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Abstract: Bone defects, as one of the most urgent problems in the orthopedic clinic, have attracted
much attention from the biomedical community and society. Hydrogels have been widely used in the
biomedical field for tissue engineering research because of their excellent hydrophilicity, biocompati-
bility, and degradability. Stimulus-responsive hydrogels, as a new type of smart biomaterial, have
more advantages in sensing external physical (light, temperature, pressure, electric field, magnetic
field, etc.), chemical (pH, redox reaction, ions, etc.), biochemical (glucose, enzymes, etc.) and other dif-
ferent stimuli. They can respond to stimuli such as the characteristics of the 3D shape and solid–liquid
phase state, and exhibit special properties (injection ability, self-repair, shape memory, etc.), thus
becoming an ideal material to provide cell adhesion, proliferation, and differentiation, and achieve
precise bone defect repair. This review is focused on the classification, design concepts, and research
progress of stimulus-responsive hydrogels based on different types of external environmental stimuli,
aiming at introducing new ideas and methods for repairing complex bone defects.

Keywords: stimulus-responsive; smart hydrogels; bone defects repair; tissue engineering

1. Introduction

Bone defects, caused by trauma, bone tumor resection, infection (such as osteomyelitis),
and other factors, have become one of the major issues seriously affecting patients’ limb
function, causing physiological and psychological damage, and always requiring a safe
and effective treatment to achieve bone tissue regeneration and repair. Among previous
common treatments, bone transplantation has been the gold standard for the treatment
of bone defects [1]. However, bone transplantation has failed to be widely used, due
to the limited bone graft source of autologous material, high treatment cost, immune
rejection risk, complicate bone handling technology, as well as the risk of infection and
complications [2,3]. Therefore, the traditional bone defect treatment technology is unable
to effectively meet the needs of patients. Tissue engineering is a multifaceted field that
uses biological substitutes to promote the regeneration of failing or damaged tissues. The
basic element of tissue engineering relies on cells, scaffolds, and growth factors. Traditional
strategies in tissue engineering always incorporate the use of stem cells to regenerate new
tissue in damaged areas [4–8]. In this case, various scaffolds provide attachment sites for
cells and a protective environment for the proliferation and differentiation of attached cells.
To successfully achieve bone tissue regeneration, it is important to find a scaffold that can
temporarily replace the damaged tissue and adapt to the biological environment of the
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host tissue with optimal porosity, thus allowing for the transport of a sufficient number of
cells. In addition, scaffold must biodegrade within the host tissue at an appropriate rate.
The proposed biomaterial must be able to interact with the surrounding tissue, and the
patient’s immune response must be minimized. Furthermore, the scaffold should provide
adequate mechanical strength to the bone defect site and efficiently encapsulate and control
the release of drugs or proteins [9,10].

It is well known that the process of bone defect repair is composed of an organic range
of osteocytes, osteoblasts, and osteoclasts, called basic multicellular units (BMUS). BMUS
act on the periosteum, trabecular surface, and cortex of bone, promoting osteogenesis
absorption and bone repair. However, the adhesion, proliferation, and differentiation of
BMUS should have a suitable cellular microenvironment and extracellular matrix (ECM),
and, thereby, the question of how to simulate the natural ECM becomes the key to tissue
engineering scaffolds [11]. The ECM is composed of a mixture of several biomolecules,
including collagens and glycoproteins, arranged in distinct structures that are essentially
unique to a specific tissue. The bone ECM determines the mechanical properties of the
skeleton. The mineralized portion of the bone tissue imparts rigidity to the biomaterial,
while the organic components of the ECM provide flexibility. The mineralized portion of the
ECM is composed largely of calcium phosphate in the form of hydroxyapatite (HAP), plus
an extensive type I collagen-rich organic ECM. In addition to mineralized bone ECM, other
unique tissue types exist in association with bone ECM networks, such as non-mineralized
marrow, the endosteum, the periosteum, and the perilucanar matrix, which can regulate
the processes of osteoclast activity, osteoblast progenitor proliferation and differentiation,
and osteocyte function. Until now, ECM has played a far more dynamic role in regulating
cell function, tissue morphogenesis, modulating the matrix assembly, and organizing the
process of matrix mineralization for bone remodeling. In addition, the ECM can bind to
extracellular growth factors, cell-bound ligands and receptors, and proteases to exert its
activities and functions [12–16].

