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A universal opportunity model for 
human mobility
Er-Jian Liu1,2 & Xiao-Yong Yan2,3*

Predicting human mobility between locations has practical applications in transportation science, 
spatial economics, sociology and many other fields. For more than 100 years, many human mobility 
prediction models have been proposed, among which the gravity model analogous to Newton’s law 
of gravitation is widely used. Another classical model is the intervening opportunity (IO) model, which 
indicates that an individual selecting a destination is related to both the destination’s opportunities 
and the intervening opportunities between the origin and the destination. The IO model established 
from the perspective of individual selection behavior has recently triggered the establishment of 
many new IO class models. Although these IO class models can achieve accurate prediction at specific 
spatiotemporal scales, an IO class model that can describe an individual’s destination selection behavior 
at different spatiotemporal scales is still lacking. Here, we develop a universal opportunity model that 
considers two human behavioral tendencies: one is the exploratory tendency, and the other is the 
cautious tendency. Our model establishes a new framework in IO class models and covers the classical 
radiation model and opportunity priority selection model. Furthermore, we use various mobility data 
to demonstrate our model’s predictive ability. The results show that our model can better predict 
human mobility than previous IO class models. Moreover, this model can help us better understand the 
underlying mechanism of the individual’s destination selection behavior in different types of human 
mobility.

Predicting human, goods and information mobility between locations is an important topic in complex human 
behavior1,2, transportation science3,4, sociology5, economic geography6 and regional economics7–9, and it also has 
practical applications in urban planning10,11, population migration12, cargo transportation13, traffic engineering14, 
infectious disease epidemiology15–18 and emergency management19–21. For more than 100 years, researchers have 
proposed a variety of models for predicting the mobility of people between locations. The most influential model 
is the gravity model, which is analogous to Newton’s law of gravitation, i.e., the flow between two places is pro-
portional to their population and decays as the power of their distance. The gravity model is simple in form and 
has been successfully used to predict railway freight volume22, subway passengers23, highway traffic flow24, air 
travel25, commuting26 and population migration12. Hereafter, researchers derived the gravity model from the per-
spective of destination selection behavior using the theory of determining utility27, stochastic utility28 and game 
theory29. Another classic model that is also established from the perspective of destination selection behavior is 
the intervening opportunity (IO) model30. Different from the gravity model, the IO model takes the total number 
of opportunities (often proportional to population) between the origin and the destination (named intervening 
opportunities), instead of the actual distance between the two places, as a key factor in determining human 
mobility. The concept of intervening opportunities provides a new direction for constructing the human mobility 
prediction model31.

Inspired by the IO model, Simini et al. establish a parameter-free human mobility model named the radiation 
model32. The radiation model assumes that when seeking job offers, the commuter will choose the closest workplace 
to his/her home, whose benefit is higher than the best offer available in his/her home county, i.e., the benefit of home 
is higher than the benefits of the intervening opportunities and lower than the benefit of the workplace. The radiation 
model can better predict the commuting behavior between counties. Some researchers improve the radiation model 
and propose various commuting prediction models, such as the radiation model with selection33, generalized radiation 
model34, the flow and jump model35, travel cost optimized radiation model36 and a cost-based radiation model37. Yan et al.  
propose a population-weighted opportunities (PWO) model38 by mining human daily travel data from several cities, 
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such as the GPS trajectories from vehicles and call detail records from mobile phones. The PWO model assumes that 
the probability of an individual selecting a destination is proportional to the number of opportunities at the destination 
and inversely proportional to the total population at the locations whose distances to the destination are shorter than 
or equal to the distance from the individual’s origin to the destination, which can better predict intracity trips. Yan et 
al. further combine the PWO model with the continuous-time random walks model39 to obtain a universal model of 
individual and population40, which realizes the prediction of intracity and intercity mobility patterns at both the indi-
vidual and population levels. Huang et al. propose a novel human mobility model that can capture real-time human 
mobility in a sustainable and economical manner, which broadens our view.4 Sim et al. establish a deliberate social tie 
(DST) model41 from the perspective of social interactions. The DST model assumes that an individual seeks out social 
ties only with other individuals whose attribute values are higher than the attribute value of the individual and the 
attribute values of the intervening opportunities. Motivated by the DST model, Liu and Yan propose an opportunity 
priority selection (OPS) model that assumes that the destination selected by the individual is the location that presents 
a higher benefit than the benefit of the origin and the benefits of the intervening opportunities42. In general, all of the 
IO class models32–38,40–42 share two common assumptions: (i) using an agent to represent all of the individuals; (ii) 
when selecting a destination, the agent will compare the benefits of different locations. The difference between these 
IO class models is that the rules for comparing benefits of different locations are different. Although the radiation class 
models32–37 can accurately predict commuting behavior and other IO class models38,40–42 can accurately predict intrac-
ity and/or intercity mobility, an IO class model that can simultaneously describe the individual’s destination selection 
behavior an different spatiotemporal scales is still lacking.

