptide sequence, we identify its corre-
sponding value f(X) to represent binding affinity value as follows:

f ðXÞ ¼ b0 þ
Xp

j¼1

Xjbj ð3Þ

Table 2. Nine physicochemical properties for 20 amino acid types.

Physicochemical Properties a

H1 H2 H3 V P1 P2 SASA NCI MASS

A 0.62 -0.5 2 27.5 8.1 0.046 1.181 0.007187 71.0788

C 0.29 -1 2 44.6 5.5 0.128 1.461 -0.03661 103.1388

D -0.9 3 4 40 13 0.105 1.587 -0.02382 115.0886

E -0.74 3 4 62 12.3 0.151 1.862 0.006802 129.1155

F 1.19 -2.5 2 115.5 5.2 0.29 2.228 0.037552 147.1766

G 0.48 0 2 0 9 0 0.881 0.179052 57.0519

H -0.4 -0.5 4 79 10.4 0.23 2.025 -0.01069 137.1411

I 1.38 -1.8 2 93.5 5.2 0.186 1.81 0.021631 113.1594

K -1.5 3 2 100 11.3 0.219 2.258 0.017708 128.1741

L 1.06 -1.8 2 93.5 4.9 0.186 1.931 0.051672 113.1594

M 0.64 -1.3 2 94.1 5.7 0.221 2.034 0.002683 131.1986

N -0.78 2 4 58.7 11.6 0.134 1.655 0.005392 114.1039

P 0.12 0 2 41.9 8 0.131 1.468 0.239531 97.1167

Q -0.85 0.2 4 80.7 10.5 0.18 1.932 0.049211 128.1307

R -2.53 3 4 105 10.5 0.18 1.932 0.049211 156.1875

S -0.18 0.3 4 29.3 9.2 0.062 1.298 0.004627 87.0782

T -0.05 -0.4 4 51.3 8.6 0.108 1.525 0.003352 101.1051

V 1.08 -1.5 2 71.5 5.9 0.14 1.645 0.057004 99.1326

W 0.81 -3.4 3 145.5 5.4 0.409 2.663 0.037977 186.2132

Y 0.26 -2.3 3 117.3 6.2 0.298 2.368 0.023599 163.1760

a H1, hydrophobicity; H2, hydrophicility; H3, hydrogen bond; V, volumes of side chains; P1, polarity; P2, polarizability; SASA, solvent-accessible surface

area; NCI, net charge index of side chains; MASS, average mass of amino acid.

doi:10.1371/journal.pone.0147467.t002
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Different linear regression models, i.e. ridge regression and LASSO, adopt different methods
to minimize the residual sum of squares (RSS). Ridge regression minimizes the RSS subject to a
bound on L2-norm of coefficients as follows:

arg min
b

XN
i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

þ l
Xp

j¼1

b2

j

( )
ð4Þ

where λ controls the penalty of coefficient size, and N is the number of peptide motifs.
LASSO tends to truncate some coefficients exactly at zero and hence makes model interpret-

able [28, 29]. It minimizes RSS subject to a bound on L1-norm of coefficients [28], which is the
sum of absolute values of coefficients, the equation is as follows:

arg min
b

XN
i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

þ l
Xp

j¼1

jbjj
( )

ð5Þ

Considering pairwise correlations between 54 variables, we use elastic net to predict affinity
values of peptide motifs. Zou [24, 30] proposed elastic net, a new regularization and variable
selection method, which combines ridge regression and LASSO by making a trade-off in these
two penalties. The elastic net calculates corresponding value of each peptide sequence as fol-
lows:

arg min
b

XN
i¼1

yi � b0 �
Xp

j¼1

xijbj

 !2

þ lPaðbÞ
( )

ð6Þ

where

PaðbÞ ¼
Xp

j¼1

1

2
ð1� aÞb2

j þ ajbjj
� �

ð7Þ

We can calculate a ten-fold cross-validation to get the optimal λ for elastic net. In order to
find the most suitable α, we produce a sequence from 0 to 1 with interval of 0.1. We apply 11
values of α to get the most suitable predictor.