Hydrogels have a hydrophilic nature with a three-dimensional structure and similar
ECM components, which are easily chemically modifiable and can be further tuned to ex-
hibit a favorable degradation profile and mechanical integrity, as well as incorporating cells,
growth factors, or drugs, making them suitable scaffolds for cellular infiltration, adhesion,
growth, proliferation, migration, and differentiation [17–19]. Moreover, the sustainable
development of dynamic chemistries allows the use of hydrogels as nearly physiological
matrices to recapitulate the dynamic interactions of native environments [20–22]. Therefore,
based on the excellent hydrophilicity, adjustability, biocompatibility, and degradability for
cell adhesion, proliferation, and differentiation, hydrogel scaffolds have been widely used
in the biomedical field of tissue engineering research [23]. According to the differences in
the source of gel materials, hydrogels are divided into synthetic polymer hydrogels and nat-
ural polymer hydrogels. On the one hand, the traditional polymer hydrogel mostly contains
synthetic polymer materials, such as polyethylene glycol (PEG), polyacrylic acid (PAA),
polymethyl methacrylate (PMMA), and so on. In addition, there is a complex synthesis
process, large energy consumption, high cost, degradation in the rate of bone regeneration,
and the elastic modulus cannot adapt to the needs of the specific microtissue environment,
which has been an important reason restricting their application [24–30]. In addition, the
performance of traditional hydrogel molding is individual and unchangeable in the treat-
ment of large and complex bone defects, and it cannot accurately fill irregular defect parts.
The above defects greatly limit its application breadth in bone defect repair. On the other
hand, since natural materials can be used to conduct multiple structural and biological
functions due to their outstanding range of macromolecular designs, which have origi-
nated from the evolution of living beings in different environments throughout millions
of years, naturally derived hydrogels (chitosan, alginate, hyaluronan, collagen, agarose,
etc.) are particularly appealing because of their inherent biocompatibility, biodegradability,
safety, and accessible renewable resources, such as animals, plants, algae, and microorgan-
isms around the world [31–33]. After the complex purification, fermentation, and other
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steps, these natural polymer hydrogels can achieve large-scale production to maintain the
original biocompatibility and excellent biodegradation performance for a wide range of
applications [34–36].

According to the types of stimulus sources, hydrogels are mainly divided into three
categories (Figure 1): physical responsive hydrogels, chemical responsive hydrogels, and
biochemical responsive hydrogels [37]. Since 1960, when Wichterle published the landmark
article [38], the hydrogel has gradually developed from a simple, inert gel material to
a complex, variable and controllable “smart” gel material with sensitive or responsive
properties, which has been gradually introduced into the field of bone defect repair. It can
respond to external physical stimuli (light, temperature, pressure, electric field, magnetic
field, etc.), chemical stimuli (pH, redox response, ions, etc.), and biochemical stimuli,
glucose, enzymes, etc.), and conduct shape transformation, produce injectability, and
exhibit self-healing and shape memory properties to perform complex bone defect repair
treatment that is minimally invasive; thus, it has become an emerging scaffold material in
bone tissue engineering [39].
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Figure 1. Schematic illustration of different types of smart hydrogels for bone repair.

Stimulus-responsive hydrogels can be prepared by the design of polymer molecu-
lar chains. Altering external environmental stimulation, such as temperature, pH, ionic
strength, organic compound concentration, magnetic fields, electric fields, and light, can
regulate the structure and physicochemical properties of the hydrogels, thus changing the
swelling and degradation behavior of the hydrogels, which endows them with “smart”
characteristics [40,41]. This allows smart hydrogels to have environmentally responsive
gelation and degradation properties, so stimulus-responsive hydrogels can be widely
used for bone tissue engineering. Through molecular design, the reactive hydrogel scaf-
folds, cells, and growth factors are injected into specific defect tissues, and, meanwhile,
the stimulus-responsive hydrogels can not only positively provide mechanical and bio-
logical support for bone regeneration, but also gradually be degraded and absorbed by
the tissue after implantation into the organism. With the disintegration of the hydrogel
scaffold, the cells can constantly proliferate, differentiate, and secrete the ECM, which
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eventually enables new tissue formation and then achieves the corresponding functional
bone reconstruction [42,43].

In this review, we will first introduce the classification and design concept of smart
hydrogels based on different types of external environmental stimuli, and then discuss rele-
vant examples of research progress using these stimulus-responsive hydrogels, especially
focusing, but not limited to, bone repair applications.

