
A deep learning-based method for 
assessing tricuspid regurgitation 
using continuous wave Doppler 
spectra
Shenghua Xie1,2,11, Han Liu3,11, Li Su4, Jie Shen5, Junwang Miao6, Duo Huang7, Mi Zhou8, 
Huiruo Liu9, Yan Li10, Lixue Yin1,2, Qinglan Shu1,2 & Yi Wang1,2

Transthoracic echocardiography (TTE) is widely recognized as one of the principal modalities for 
diagnosing tricuspid regurgitation (TR). The diagnostic procedures associated with conventional 
methods are intricate and labor-intensive, with human errors leading to measurement variability, 
with outcomes critically dependent on the operators’ diagnostic expertise. In this study, we present 
an innovative assessment methodology for evaluating TR severity utilizing an end-to-end deep 
learning system. This deep learning system comprises a segmentation model of single cardiac cycle 
TR continuous wave (CW) Doppler spectra and a classification model of the spectra, trained on the 
TR CW Doppler spectra from a cohort of 11,654 patients. The efficacy of this intelligent assessment 
methodology was validated on 1500 internal cases and 573 external cases. The receiver operating 
characteristic (ROC) curves of the internal validation results indicate that the deep learning system 
achieved the areas under curve (AUCs) of 0.88, 0.84, and 0.89 for mild, moderate, and severe TR, 
respectively. The ROC curves of the external validation results demonstrate that the system attained 
the AUCs of 0.86, 0.79, and 0.87 for mild, moderate, and severe TR, respectively. Our study results 
confirm the feasibility and efficacy of this novel intelligent assessment method for TR severity.

Heart valvular disease is a prevalent cardiovascular condition, with an estimated 18–19% prevalence of valve 
regurgitation in middle-aged adults1. This prevalence is expected to rise further due to the overall increase 
in the aging population2. Currently, there are approximately 209 million patients worldwide suffering from 
valvular heart disease, with around 25 million cases in China alone3. TR is the most common type among 
various valvular diseases and is often associated with non-valvular heart disease. Accurate assessment of the 
severity of TR is an important step in determining the severity of the condition, evaluating treatment efficacy, 
and predicting prognosis. It plays an essential role in the diagnosis and treatment of cardiovascular diseases. The 
severity of regurgitation can be categorized into several grades: mild, moderate, severe, and more. Currently, 
TTE is the most commonly used noninvasive tool for assessing the severity of valve regurgitation4–7. According 
to echocardiographic diagnostic guidelines and recommendations8–13, the comprehensive evaluation of valve 
regurgitation severity is primarily based on quantitative indicators14–20, such as the effective regurgitant orifice 
area (EROA), vena contracta width, the regurgitant volume (RVol), along with qualitative indicators such as 
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the CW Doppler spectrum. The assessment process requires multiple manual measurements and subjective 
qualitative evaluations. Therefore, traditional grading of valve regurgitation using TTE is not only time-
consuming but also highly susceptible to inter- and intra-observer variability. The development of artificial 
intelligence has led to the emergence of intelligent evaluation methods for valve regurgitation based on deep 
learning networks14,21–26, which show promise in addressing the aforementioned issues. These methods aim 
to achieve objective and precise assessment of valve regurgitation, enhance diagnostic efficiency, and meet the 
growing clinical demands.