Results
In this section, we have done three kinds of experiments. First, our method verifies the 1,000
known peptide motifs binding to seven distinct but highly homologous 14-3-3 isoforms. Sec-
ond, our method tests on 16,000 peptide sequences to predict binding affinity values. Third, we
identify phosphopeptides that preferentially bind to 14-3-3σ over other isoforms.

Verification on 1,000 known peptide motifs
Our method verifies 1,000 peptide motifs binding to seven 14-3-3 isoforms. The Pearson-prod-
uct-moment correlation coefficient (PCC) and the root mean squared error (RMSE) [31] are
used to evaluate performance as follows:

PCC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PN
i¼1 ðei � piÞ2PN
i¼1 ðei � e�Þ2

s
ð8Þ
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and

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðei � piÞ2
jDj

s
ð9Þ

where D contains all of relevant binding motifs, e� is the average binding affinity, ei denotes
experimental binding affinity value of the i-th peptide sequence, pi denotes the predicted affin-
ity value of the i-th peptide sequence. An accurate predictor will get PCC = 1, RMSE = 0.

We using the 999 peptide motifs with experimental binding affinity values as training data,
removing the predicted peptide sequence. When only selecting ‘relevant’ data for building the
predictor, about 300 peptide motifs are selected as training data each time on average. Details
on identifying peptide motifs binding to 14-3-3 isoforms are shown in Table 3. On the 14-3-3σ
isoform, our method has overall PCC and RMSE values of 0.84 and 252.31 for N–terminal sub-
library, and 0.77 and 269.13 for C–terminal sublibrary. It yields a considerable PCC in all seven
isoforms, and the results clearly highlight the effectiveness of our method. At the same time,
the RMSE values vary in different isoforms, because of several extra large values of affinity and
imbalance peptide distribution between diverse values in different isoforms.

For each peptide motif to be predicted, we use ten-folds cross-validation to get the most
appropriate regression model. The cross-validation results over 1,000 peptides are as showed
in S1 Table.

Comparison to Experimental Techniques. We produce a position-specific scoring matrix
[32] on the top 50 motifs identified from each N–terminal and C–terminal sublibrary against
each individual 14-3-3 isoform, to reflect position specialty for each amino acid, as shown in
Fig 2. The height of each letter represents weighted contribution of that amino acid to the over-
all peptide binding. Our method is compared with the experimental methods from Lu [10], as
summarized in Table 4. Our computational results are consistent with the previous experimen-
tal works on 14-3-3 isoforms binding peptide motifs. We get relative binding ability of all seven
14-3-3 isoforms across six permutated positions, as shown in Fig 3. Each bar represents the fre-
quency of a particular amino acid. This confirms highly homologous feature of 14-3-3 iso-
forms, similar with consensus binding motif RXXpSXP. It is obvious that all of the seven
isoforms strongly select peptide motifs containing Arg on P−3 position and Pro on P+2
position.

Comparison to Computational Methods. In this study, we use Elastic Net as regression
model, which gets a better result and costs less time, comparing to other techniques. The

Table 3. Details on predicting peptide motifs binding to 14-3-3 isoforms.

N-terminal C-terminal

PCC RMSE PCC RMSE

σ 0.84 252.31 0.77 269.13

β 0.72 229.12 0.63 245.10

� 0.83 417.38 0.75 491.73

η 0.81 230.83 0.71 252.94

γ 0.86 470.08 0.79 463.40

τ 0.78 637.67 0.72 678.95

ζ 0.87 2087.20 0.81 2365.42

doi:10.1371/journal.pone.0147467.t003
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quantitative comparison with other techniques, such as Simple Linear Regression, Support
Vector Regression with RBF kernel and Neural Network with one hidden layer, are as show in
Table 5.