In this paper, we propose a universal opportunity (UO) model to characterize an individual’s destination selec-
tion behavior. The basic idea of the model is that when an individual selects a destination, she/he will comprehen-
sively compare the benefits of the origin, the destination and the intervening opportunities. Furthermore, we use 
various mobility data sets to demonstrate the predictive power of our model. The results show that the model can 
accurately predict different spatiotemporal scale movements such as intracity trips, intercity travels, intercity freight, 
commuting, job hunting and migration. Moreover, our model can also cover the classical radiation model and OPS 
model, presenting a new universal framework for predicting human mobility in different scenarios.

Results
Model.  We assume that when an individual chooses a destination, like the radiation model32 and the OPS 
model42, she/he first evaluates the benefit of the location’s opportunities43 where the benefit is randomly chosen 
from a distribution p(z). After that, the individual comprehensively compares the benefits of the origin, the des-
tination and the intervening opportunities and selects a location as the destination. To characterize the behavior 
of an individual comprehensive comparison of the benefits of the locations, we use two parameters α and β. 
Parameter α reflects the behavior of the individual’s tendency to choose the destination whose benefit is higher 
than the benefits of the origin and the intervening opportunities. Parameter β reflects the behavior of the indi-
vidual’s tendency to choose the destination whose benefit is higher than the benefit of the origin, and the benefit 
of the origin is higher than the benefits of the intervening opportunities. According to the above assumption, the 
probability that location j is selected by the individual at location i is 
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where mi is the number of opportunities at location i, mj is the number of opportunities at location j, sij is the 
number of intervening opportunities30 (i.e., the sum of the number of opportunities at all locations whose dis-
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Then, the probability of the individual at location i choosing location j is 

( )
P

Q
Q

m s m

m s m s m( ) ( ) (4)
ij

ij

j ij

i ij j

i ij i ij j∑
α

α β α β
= ∝

+


 + + 



 + + + 


.

Further, if we know the total number of individuals Oi who travel from location i, the flux Tij from location i to 
location j can be calculated as 
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 This is the final form of the model and we name it the universal opportunity (UO) model.
The α and β parameters in the UO model reflect the two behavioral tendencies of the individual when choos-

ing potential destinations (where the opportunity benefit is higher than the benefit of the origin). From Eq. (3), 
we can see that the larger the value of parameter α, the greater the probability that distant potential destinations 
will be selected by the individual. We name this behavioral tendency the exploratory tendency. On the other 
hand, the larger the value of parameter β, the greater the probability that near potential destinations will be 
selected by the individual. We name this behavioral tendency the cautious tendency. We choose average travel 
distance and normalized entropy as two fundamental metrics to discuss the influence of two parameters α and 
β on individual destination selection behavior. The average travel distance reflects the bulk density of individual 
destination selection44–47, and normalized entropy reflects the heterogeneity of individual destination selection48. 
As shown in Fig. 1, the two fundamental metrics have the same regularities with a change in two parameters, 
whether the number of destination opportunities is a uniform or random distribution. When α = 0, β = 1, the 
average travel distance is the shortest, and the normalized entropy value is the smallest; when α = 0, β = 0, the 
average travel distance is the longest, and the normalized entropy value is the largest. From the definitions of the 
two parameters, we can easily explain the reasons for the regularities. When α is closer to 0, β is closer to 1, the 
individual is more cautious, and the probability of choosing near potential destinations is higher, so the shorter 
the average travel distance and the stronger the heterogeneity. When α is closer to 1, β is closer to 0, the individual 
is more exploratory, and the probability of choosing distant potential destinations is higher, so the average dis-
tance is increased while the heterogeneity is decreased. When α and β are both closer to 0, the individual attaches 
more importance to the benefit that the location brings to him/her and does not care about the order of locations, 
so the longer the average travel distance and the stronger the homogeneity.