2. Stimulus-Responsive Hydrogels

External environmental stimulation mainly includes light, temperature, pH value,
redox, ionic strength, magnetic fields, electric fields, glucose, and enzymes. Therefore, the
stimulus-responsive hydrogels can be divided into photo-responsive hydrogels, temperature-
responsive hydrogels, pH-responsive hydrogels, redox-responsive hydrogels, magnetic-
responsive hydrogels, enzyme-responsive hydrogels, and so on [44]. Different external
stimulus environments require the corresponding design and fabrication of the hydro-
gel in the molecular structure. Once these external factors change to a critical point,
stimulus-responsive hydrogels can rapidly undergo a discontinuous change or volume
phase transformation. They have high biocompatibility, flexible design, high stability, and
few side effects, and they can not only transport drugs for targeted release to achieve the
purpose of targeted therapy in the field of clinical treatment, but also embed cells and
serve as scaffolds for bone tissue repair in regenerative medicine. Table 1 summarizes the
advantages and limitations of six responsive hydrogel categories.

Table 1. The advantages and limitations of stimulus-responsive hydrogel categories.

Types of Stimuli Advantages Limitations

Photo-responsive hydrogels

Mild reaction conditions;
Low damage to human body;

Spatio-temporal control of drug release
without directly contacting the lesion

Ultraviolet and visible light cannot
penetrate the tissue, which leads to the

limited application only for in vitro
system and skin-level treatments

Temperature-responsive hydrogels

injection capacity;
Highly targeted and less toxic side effects;
Effectively reduce the treatment cost for

patients and improve their health-related
quality of survival life

Low response rate;
Low difference of pathological and

normal tissues within the body

pH-responsive hydrogels
The pH of pathological tissues like local

tissue inflammation, infection and cancer
differs from that of normal tissues

The clinical prediction of the pH value in
diseased sites may result in adverse

tissue reactions

Redox-responsive hydrogels

Redox-responsive drug release;
Relationship between metal ions and
mechanical properties; Regulation of

hydrogel hardness by redox reaction to
promote bone regeneration

Low difference between the pathological
and normal tissues limits the application

Magnetic-responsive hydrogels

Directional drug movement in a
pathological state under the guidance of

the environmental magnetic field can
achieve the targeted therapy

The potential toxicity of magnetic
nanoparticles may be harmful to

live organisms

Enzyme-responsive hydrogels

Structural changes and quick degradation
in response to specific enzymes promote

the release of bio-factors for cell
proliferation and differentiation

Weak peptides activity and low half-life
limit the long-term use

2.1. Photo-Responsive Hydrogels

Light, as a remote stimulus, can present precise control in space and time [45]. Photo-
responsive hydrogels include a polymer network and photochromic groups. These groups
undergo light fracture, isomerization, and light dimer formation under different light
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conditions [46]. Photo-responsive hydrogels can be divided into two categories: covalent
connection with the hydrogel (nitrobenzyl) and non-covalently connected but suspended in
a network (Irgacure 2959, phenyl-2,4,6-lithium, eosin Y, etc.) of nitrobenzyl with the hydro-
gel [47–51]. For the first class of hydrogels, the light signal is captured by the photochromic
molecules and then converted into a chemical signal by chromophores [52]. The size and
mechanics of a photosensitive hydrogel can change due to the radiation of light-sensitive
groups, which undergo light fracture, isomerization, and light dimer formation under
different light conditions [53], such as crosslinking linearly functionalized polyacrylamide
(PA) with a photosensitizer of azobenzene (AZO). For example, the photoinduced AZO-PA
hydrogel prepared by Lee et al., changed its stiffness with the visible light wavelength,
its degradation rate could match the bone generation time, and its biocompatibility was
verified by mesenchymal stem cells. Time-resolved analysis of cell morphology showed
characteristic cell spreading and increased aspect ratios in response to greater substrate stiff-
ness. This hydrogel provided a platform to study mechanosignaling in cells responding to
dynamic changes in stiffness, which is expected to play an important role in bone defects at
different locations, offering a new way to study mechanotransduction signaling pathways
and biological processes for bone tissue engineering [54]. For the second class of hydrogels,
photoinitiators could decompose into free radicals and undergo a chemical reaction of
polymerization or isomerization through the effect of light, causing changes in macro-
molecular chain conformation and the swelling volume. Khetan et al., reported a method
for the gradual preparation of a methacrylic acid hyaluronic acid hydrogel, achieving
the initial gelation of the hydrogel by introducing dithiothreitol into the methacrylic acid
hyaluronic acid solution. When the initialized hydrogel was swollen by the photoinitiator
of Irgacure 2959, the hydrogel could rapidly stiffen due to the free radical polymerization
of the remaining methacrylate group [48]. Thus, both types of photoreactive hydrogels
could regulate the physical or chemical properties of the hydrogels. The photoreaction
fraction was sensitive to specific wavelengths (e.g., visible, ultraviolet, infrared light), which
improved the control of the photo-responsive hydrogels [55].