On the 14-3-3σ isoform, Elastic Net has overall PCC and RMSE values of 0.84 and 252.31
for N–terminal sublibrary, and 0.77 and 269.13 for C–terminal sublibrary. However, Simple
Linear Regression has overall PCC and RMSE values of 0.82 and 261.69 for N–terminal subli-
brary, and 0.76 and 273.19 for C–terminal sublibrary; Support Vector Regression with RBF
kernel has overall PCC and RMSE values of 0.79 and 283.16 for N–terminal sublibrary, and
0.74 and 279.54 for C–terminal sublibrary; Neural Network with one hidden layer has overall
PCC and RMSE values of 0.60 and 368.39 for N–terminal sublibrary, and 0.64 and 321.78 for
C–terminal sublibrary. For seven 14-3-3 isoforms, our method using Elastic Net can outper-
form other excellent regression techniques.

Prediction on 16,000 peptide sequences
We using the 1,000 peptide motifs with experimental binding affinity values as training data,
and aim to predict affinity values of 16,000 motifs for each 14-3-3 isoform. Our method pre-
dicts affinity values of all 16,000 peptide sequences binding to seven 14-3-3 isoforms. Our

Fig 2. Position-specific scoringmatrix on top 50 motifs identified from 1,000 peptide sequences against individual 14-3-3 isoforms.

doi:10.1371/journal.pone.0147467.g002

Table 4. 14-3-3 preferences determined with different methods on 1,000 peptidemotifs.

Position Relative to p(S/T)

P
−3 P

−2 P
−1 P+1 P+2 P+3

H.S. Lu R PFRA RK AVFL PA FPL

Our Method RKPF PFRG RKF AVFL PGR FPLR

doi:10.1371/journal.pone.0147467.t004
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Fig 3. Binding affinity of seven 14-3-3 isoforms across six positions from top-50 peptides from both N- and C-terminal sublibrary.

doi:10.1371/journal.pone.0147467.g003
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results confirm highly conserved binding specificity amongst 14-3-3 isoforms, and uncover
some new binding information. We produce a position-specific scoring matrix on the top 500
motifs identified from each N–terminal and C–terminal sublibrary against individual 14-3-3
isoforms, to reflect position specialty for each amino acid, as shown in Fig 4. We get the relative
binding ability of seven 14-3-3 isoforms across six permutated positions, as shown in Fig 5.

Our method is compared with the experimental methods from Yaffe [4], as summarized in
Table 6. We find the relative binding ability across six permutated positions, which are similar
with the experimental results. All of the seven isoforms select peptide motifs containing Arg or
Lys on P−3 position; Cys and amino acids with hydrophobic side chain on P−2 position; basic
residues on P−1 and P+3 positions, and amino acids with hydrophobic side chain having most
of aromatic residues on P+1 position. On P+2 position, peptide motifs with Cys, Tyr, Met and
Pro show strong selection; however there is just Pro in Yaffe’s research, it may be because that
Yaffe used all amino acids except Cys.

Specificity of 14-3-3σ binding peptide motifs
On the 1,000 known peptide motifs, we identify the top 100 peptide motifs, irrespective of N–
terminal or C–terminal, binding each 14-3-3 isoform. We filter and identify consensus
sequences present in all seven isoforms, giving a total of 51 unique peptide motifs, as shown in
Table 7. Compared with Lu [10], 30 peptide motifs of our results are the same with experimen-
tal 46 binding sequences, which are represented by the ? label. In the same time, most of the
left 21 peptides have the same type of amino acids in two positions. The precision and recall
values for our method are 59% and 65%, respectively. It indicates that our computational
method obtains great consistence with experiment results.

We identify four peptide motifs that have 14-3-3σ specificity, as shown in Table 8. The four
peptide motifs belong to the top 100 sequences binding 14-3-3σ, but not being part of the top

Table 5. Prediction results of peptide motifs binding to 14-3-3 isoforms by different regression techniques.