In the field of valvular regurgitation assessment using deep learning methods, recent studies have 
demonstrated the potential of artificial intelligence technologies to improve diagnostic efficiency and accuracy. 
For instance, Zhang et al.25 proposed the use of the Mask R-CNN algorithm to segment the mitral regurgitation 
areas in color Doppler echocardiography images. They utilized the segmented images to assess the severity of 
regurgitation based on information extracted from these images. Huang et al.26.developed a framework based 
on VABC-UNet for automatic segmentation and classification of mitral and TR using deep learning methods. 
This approach not only enhanced image segmentation performance but also enabled automatic classification 
and grading of regurgitation as mild, moderate, moderately severe, or severe based on the characteristics of the 
regurgitation jet and the atrium. In a recent study, Wifstad et al.14 utilized three-dimensional Doppler ultrasound 
images and deep learning to quantify cardiac valvular regurgitation. The research enhanced the accuracy of 
estimating the orifice size and flow of regurgitation through deep learning networks, significantly improving 
the precision of area and flow measurements compared to traditional methods. However, existing intelligent 
assessment methods for valvular regurgitation typically require the selection of optimal images at key moments 
of regurgitation and involve complex procedural implementations. Therefore, considering the operability in 
clinical applications, we propose a deep learning-based approach to automatically classify the severity of TR 
using CW Doppler spectra. This study explores a simple and practical method for the intelligent assessment of 
the severity of TR during the echocardiography diagnose.

Results
A deep learning system has been meticulously developed for the intelligent assessment of TR severity using 
the raw TR CW Doppler spectra. An overview of the system’s development, workflow, and test results is 
comprehensively illustrated in Fig. 1, providing clear insights into the system’s development, workflow, efficacy.

Training results of the models for segmenting single cardiac cycle TR spectra
In order to ascertain the most effective deep learning model for the automated segmentation of single complete 
cardiac cycle regurgitation spectra, we meticulously annotated 15,345 images of these spectra. These images 
were randomly allocated into a training set and a test set in a 9:1 ratio. The segmentation models were trained 
utilizing the training set, and their performance was subsequently evaluated using the test set. Comparative 
experiments were executed using a range of prevalent object detection networks, including YOLOv527,28 
(YOLOv5l, YOLOv5s, YOLOv5m, YOLOv5x), YOLOv3, YOLOv6, Faster R-CNN, and SSD. Following 300 
training epochs, we computed four essential performance evaluation metrics: Macro Average Precision (MAP), 
Macro Average Sensitivity (MAS), Macro Average F1 Score (MAF1), and mAP@0.5, as delineated in Table 1. The 
results revealed that the YOLOv5l network exhibited superior performance in terms of MAP, MAR, MAF1, and 
mAP@0.5, surpassing the other networks. Consequently, the YOLOv5l model demonstrated the most robust 
overall performance in this training, and we ultimately chose it as the model for segmenting single cardiac cycle 
regurgitation spectra.

Training results of the model for classifying single cardiac cycle TR spectra
To determine the optimal deep learning model for classifying single cardiac cycle TR spectra by severity, we 
conducted a series of comparative experiments using multiple high-performance deep learning models. The 
evaluated deep learning models included ConvNeXt29, RepVGG30, Swin Transformer31, EfficientNetV232, and 
ResNet5033. We utilized a labeled dataset comprising 23,749 frames of single cardiac cycle regurgitation spectra, 
categorized into 7942 frames as mild, 8129 frames as moderate, and 7678 frames as severe. The dataset was 
divided into training, validation, and test sets in an 8:1:1 ratio. The classification models were trained using 
these aforementioned deep learning networks. After 300 training epochs, the performance of these models was 
assessed on test set using four evaluation metrics: Accuracy, MAS, MAP, and MAF1. The test results are detailed 
in Table 2. As illustrated in Table 2, the ConvNeXt model surpasses all other models across all evaluation metrics, 
demonstrating its superior overall performance. The detailed evaluation metrics for the ConvNeXt model on 
the test set are presented in Table 3. The confusion matrix for the ConvNeXt model on the test set is depicted in 
Fig. 2. The confusion matrix visually demonstrates the sensitivity of the classification model for each category, 
indicating that the primary prediction errors occur between adjacent severity levels. Figure 3 illustrates ROC 
curves of the ConvNeXt model on the test data. The ROC curves reveal that the AUCs of the three classifications 
exceeds 0.9, demonstrating the model’s excellent performance in classifying single cardiac cycle TR spectra by 
severity. These findings confirm that the ConvNeXt model can provide high-quality assessments of regurgitation 
severity based on TR spectra. Consequently, the ConvNeXt model was ultimately selected as the model for 
classifying single cardiac cycle regurgitation spectra.