2.2. Temperature-Responsive Hydrogels

Temperature-responsive hydrogels or temperature-sensitive hydrogels, based on the
temperature difference from room temperature, can produce physical and chemical changes
from sol to gel. Temperature-sensitive hydrogels have both hydrophilic and hydrophobic
groups and phase transition properties with a temperature response at a critical solution
temperature (CST), which could produce a change in affinity to the solvent. When per-
forming the swelling–contraction state transition—that is, the sol–gel state transition—the
temperature transition point is called the lowest critical dissolution temperature (LCST)
or the utmost critical dissolution temperature (UCST) [56]. The most common LCST
temperature-sensitive hydrogel used in bone repair is poly N-isopropyl acrylamide (PNI-
PAAm) and its derivatives. As a raw material for temperature-sensitive nanogels, by
adding more hydrophilic acrylamide (AAm) to NIPAAm, the LCST rises from 32 ◦C to
37 ◦C, which is closer to the human body temperature. Yoshimatsu et al., synthesized
poly (NIPAAm-co-AAm) copolymers and prepared their nanogels by radical polymeriza-
tion [57]. The nanogels had a diameter of 50 to 450 nm and a volume phase transition
temperature of 37 ◦C to 43 ◦C. Animal thermal targeting experiments combined with
near-infrared fluorophore showed that gel delivery could be performed at specific locations
by controlling the LCST and tissue heating processes of the nanogels. Antitumor drugs can
also be loaded onto temperature-responsive nanogels. In bone defects, this nanogel can be
targeted to treat cancer and bone defects. The temperature-responsive hydrogel system has
been applied to release diverse growth factors and thus serve as a form of bone-regenerative
medicine. The growth factors covalently bind to the injectable hydrogels and influence the
growth of specific types of cells, which promotes cell proliferation, migration, recruitment,
and angiogenesis, and modulates cell differentiation. Nafee et al., reported a temperature-
responsive chitosan/β-GP hydrogel to effectively deliver bone resorption inhibitors and
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hinder the osteoclast action to treat Paget’s disease and postmenopausal and glucocorticoid-
induced osteoporosis. After encapsulating a BCS III bone resorption inhibitor, alendronate
(ALN), the chitosan/β-GP hydrogel exhibited temperature-reversible gelation behavior
and ensured controlled ALN release over 45–65 days, with a lower inflammatory response
and faster proliferation and maturation of the granulation tissue. The biodegradability and
biocompatibility of the system were confirmed upon analysis at 21 days after injection of
the hydrogel [58].

In addition, copolymers of PEG and polycaprolactone (PCL) are also common LCST-
type hydrogels. Ni et al., studied an injectable PEG-PCL-PEG hydrogel as a thermal
inducing material for bone tissue engineering with reversibility recovery when PEG-PCL-
PEG aqueous solution was changed from sol to gel [59]. This hydrogel had the advantages
of being minimally invasive and precision matching in the treatment of bone tissue defects.
Fu et al., combined collagen and HAP into a PEG-PCL-PEG copolymer to produce a
hydrogel, and its biocompatibility and enhanced biomimetic microstructure endowed
it with excellent performance in the treatment of bone defects [60]. Cai et al., prepared
a dual network hydrogel (SHIELD) (Figure 2A), which can be used to directly inject
transplanted stem cells, such as human adipose stem cells (hASCs) and human bone marrow
mesenchymal stem cells (BM-MSCs) [61]. Molecular identification between peptides could
form a weak network, which provided mechanical protection during injection and reduced
cell damage caused by shear stress during injection. When the temperature increased
to SHIELD LCST (ca. 34 °C), the enhanced hydrophobic interaction between PNIPAm
polymer chains strengthened the network structure and improved the cell retention time,
thus providing a microenvironment for cell proliferation and differentiation for bone repair
(Figure 2B). Traditional temperature-sensitive materials include polyacrylic acid, gelatin,
etc. However, their applications in bone repair are scarce because of their high solid-state
temperature, which can easily cause damage to the body and is not conducive to material
implantation and bone formation.