Elastic Net Simple Linear
Regression

Support Vector
Regression

Neural Network

PCC RMSE PCC RMSE PCC RMSE PCC RMSE

N-terminal

σ 0.84 252.31 0.82 261.69 0.79 283.16 0.60 368.39

β 0.72 229.12 0.69 238.40 0.70 236.18 0.57 270.43

� 0.83 417.38 0.82 498.71 0.80 529.34 0.64 675.74

η 0.81 230.83 0.80 238.09 0.79 239.43 0.55 327.70

γ 0.86 470.08 0.86 474.16 0.83 506.56 0.59 745.79

τ 0.78 637.67 0.78 637.58 0.75 669.53 0.56 844.41

ζ 0.87 2087.20 0.88 2042.67 0.84 2306.04 0.56 3526.35

C-terminal

σ 0.77 269.13 0.76 273.19 0.74 279.54 0.64 321.78

β 0.63 245.10 0.61 247.96 0.59 252.64 0.51 269.64

� 0.75 491.73 0.74 479.30 0.73 483.90 0.63 550.81

η 0.71 252.94 0.69 256.66 0.69 257.90 0.48 311.73

γ 0.79 463.40 0.79 459.40 0.80 454.01 0.68 558.68

τ 0.72 678.95 0.71 686.52 0.70 691.33 0.59 786.58

ζ 0.81 2365.42 0.80 2352.32 0.79 2429.84 0.66 3012.30

doi:10.1371/journal.pone.0147467.t005
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100 sequences binding other 14-3-3 isoforms. Compared with two 14-3-3σ preferable binders
of Lu, B1:LFGpSLLR and B2:LFGpSLVR, three motifs have residues in the same amino acid
category on P−2 and P+1 positions, as shown in Table 1. On P−2 position, Ala along with Phe
has Hydrophobic side chain; Phe and Leu on P+1 position have polar uncharged side chains
simultaneously.

We define a similarity score between the our predicted 14-3-3σ-specific motifs and Lu’s
findings. If there exists the same amino acid category in one position, we can count 1. If there
exists the same amino acid type, not just the same category, we can count 3. For three N-termi-
nal motifs, the count values are 1, 3, and 4, respectively. For one C-terminal motif, the count
value is 1. Then, we use a randomization experiment and iterate 1000 times, p-value for the N-
terminal motifs is 0.032, and p-value for the C-terminal motif is 0.033. Consider the regular p-
value as 0.05, the prediction results of our computational method is significant.

On all 16,000 peptide motifs, we identify the top 500 peptide motifs binding each 14-3-3 iso-
form. We identify six peptide motifs having 14-3-3σ specificity, as shown in Table 9. Compared
with two 14-3-3σ preferable binders, two motifs have residues in the same amino acid category
on P−3 and P−1 positions as shown in Table 1, on P−3 position, Ile along with Leu has Hydro-
phobic side chain; Pro and Gly are all special amino acids on P+1 position; and all of four C-ter-
minal motifs show strong selection of Met and Tyr on P+1 and P+2 positions. As well as Leu
and Val in same position of Lu’s motifs, they all have similar hydrophobic side chain.

Discussion
We present a novel method for identifying peptide motifs binding to 14-3-3 isoforms. For each
14-3-3 isoform, we have 1,000 peptide motifs with experimental binding affinity values. We
identify affinity values of 16,000 peptide sequences binding to seven 14-3-3 isoforms. First, we
propose a sampling criteria to build a predictor for each new peptide motif. Then, we select
nine physicochemical properties of amino acids and extract correlative properties of amino

Fig 4. Position-specific scoringmatrix on top 500motifs identified from 16,000 peptide sequences against individual 14-3-3 isoforms.

doi:10.1371/journal.pone.0147467.g004
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Fig 5. Binding affinity of seven 14-3-3 isoforms across six positions from top-500 peptides from both N- and C-terminal sublibrary.

doi:10.1371/journal.pone.0147467.g005
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Table 6. 14-3-3 preferences determined with different methods on 16,000 peptide sequences.