Moreover, when α and β take extreme values (i.e., the three vertices of the triangle in Fig. 1), we can derive 
three special human mobility models. When α = 0, β = 0, we name this model the opportunity only (OO) 
model (see details in Supplementary Information, The derivation of the OO model). In this model, the individual 
chooses the location whose benefit is higher than the benefit of the origin. Then, the probability of the individual 
at location i choosing location j as the destination is 
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When α = 1, β = 0, our model can be simplified to the OPS model, in which the individual chooses the location 
whose benefit is higher than the benefit of the origin and the benefits of the intervening opportunities (see details 
in Supplementary Information, The derivation of the OPS model). Then, the probability of the individual at loca-
tion i choosing location j as the destination is 
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When α = 0, β = 1, our model can be simplified to the radiation model, in which the individual chooses the 
location whose benefit is higher than the benefit of the origin and the benefits of the intervening opportunities 
are lower than the benefit of the origin (see details in Supplementary Information, The derivation of the radiation 
model). Then, the probability of the individual at location i choosing location j as the destination is 
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From Eqs. (6)–(8), we can see that the OO model, the OPS model and the radiation model are all special cases of 
our UO model.

Prediction.  We use fourteen empirical data sets, including commuting trips between United States’ coun-
ties (USC), commuting trips between the provinces of Italy (ITC), commuting trips between the subregions of 
Hungary(HUC), freight between Chinese cities (CNF), internal job hunting in China (CNJ), internal migrations 
in the US (USM), intercity travels in China (CNT), intercity travels in the US (UST), intercity travels in Belgium 
(BLT), intracity trips in Suzhou (SZT), intracity trips in Beijing(BJT), intracity trips in Shenzhen (SHT), intracity 
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trips in London (LOT) and intracity trips in Berlin (BET) (see Methods), to validate the predictive ability of the 
UO model. We first extract the flux Tij from location i to location j from the data set and obtain the real mobility 
matrix. Then, we exploit the Sørensen similarity index38 (SSI, see Methods) to calculate the similarity between the 
real mobility matrix and the mobility matrix predicted by the UO model under different parameter combinations. 
The results are shown in Fig. 2. Figure 2o shows the optimal values of the parameter α and β corresponding to the 
highest SSI for the fourteen data sets.

It can be seen from Fig. 2a–d that for USC, ITC, HUC and CNF, when α is close to 0 and β is close to 1, the 
SSI is relatively large. The reason is that for commuting data sets (USC, ITC and HUC), the commuting distance 
or time is very important for commuters. As a result, most people tend to choose near potential destinations 
when finding a job based on their place of residence or adjusting their place of residence after finding a job. This 
cautious destination selection tendency also exists in freight. Freight to far destinations will lead to an increase in 
transportation costs and a decrease in the freight frequency, which will have a negative impact on freight revenue. 
Thus, unless the destination opportunity benefit is very high, the individual tends to choose a near destination 
rather than a far destination for freight. For the migration and job hunting data sets (USM and CNJ), when α is 
close to 1 and β is close to 0, the SSI is relatively large, as shown in Fig. 2e,f. The reason is that both job seekers and 
migrants pay more attention to the destination opportunity benefit rather than the distance to the destination. In 
other words, they are more exploratory but less cautious. Even if a high benefit destination is far away, it will still 
be selected by individuals with a relatively high probability. The reason is that the distance to the destination has a 
smaller impact on long temporal scale mobility behaviors, such as migration and job hunting, than on daily com-
muting behaviors. For intercity travel data sets (CNT, UST and BLT), when α and β are both near the middle of 