Test results of the deep learning system
We have developed a deep learning system to predict TR severity by integrating the aforementioned single 
cardiac cycle spectrum segmentation model and TR severity classification model. The operational workflow of 
the deep learning system is shown in Fig. 1b. This system enables the input of a raw TR CW Doppler spectrum 
to generate an assessment result of TR severity. Therefore, this system is an end-to-end deep learning system 
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Fig. 1.  Overview of the development of the deep-learning system, its workflow, and the test results. Subfigure 
(a) depicts the development process of the deep-learning system, which involves two steps: training a deep 
learning network to segment the single cardiac cycle regurgitation spectrum, and training another deep 
learning network to evaluate the severity of the regurgitation spectrum. Subfigure (b) outlines the workflow 
of the deep-learning system, indicating it as an end-to-end system. Subfigure (c) presents the results of the 
validation study, incorporating both internal dataset from our hospital and external dataset from seven other 
hospitals.
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Fig. 2.  Confusion matrix of the ConvNeXt model on the test set. The labels "0", "1", and "2" correspond to 
mild, moderate, and severe regurgitation, respectively. The confusion matrix indicates that the sensitivity for 
mild, moderate, and severe TR is 90.93%, 92.47%, and 90.81%, respectively. The primary prediction errors 
occur at adjacent severity levels; for instance, most severe labels incorrectly predicted were classified as 
moderate, while most mild labels incorrectly predicted were also classified as moderate.

 

TR severity Sensitivity (%) Precision (%) F1 score (%) AUC

mild 90.93 94.88 92.86 0.98

moderate 92.47 85.50 88.85 0.91

severe 90.81 94.92 92.82 0.98

Macro average 91.40 91.77 91.58 0.96

Table 3.  The evaluation metrics of the ConvNeXt model on the test date of a single cardiac cycle regurgitation 
spectra.

 

Model Accuracy (%) MAS (%) MAP (%) MAF1 (%)

ConvNeXt 91.42 91.40 91.77 91.58

RepVGG 89.85 89.11 89.06 89.08

Swin Transformer 90.26 90.88 90.89 90.88

EfficientNetV2 90.35 90.66 90.91 90.78

ResNet50 87.53 87.98 87.23 87.60

Table 2.  The performance comparison of the ConvNeXt model with other main models.

 

Model MAP (%) MAS (%) mAP@0.5 MAF1 (%)

YOLOv5l 93.79 93.85 0.9625 93.82

YOLOv5s 92.91 93.11 0.9594 93.01

YOLOv5m 93.33 93.12 0.9621 93.22

YOLOv5x 92.41 93.19 0.9577 92.80

YOLOv3 92.53 92.98 0.9523 92.75

YOLOv6 92.69 93.01 0.9503 92.85

Faster R-CNN 92.26 94.88 0.9589 93.55

SSD 92.35 92.66 0.9491 92.50

Table 1.  The performance comparison of YOLOv5 model with other main models.

 

Scientific Reports |        (2024) 14:27483 4| https://doi.org/10.1038/s41598-024-78861-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for predicting the severity of TR. To test the effectiveness of the system in assessing the severity of TR, we 
conducted two types of validation experiments: one utilizing an internal dataset and the other employing an 
external dataset.