Position Relative to p(S/T)

P
−3 P

−2 P
−1 P+1 P+2 P+3

Yaffe RK YASWFH RKH WAFLY PG X

Our Method RK YASWCM X WAFLIVM PCMY X

doi:10.1371/journal.pone.0147467.t006

Table 7. List of 51 consensus top binders from 1,000 peptide sequences against all seven 14-3-3 isoforms.

No. N-terminal No. N-terminal No. C-terminal

1 FFRpS/TXXXb 20 RLRpS/TXXX 36 XXXpS/TAGF

2 RAApS/TXXX 21 * RPApS/TXXX 37 XXXpS/TAGP

3 *a RAFpS/TXXX 22 * RPKpS/TXXX 38 * XXXpS/TAPF

4 * RAKpS/TXXX 23 * RPLpS/TXXX 39 * XXXpS/TAPL

5 * RALpS/TXXX 24 * RPQpS/TXXX 40 * XXXpS/TAPP

6 * RAQpS/TXXX 25 * RPRpS/TXXX 41 XXXpS/TAPR

7 * RARpS/TXXX 26 RPVpS/TXXX 42 * XXXpS/TFPF

8 * RAVpS/TXXX 27 RRApS/TXXX 43 * XXXpS/TFPL

9 * RFApS/TXXX 28 * RRFpS/TXXX 44 XXXpS/TFPP

10 * RFFpS/TXXX 29 * RRKpS/TXXX 45 XXXpS/TLPF

11 * RFKpS/TXXX 30 RRLpS/TXXX 46 * XXXpS/TLPL

12 * RFRpS/TXXX 31 * RRQpS/TXXX 47 XXXpS/TLPP

13 RGApS/TXXX 32 RRRpS/TXXX 48 XXXpS/TLPR

14 RGKpS/TXXX 33 * RVApS/TXXX 49 * XXXpS/TVPF

15 RGQpS/TXXX 34 * RVKpS/TXXX 50 * XXXpS/TVPL

16 RGRpS/TXXX 35 * RVRpS/TXXX 51 * XXXpS/TVPP

17 RGVpS/TXXX

18 RLApS/TXXX

19 RLKpS/TXXX

a The motif with label * is the same with experimental binding sequences of H.S. Lu.
b The basic residue X means any of 20 amino acid types.

doi:10.1371/journal.pone.0147467.t007

Table 8. List of four preferable binders of 14-3-3σ from 1,000 peptide sequences.

No. N-terminal No. C-terminal

1 RAGpS/TXXX 4 XXXpS/TFGP

2 EAKpS/TXXX

3 RGGpS/TXXX

doi:10.1371/journal.pone.0147467.t008

Table 9. List of six preferable binders of 14-3-3σ from 16,000 peptide sequences.

No. N-terminal No. C-terminal

1 HCDpS/TXXX 3 XXXpS/TMMG

2 ICPpS/TXXX 4 XXXpS/TMYH

5 XXXpS/TYYC

6 XXXpS/TYYK

doi:10.1371/journal.pone.0147467.t009

Identification of 14-3-3 Proteins Phosphopeptide-Binding Specificity Using a Computational Approach

PLOS ONE | DOI:10.1371/journal.pone.0147467 February 1, 2016 14 / 16



acids to describe each peptide motif. Finally, we consider elastic net to predict binding affinities
of peptide motifs.

Our method tests 16,000 peptide motifs binding to seven distinct but highly homologous
14-3-3 isoforms, and the relative binding ability across six permutated positions similar with
the experimental value. We identify phosphopeptides that preferentially bind to 14-3-3σ over
other isoforms. Most of positions on peptide motifs are in the same amino acid category with
experimental substrate specificity of phosphopeptides binding to 14-3-3σ. It indicates that,
regardless of how the data are analyzed, 14-3-3σ consensus binding motifs derived from our
experiments are in excellent agreement with previous work. Our method is designed and
implemented as a generalized method that can be used to accurately predict the binding affinity
for peptide-protein interaction in proteomics research.

Supporting Information
S1 Table. The cross-validation results over 1,000 peptides.
(XLSX)
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