Figure 1.  Average travel distance and normalized entropy versus different parameter combinations. (a,b) 
Average travel distance and normalized entropy values corresponding to different parameter combinations. 
Here, the number of destination opportunities is a uniform distribution. (c,d) Same average travel distance and 
normalized entropy values as in (a,b), but the number of destination opportunities is a random distribution.
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the diagonal line of the triangle, the SSI is relatively large, as shown in Fig. 2g–i. For most people, intercity travel is 
occasional and not as frequent as commuting. Travelers are less inclined than commuters to choose near potential 
destinations but they tend to explore distant potential destinations. Thus, the exploratory tendency parameter α 
of intercity travels is much larger than that of commuting. On the other hand, the importance of the travel cost of 
intercity travels is higher than that of the cost of migration. Thus, the cautious tendency parameter β of intercity 
travels is larger than that of migration. For intracity trips data sets (SZT, BJT, SHT, LOT and BET), when α and β 

Figure 2.  Results for empirical data sets. (a–n) We exploit SSI to calculate the similarity between the real 
mobility matrix and the predicted mobility matrix under different parameter combinations for the fourteen data 
sets. Here, the color bar represents the SSI, where a dark red (blue) dot indicates a higher (lower) SSI. (o) The 
optimal values of the parameters α and β correspond to the highest SSI for the fourteen data sets.

https://doi.org/10.1038/s41598-020-61613-y


6Scientific Reports |         (2020) 10:4657  | https://doi.org/10.1038/s41598-020-61613-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

are both close to 0, the SSI is relatively large, as shown in Fig. 2j–n. The reason is that compared with the intercity 
mobility behavior on a large spatial scale, the spatial scale of intracity mobility behavior is small. In this scenario, 
the individual is not necessarily concerned about the travel distance and focuses more on the benefit that the 
location will directly bring to him/her. Thus, the optimal values of α and β are both close to 0, as shown in Fig. 2o.

We next compare the predictive accuracy of the mobility fluxes of the UO model with the radiation model, 
the OPS model and the OO model. In terms of SSI, as shown in Fig. 3 and Table 1, the UO model performs best. 
However, the radiation model and the OPS model can provide only relatively accurate predictions for some data 
sets. For example, the radiation model can predict commuting and freight trips relatively accurately but cannot 
accurately predict other types of mobility. The reason is that the individual tends to choose near potential destina-
tions rather than distant potential destinations in commuting and freight, where travel costs are more important. 
From Fig. 2o, we can see that for commuting and freight data sets, the optimal parameter β (which reflects the 
individual’s cautious tendency) of the UO model is close to 1, and the optimal parameter α (which reflects the 
individual’s exploratory tendency) is close to 0. Therefore, the prediction accuracy of the radiation model in which 
the individual only chooses the closest potential destination (i.e., α = 0, β = 1) is close to that of the UO model in 
commuting and freight data sets. However, the prediction accuracy of the radiation model is considerably lower 
than that of the UO model in job hunting, migration and noncommuting travel data sets. The reason is that the 
individual is more likely to choose distant potential destinations in these data sets. In these cases, the prediction 
accuracy of the OPS model, in which the individual tends to choose distant potential destinations, is closer to that 
of the UO model. We further measure the fluxes predicted by different models compared with the real fluxes and 
find that the average fluxes predicted by our model are more in agreement with real observations than the other 
three models (see details in Supplementary Information, Comparison among different models). We also use a 
frequently used statistical index, named the root mean square error (RMSE), to measure the prediction errors of 

Figure 3.  Comparing predicting accuracy of the UO model, the radiation model, the OPS model and the OO 
model in terms of SSI.