In the internal validation phase, we selected a cohort of 1500 patients diagnosed with TR through 
echocardiography at our intuition. The dataset consisted of 500 cases each of mild, moderate, and severe TR. 
By inputting the raw TR CW Doppler spectrum into the deep learning system, the prediction outcomes of TR 
severity for the 1500 cases in the internal validation cohort could be obtained. According to prediction results, 
we calculated various evaluation metrics of the deep learning system for predicting TR severity, including 
Accuracy, MAS, MAP, MAF1, and AUC. The internal validation results indicate that the Accuracy of the deep 
learning system is 89.13%. Other evaluation metrics are presented in Table 4. The confusion matrix presented in 
Fig. 4 elucidates the sensitivity of the deep learning system across various categories. As illustrated in Fig. 4, it 
is evident that the majority of prediction errors are concentrated between adjacent severity levels. Additionally, 
Fig. 5 presents the ROC curves of the deep learning system on the internal dataset. The ROC curves indicate 
that the AUCs for mild, moderate, and severe cases are 0.88, 0.84, and 0.89, respectively. The AUCs for all three 
categories exceed 0.8, signifying the system’s excellent performance in predicting TR severity from raw CW 
Doppler TR spectra. The combined results presented in Table 4, Figs. 4, and 5 illustrate that the deep learning 
system performs excellently in assessing the severity of TR on the internal dataset.

During the external validation phase, we selected a cohort of 573 patients diagnosed with TR via 
echocardiography from seven external hospitals. The dataset comprised 125 cases of mild TR, 249 cases of 
moderate TR, and 119 cases of severe TR. Similarly, by inputting the raw TR CW Doppler spectra into the deep 
learning model for severity assessment, we derived the prediction outcomes for TR severity in the 573 cases 
of the external validation cohort, computing a series of evaluation metrics: Accuracy, MAS, MAP, MAF1, and 
AUC. The external validation results demonstrate the Accuracy is 88.13%, with other metrics detailed in Table 4. 
As demonstrated in Table 4, our system exhibited excellent performance in predicting the severity of TR in the 
external dataset. The confusion matrix is depicted in Fig. 6, illustrating that the majority of prediction errors are 
concentrated between adjacent severity levels. Figure 7 illustrates the ROC curves of the deep learning system on 
the external dataset. The ROC curves indicate that the AUCs for mild, moderate, and severe cases are 0.86, 0.79, 
and 0.87, respectively. These AUCs suggest that, except for the AUC for moderate regurgitation being slightly 
below 0.8, the AUCs for the other two categories are significantly above 0.8. These results indicates that despite 
variations in the diagnostic capabilities of cardiologists, image acquisition techniques, and equipment conditions 

TR severity

Internal dataset External dataset

Sensitivity (%) Precision (%) F1 Score (%) AUC Sensitivity (%) Precision (%) F1 score (%) AUC

Mild 87.80 97.12 92.23 0.88 88.00 91.67 89.80 0.86

Moderate 86.80 84.77 85.77 0.84 85.54 86.94 86.23 0.79

Severe 92.80 86.57 89.58 0.89 91.46 87.50 89.44 0.87

Macro average 89.13 89.49 89.19 0.87 88.33 88.70 88.49 0.84

Table 4.  The evaluation metrics of the Deep learning system on the internal and external datasets.

 

Fig. 3.  ROC curves of the ConvNeXt model on the test set. The class 0 corresponds to mild regurgitation, The 
class 1 to moderate regurgitation, and the class 2 to severe regurgitation. The ROC curve reveals that the AUCs 
of the model in distinguishing mild, moderate, and severe single cardiac cycle regurgitation spectra are 0.98, 
0.91, and 0.98, respectively. All AUCs exceed 0.9, demonstrating the model’s efficacy in accurately identifying 
single cardiac cycle regurgitation spectra.
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across different hospitals, our method consistently maintains high accuracy, sensitivity, and precision in TR 
prediction. This also demonstrates the robust generalization capability of our method.

Discussion
This study presented a novel deep learning-based approach for the intelligent assessment of TR severity utilizing 
the raw CW Doppler spectra. This approach was realized through an end-to-end deep learning framework 
integrating both segmentation and classification models. The overall efficacy of this approach was rigorously 
evaluated via comprehensive internal and external validation experiments. The validation outcomes indicateed 
that this approach exhibits high overall performance on the internal and extaerla datasets. They also suggested 
that this approach could serve as an intelligent assistive tool for the clinical evaluation of TR severity. However, 
it is important to realize that there remains room for improvement in the accuracy of severity classification, 
particularly in the identification of moderate regurgitation, which is notably lower than that of the other two 
categories. Although the discrepancy between internal and external validation results was minimal, the quantity 

Fig. 5.  ROC curves of the deep learning system on the internal dataset. The class 0 denotes mild regurgitation, 
the class 1 denotes moderate regurgitation, and the class 2 denotes severe regurgitation. The ROC curves 
indicates that the AUCs for the deep learning system in predicting mild, moderate, and severe regurgitation 
in the internal dataset are 0.88, 0.84, and 0.89, respectively. All AUCs exceed 0.8, underscoring the system’s 
efficacy in internal validation experiments.

 

Fig. 4.  Confusion matrix of the learning system on the internal dataset. The labels "0," "1," and "2" denote mild, 
moderate, and severe regurgitation, respectively. The confusion matrix illustrates the concordance between 
the TR severity predicted by the deep learning system and the clinical diagnostic results in the internal test 
dataset. The sensitivity for clinically diagnosed mild, moderate, and severe TR are 87.80%, 86.80%, and 92.80%, 
respectively. The main prediction errors primarily occur at adjacent severity levels.
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of external validation data collected in this study is less than that of the internal validation data. Therefore, future 
research should aim to increase the volume of external validation data. To enhance the system’s generalizability, 
subsequent studies will incorporate data from multiple hospitals to further refine and train the deep learning 
model.

Traditional methods for assessing TR primarily rely on various quantitative, semi-quantitative, and qualitative 
indicators, such as the diameter of the inferior vena cava, regurgitant jet area, vena contracta width, and CW 
Doppler velocity profile image characteristics. These evaluations depend heavily on the clinical experience 
of cardiologist, as both the measurement of these parameters and the identification of imaging features are 
performed manually. Consequently, traditional methods lack objectivity, stability, and reproducibility due to 
human measurement errors and subjective evaluations20. To meet the demand for an objective evaluation of 
TR, we have developed an intelligent assessment methodology for determining TR severity. Our approach 
introduces several innovations. Firstly, we designed a unique deep learning system comprising two models: one 

Fig. 7.  ROC curves of deep learning system on the external dataset. The class 0 denotes mild regurgitation, the 
class 1 denotes moderate regurgitation, and the class 2 denotes severe regurgitation. The ROC curves indicates 
that the AUCs for the deep learning system in predicting mild, moderate, and severe regurgitation within the 
external dataset are 0.86, 0.79, and 0.87, respectively. Except for the AUC of 0.79 for moderate regurgitation, 
which is close to 0.8, the AUCs for the other two categories exceed 0.8. This further corroborates the system’s 
efficacy in external validation experiments.

 

Fig. 6.  Confusion matrix of the deep learning system on the external dataset. The labels "0", "1", and "2" 
correspond to mild, moderate, and severe regurgitation, respectively. The confusion matrix demonstrates the 
consistency between the predicted TR severity of the external dataset by the deep learning system and the 
clinical diagnostic severity. The sensitivity for mild, moderate, and severe TR diagnosed clinically is 88.00%, 
85.54%, and 91.46%, respectively. The main prediction errors primarily occur at adjacent severity levels.
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for the automated segmentation of a single cardiac cycle regurgitation spectrum and another for the intelligent 
assessment of TR severity based on this spectrum. This is the first application of TR CW Doppler spectra for 
intelligent severity assessment, significantly simplifying the evaluation process. Secondly, our method provides 
an "end-to-end" solution that requires no manual intervention. By merely inputting the raw TR CW Doppler 
spectra, the assessment results are automatically generated. Thirdly, through rigorous testing and validation with 
both internal and external datasets, we have demonstrated the feasibility and robustness of this intelligent and 
objective evaluation methodology. Our methodology has proven to possess strong generalizability, ensuring 
reliable assessments across diverse datasets.