Data set SSI-UO SSI-RM SSI-OPS SSI-OO RMSE-UO RMSE-RM RMSE-OPS RMSE-OO

USC 0.610 0.603 0.384 0.042 2158.766 2308.054 2948.205 3654.402

ITC 0.648 0.641 0.447 0.158 1600.862 1696.488 2132.627 3033.019

HUC 0.549 0.504 0.504 0.186 477.254 546.878 429.377 612.904

CNF 0.676 0.561 0.587 0.289 111.201 184.724 128.789 183.655

CNJ 0.739 0.449 0.738 0.567 185.709 481.072 189.816 297.379

USM 0.767 0.434 0.759 0.632 1126.110 3275.661 1218.255 1521.585

CNT 0.702 0.518 0.698 0.452 441.063 829.869 438.463 731.153

UST 0.748 0.607 0.729 0.518 55.851 95.013 65.513 115.795

BLT 0.796 0.639 0.791 0.611 26.236 58.641 26.339 48.080

SZT 0.757 0.358 0.732 0.463 7.871 47.801 9.133 12.553

BJT 0.748 0.268 0.697 0.489 6.567 68.039 12.291 12.040

SHT 0.760 0.358 0.734 0.470 48.196 368.901 71.152 91.000

LOT 0.661 0.416 0.657 0.476 4.309 20.031 4.603 8.104

BET 0.646 0.421 0.642 0.447 3.288 11.271 3.356 5.323

Table 1.  Comparison of models prediction accuracy. SSI is the Sørensen similarity index between the real 
mobility matrix and the mobility matrix predicted by different models. RMSE is the root mean square error 
of predicted mobility matrix. UO, RM, OPS, and OO stand for the universal opportunity model, the radiation 
model, the opportunity priority selection model and the opportunity only model, respectively.
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the UO model and the other three models, and Table 1 lists the results. From the table, we can see that in most 
cases, the RMSE of the UO model is smaller than that of the other benchmark models, although the RMSE is not 
the parameter optimization objective of the UO model. These results prove that the three models only capture the 
individual’s destination selection behavior at a specific spatiotemporal scale. Yet our UO model can accurately 
describe the individual’s destination selection behavior at different spatiotemporal scales.

Discussion
Although previous IO class models are widely used to predict the mobility of people between locations32–38,40–42, 
these models can only achieve accurate prediction at specific spatiotemporal scales. In this paper, we developed a 
UO model to predict human mobility at different spatiotemporal scales. Our model establishes a new framework 
in IO class models and covers the classical radiation model32 and the OPS model42. Although the UO model has 
two parameters, they are different from the parameters in some regression analysis models or machine learning 
models in the sense that they simply improve the prediction accuracy of the model. These two parameters essen-
tially describe the two tendencies, i.e., exploratory tendency and cautious tendency, of an individual’s destination 
selection behavior. They not only enable the UO model to better predict human mobility at different spatiotem-
poral scales than the parameter-free models but also help us better understand the underlying mechanism of the 
individual’s destination selection behavior in different types of human mobility.

Many phenomena in complex system field are strongly related to human mobility31. For example, the spread 
of disease is directly affected by human travel distance between locations and the population size of loca-
tions15–17,49–52. The UO model can accurately describe the individual’s destination selection behavior at different 
spatiotemporal scales, which has potential applications for understanding the spread of disease within humans. 
Not only that, but the IO model can also describe an individual’s selection behavior in social networks such as 
friend networks and scientific collaboration networks. In friend networks, the individual tends to choose friends 
who are close to him/her and have a high sense of identity41,53. In scientific collaboration networks, the individual 
tends to choose nearby scholars who have high scientific influence54. These phenomena indicate that when one 
seeks to build beneficial ties, she/he will take into account both the distance and the benefits of the opportunities. 
The UO model can describe the individual’s interactive object selection behavior, providing a new perspective for 
social network analysis.

Despite its fine performance in predicting human mobility, the UO model has room for further improve-
ments. For example, most existing IO class models use an agent to represent all of the individuals and neglect 
the diversity of individual selection behavior46,55–59. Building mobility prediction model for each individual may 
reflect the diversity in detail. However, it is extremely cumbersome and cannot grasp the commonality among 
individuals’ mobility patterns. One possible approach is first clustering individuals according to their mobility 
behavior characteristics60–62, then expanding our UO model for different classes of individuals, which may more 
accurately predict human mobility.

Methods
Material and methods.  Data sets. 