Although several deep learning-based techniques have been developed for evaluating valvular regurgitation 
via echocardiography, these techniques predominantly target the intelligent assessment of mitral and aortic valve 
regurgitation34–37. However, compared to our method, existing approaches are more complex, demand higher 
standards for image data annotation in deep learning, and entail relatively intricate selection of input images 
in clinical applications. Our method simplifies this process by requiring only a bounding box to annotate a 
single cardiac cycle regurgitation image and its corresponding severity. We propose an end-to-end deep learning 
system that requires only raw TR CW Doppler spectra with adequate quality as input. It is worth noting that our 
method stipulates specific quality requirements for the CW Doppler spectra, as follows: the observation position 
of the regurgitation spectra should be as close as possible to the center of the regurgitation, and the direction of 
the Doppler sound beam should be aligned as closely as possible with the center of the regurgitation; the process 
of collecting the CW Doppler regurgitation spectra should minimize respiratory interference; the velocity scale 
in the CW Doppler images should be appropriately set. In addition, we would like to clarify that evaluating 
regurgitation based on single cardiac cycle regurgitation spectra may be more susceptible to interference from 
other factors (such as respiration, angle, etc.), which can affect the stability of the assessment results. Future 
research could involve selecting multiple consecutive cardiac cycle regurgitation spectra for evaluation under the 
premise of image quality control, which may help reduce the impact of external factors.

Meanwhile, the internal and external validation experimental results indicate that our method necessitates 
further enhancements in several critical areas. (1) Refinement of Classification Method: To better align with 
clinical diagnostic requirements, the classification methodology for assessing regurgitation severity requires 
further refinement. Beyond the existing categories of mild, moderate, and severe, it is more precise to incorporate 
additional intermediate categories, such as mild-to-moderate and moderate-to-severe, etc. This more detailed 
categories are expected to significantly enhance the precision of intelligent classification evaluations. (2) Inclusion 
of Additional Evaluation Indices: The current study is limited to the CW Doppler spectra characteristics of TR, 
thereby resulting in a singular evaluation index. Future research should integrate a broader range of evaluation 
indices to establish an intelligent assessment method based on a multi-indicator comprehensive evaluation 
framework. (3) Quality Control of Echocardiographic Images: The quality of echocardiographic images, which 
contain crucial information regarding TR, is essential for accurate diagnosis. Hence, future research should 
explore robust quality control methodologies for TR echocardiographic images to mitigate diagnostic errors 
fundamentally. Although this is a retrospective analysis of daily clinical scenarios, TR CW doppler spectrum 
may be influenced by multiple factors. However, we have applied strict image selection and annotation for the 
deep learning process. And the good results demonstrated that this method can be widely applied in our clinical 
practice.

Methods
Data acquisition and screening
The primary data used in this study are TR CW Doppler spectra obtained from echocardiographic 
examinations. We retrospectively selected echocardiographic diagnostic records from a total of 13,727 patients 
who were ≥ 18 years of age and diagnosed with TR. Specifically, records from 13,154 patients at our intuition 
(Sichuan Provincial People’s Hospital) constituted the internal dataset, whereas records from 573 patients 
at seven external hospitals comprised the external dataset. The internal dataset included patients diagnosed 
with TR who underwent echocardiographic examinations at our intuition from January 2015 to June 2023. 
The external dataset consisted of patients diagnosed with TR between July 2023 and November 2023 at seven 
external hospitals through echocardiographic examinations. In the internal dataset, which included 13,154 
patients, the raw TR CW Doppler spectra from 11,654 patients were used to develop the deep learning 
system, while the raw TR CW Doppler spectra from the remaining 1,500 patients were employed to validate 
the system’s feasibility and effectiveness. In the external dataset, the raw TR CW Doppler spectra from a total 
of 573 patients across seven external hospitals were utilized to test the system’s generalizability. To ensure the 
reliability and stability of the intelligent evaluation method for TR, the selected research data were meticulously 
reviewed by two senior cardiologists. The criteria for selected image data were as follows: (1) According to the 
echocardiographic diagnostic guidelines38, measurement data and retained images were rigorously consistent 
with diagnostic conclusions; (2) TR spectra were devoid of significant respiratory or other interference; (3) 
The placement of the observation point and sampling line for the TR spectra was appropriate; (4) The spectra 
maintained a consistent velocity scale and appropriate overall gain. Furthermore, to safeguard patient privacy, all 
patient-related information was removed from the data. The study protocol was approved by the Ethics Review 
Committee of our institution (no. 2023-407) and complied with the declaration of Helsinki.

Annotation of image data
Each frame of raw TR CW Doppler spectrum encompasses multiple cardiac cycles of regurgitation spectra. In the 
diagnosis of TR via echocardiography, cardiologists typically evaluate the severity of regurgitation by selecting a 
representative single cardiac cycle regurgitation spectrum. Therefore, to achieve the intelligent assessment of TR 
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severity, it is crucial to develop an automatic segmentation model for single cardiac cycle regurgitation spectra, 
and an intelligent recognition model capable of identifying these regurgitation spectra.

To develop an automatic segmentation model for the regurgitation spectrum within a single cardiac cycle, it 
is essential to manually annotate the regurgitation spectrum in the raw TR CW Doppler spectra. An annotation 
software was employed for this purpose, and an example of the annotation is shown in Fig. 1a. A total of 15,345 
single cardiac cycle regurgitation spectra from 11,654 patients’ raw TR CW spectra were manually annotated. 
These annotations were randomly divided into training and testing sets in a 9:1 ratio, which were subsequently 
used to train a deep learning model for the automatic segmentation of single cardiac cycle regurgitation spectra.

Utilizing the segmentation model for single cardiac cycle regurgitation spectra, we automatically segmented 
and cropped the TR spectra of 11,654 patients. The cropped single cardiac cycle regurgitation spectra were 
screened and categorized into three severity levels: mild, moderate, and severe, as depicted in Fig. 1a. The primary 
criteria for these classifications adhere to echocardiographic diagnostic guidelines for TR and corresponding 
diagnostic outcomes. We meticulously annotated a total of 23,749 frames of single cardiac cycle regurgitation 
spectra, categorizing them into three severity levels: mild (7942), moderate (8129), and severe (7678). These 
annotated images were subsequently divided into training, validation, and test sets in a ratio of 8:1:1, forming 
a comprehensive dataset for the development of a deep learning model to classify TR severity based on single 
cardiac cycle Doppler spectra.

Training deep learning models for the segmentation of single cardiac cycle TR spectra
The automatic segmentation of single cardiac cycle regurgitation spectra is a type of object detection task. Hence, 
we selected multiple deep learning networks renowned for their outstanding performance in object detection, 
including YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, YOLOv3, YOLOv6, Faster R-CNN, and SSD, and trained 
them on a meticulously annotated image dataset. The performance of the automatic segmentation models was 
assessed using the test set. Through a comparative analysis of the test results, the model demonstrating the best 
overall performance was selected as the final model for automatic segmentation.

Training deep learning models for the classification of single cardiac cycle TR spectra
Classifying single cardiac cycle regurgitation spectra according to severity is essentially an image classification 
problem. Considering the image features of regurgitation spectra and the requirement for classification accuracy, 
we employed multiple deep learning networks (ConvNeXt, RepVGG, Swin Transformer, EfficientNetV2, and 
ResNet50) known for their robust performance in classification tasks to train models for classifying regurgitation 
spectra. Model performance was evaluated using the test set, and the model demonstrating superior overall 
performance was chosen for the classification model of single cardiac cycle TR spectra.