	(1)	 Commuting trips. The commuting trips data sets include the commuting trips between United States’ 
counties32 (USC), the commuting trips between the provinces of Italy35 (ITC) and the commuting trips 
between the subregions of Hungary35 (HUC), which were downloaded from http://www.census.gov/pop-
ulation/www/cen2000/com-muting/index.html, http://www.stat.it/storage/cartografia/matrici_pendolar-
ismo/matrici_pendolarismo_2011.zip and http://www.ksh.hu, respectively. Since we focus on mobility 
among zones(counties, provinces or subregions), all the residences/workplaces within a zone are regarded 
as the same with an identical zone label. Then, we can accumulate the total number Tij of trips from zone i 
to zone j, which is also carried out in the following data sets.

	(2)	 Freight between Chinese cities (CNF). The CNF data set is extracted from the travel records of freight 
between Chinese cities from 19 May 2015 to 23 May 2015. When freight is loaded or unloaded, the coor-
dinates and time are recorded automatically by a GPS-based device installed in the truck. All the loading/
unloading locations within a city are regarded as the same with an identical zone label.

	(3)	 Internal job hunting in China (CNJ). The CNJ data set is extracted from more than 160 million job hunters’ 
resumes from 2006 to 2016 and was downloaded from https://www.zhaopin.com. The resumes contain job 
hunter work experience, from which we can obtain a job hunter’s former workplaces. All the workplaces 
within a city are regarded as the same with an identical zone label.

	(4)	 Internal migrations in the US (USM). The USM data set is extracted from the Statistics of Income Division 
of the Internal Revenue Service (IRS) in the US from 2011 to 2012 and was downloaded from https://www.
irs.gov/statistics/soi-tax-stats-migration-data. The IRS contains records of all individual income tax forms 
filed in each year, from which we can determine who has or has not, moved residence/workplace locations 
in the intervening fiscal year31. All the residence/workplace locations within a state are regarded as the 
same with an identical zone label.

	(5)	 Intercity travels. The intercity travels data sets include intercity travels in China (CNT), intercity travels in 
the US (UST) and intercity travels in Belgium (BLT). The CNT data set is extracted from check-in records 
of the Sina Weibo website for users in mainland China40. The UST data set is extracted from check-in 
records of the Foursquare website for users in the continental US63. The BLT data set is extracted from 
check-in records of the website Gowalla for users in Belgium64. These data sets contain each user’s spatial 
and temporal information, from which we can obtain the user’s location. All the check-in locations within 
a city are regarded as the same with an identical zone label.
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	(6)	 Intracity trips. The intracity trips data sets include intracity trips in Suzhou (SZT), intracity trips in Beijing 
(BJT), intracity trips in Shenzhen (SHT), intracity trips in London (LOT) and intracity trips in Berlin 
(BET). The SZT data set is extracted from the mobile phone call detail records in Suzhou, a city of China. 
The data contains the time and positions of users making phone calls or sending text messages. The BJT 
data set65 and the SHT data set65 are extracted from the travel records of taxi passengers in Beijing and 
Shenzhen, respectively. When a passenger gets on or gets off a taxi, the coordinates and time are recorded 
automatically by a GPS-based device installed in the taxi. The LOT data set64 and the BET data64 set are ex-
tracted from checkin records at Gowalla in London and Berlin. Because of the absence of natural partitions 
in cities (in contrast to states or counties), the city is divided into zones, each of which is 1 km  ×  1 km (for 
SZT is 0.01 longitude  ×  0.01 latitude). All the locations within a zone are regarded as the same with an 
identical zone label38.

Normalized entropy.  We use normalized entropy to reflect the heterogeneity of individual destination selection 
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where Ei is the normalized entropy of location i, pij is the probability that the individual at location i chooses loca-
tion j as his/her destination, and N is the number of locations.

Sørensen similarity index.  The Sørensen similarity index66 is a similarity measure between two samples. Here, 
we apply a modified version38 of the index to measure whether real fluxes are correctly reproduced (on average) 
by theoretical models, defined as 
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where N is the number of locations, Tij is the predicted flux from location i to j and ′Tij is the empirical flux. 
Obviously, if each Tij is equal to ′Tij the index is 1, and if all Tij are far from the real values, the index is close to 0.

Data availability
Data available on request from the authors.
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