Establishing an end-to-end deep learning system by integrating both the segmentation and 
classification models
Utilizing the segmentation model described earlier, we divided a raw TR CW Doppler spectrum into multiple 
spectra, each representing a complete cardiac cycle spectrum. Subsequently, we can classify the severity of each 
cardiac cycle regurgitation spectrum using the classification model. Ideally, the severity assessment results from 
different cardiac cycle spectra within the same raw TR CW Doppler spectrum should be consistent. However, 
factors like respiration may introduce interference during spectrum acquisition, resulting in distortions of 
individual spectra. Consequently, the severity assessment results across different cardiac cycle spectra within 
the same raw TR CW Doppler spectrum may vary. To address this variability, we adopt the highest severity 
assessment result among multiple evaluations as the final outcome. With this final decision, we integrate the 
deep learning segmentation and classification models to establish an end-to-end deep learning system for TR 
assessment using CW Doppler spectra.

Verification of the deep learning system
To evaluate the performance of the deep learning system in assessing TR severity, we conducted validation tests 
utilizing both internal and external datasets. In the internal dataset test, we selected TTE examinations and 
diagnostic records from 1500 TR patients diagnosed at Sichuan Provincial People’s Hospital. In the external data 
test, we collected TTE examinations and diagnostic records from 573 TR patients across seven different hospitals. 
The TTE examinations and diagnostic records of these TR patients were meticulously reviewed by senior 
cardiologists. Only TR CW Doppler spectra meeting quality requirement were utilized to predict regurgitation 
severity. In the detailed test experiments, CW Doppler spectra from both internal and external datasets were 
inputted into our end-to-end deep learning system to predict TR severity for each patient. The prediction results 
were subsequently compared with the echocardiographic diagnostic results reviewed by senior cardiologists, 
thereby rigorously evaluating the performance of the deep learning system using evaluation metrics.

Evaluation metrics
In this study, we selected the following evaluation metrics: Accuracy, Precision, Sensitivity (also known as 
Recall), F1 Score, Macro Average Sensitivity (MAS), Macro Average Precision (MAP), Macro Average F1 score 
(MAF1), mean Average Precision at 0.5 (mAP@0.5), ROC curve, AUC, and confusion matrix.

The formulas for Accuracy, Precision, Sensitivity, F1 Score ,MAP, MAS, and MAF1 are as follows39,40:

	
Accuracy =

TP + TN

TP + TN + FP + FN
� (1)
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Precisioni =

TP i

TP i + FP i
� (2)

	
Sensitivityi =

TP i

TP i + FNi
� (3)

	
F1 scorei = 2× Precisioni × Sensitivityi

Precisioni + Sensitivityi
� (4)

In Eq.  (1), TP represents true positives, TN represents true negatives, FP represents false positives, and FN 
represents false negatives. In Eqs. (2) and (3), TPi represents the true positives in class i, FPi denotes the false 
positives in class i, and FNi indicates the false negatives in class i. MAP, MAS, MAF1 are computed by taking the 
arithmetic mean of the metrics for individual classes.

	
MAP =

1

K

K∑
i=1

Precisioni� (5)

	
MAS =

1

K

K∑
i=1

Sensitivityi� (6)

	
MAF1 =

1

K

K∑
i=1

F1Scorei� (7)

Average Precision (AP) refers to the area under the precision-recall curve for a specific query or category. The 
mean Average Precision (mAP) is the mean of the Average Precision across all queries or categories. Assuming 
K queries or categories, the Average Precision for each query or category is calculated as follow:

	
mAP =

∑K
i=1AP i

K
� (8)

The mean Average Precision at an intersection over union (IoU) threshold of 0.5, denoted as mAP@0.5, is a 
widely used metric for performance evaluation in object detection tasks.

Data availability
The data presented in this study are available on request from the corresponding author (YW).

Code availability
The code for the automatic segmentation model of single cardiac cycle images and the classification prediction 
model for single cardiac cycle spectra are available upon request.
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