2.3. pH-Responsive Hydrogels

pH is the most intensively studied environmental stimulus in chemical stimulus-
responsive hydrogels. The polymer hydrogels have many acidic or alkaline groups, which
can quickly receive or release protons (protonation and deprotonation) in the environment,
thus enabling an intelligent response to pH solutions. A hydrogel crosslinked by cellu-
lose precursor macromolecules under the catalysis of phenylalanine had a pH response,
and the gel time and mechanical strength could be adjusted by the content of precursor
macromolecules and phenylalanine [62].

The pH-sensitive hydrogels are generally composed of the polymer backbone and ion
side groups, which perform the conversion through the absorption or release of protons
in response to the changes in the surrounding pH [63]. When the pH of the surrounding
environment reaches pKa or pKb, the ionic strength of pH-sensitive hydrogels changes
significantly, resulting in strong electrostatic repulsion and the appearance of ionic groups
and volume mutation. Based on the charge properties of the charged groups, the pH-
responsive hydrogels are divided into two categories, anionic and cationic hydrogels.
Anionic hydrogels with negatively charged groups include carboxylic acid, sulfonic acid,
etc. [64]. In high-pH conditions (pH > pKa), the charged groups expand the hydrogel.
Similarly, a cationic hydrogel changes in low-pH conditions (pH > pKb). At the same time,
some scholars have pointed out that in order to simulate the natural ECM, a weak polymeric
electrolyte should be used to synthesize the pH-sensitive hydrogels. The ionic strength in
a weakly polymerized electrolyte can be adjusted smoothly by changing the pH solution
to achieve the desired mechanical properties [65]. The pH-responsive hydrogels had
controllable pH by introducing weak electrolytes at their hydrophobic ends [66]. Yoshikawa
et al., synthesized triblock copolymers using pH-sensitive poly(2-(diisopropylamino)ethyl
methacrylate) (PDPA) and poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) [67].
Simple modulation of the solution pH in a narrow physiologically relevant range produced
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highly adjustable hydrogels with Young’s moduli of 1.4 to 40 kPa. Such hydrogels can
simulate the natural environment well, even under complex stresses, and have wide
applications in dealing with complex stresses caused by various bone defects. Rogina et al.,
demonstrated a pH-responsive chitosan–HAP hydrogel with a gelling agent of NaHCO3.
Tailoring of NaHCO3 could achieve the quick gelation of the chitosan–HAP-based hydrogel
within 4 min, exhibiting good viability for cell proliferation and differentiation as a potential
cell carrier [68]. Lundberg et al., prepared a pH-dependent hydrogel by producing synthetic
thiol-functionalized histamine [69]. The hardness of the hydrogels increased five-fold in
the range of pH 5.0 to 8.0, and their biocompatibility in different cell lines greatly improved
the mechanical properties of the hydrogel scaffolds, indicating promising applications in
the repair of large-segment bone defects.
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2.4. Redox-Responsive Hydrogels

Redox-responsive hydrogels can react to the reduction and oxidation of their con-
stituent molecules. The redox-responsive hydrogels undergo redox reactions through
partial subunits within the polymer backbone, flooding opposing ions to balance the newly
formed charges and eventually leading to the material’s expansion [70]. Different metal
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ions confer different redox responsiveness, resulting in different mechanical properties.
Iron ions are considered promising crosslinkers in biomedical applications, providing
hydrogels with redox responsiveness and tunable mechanical properties by switching
between two oxidation states, trivalent and divalent iron ions. This compensates for the
lack of mechanical properties of simple hydrocoagulation and support. Papanikolaou et al.,
designed a new redox hydrogel that switched between divalent and trivalent iron ions
and was reversible between soft (0.06 MPa) and hard (2.1 MPa) [71]. Many scholars have
studied the relationship between metal ions and the mechanical properties of materials,
and they have also confirmed that the regulation of hydrogel hardness by a redox reaction
can promote bone regeneration [72–74]. However, further research is needed to investigate
the relationship between metal ions and biomineralization, which may become a highly
relevant topic in the field.

2.5. Magnetic Field-Responsive Hydrogels

Magnetic field-responsive hydrogels are generally composed of matrix hydrogels and
magnetic components, which can remotely regulate the physical, biochemical, and mechan-
ical properties due to their structural and functional responses to the external magnetic
field. The properties of the magnetic field-responsive hydrogels depend on the composi-
tion, concentration, size, and uniformity of the magnetic particles in the hydrogel. When
affected by the magnetic field effect, magnetic particles immediately gather, the hydrogel
network contracts, and the solvent is “crowded out”, causing the hydrogel shape to change
rapidly [75]. Current studies have focused on the application of hydrogels containing
magnetic nanoparticles for bone repair. Iqbal et al., synthesized magnetically modified
Fe2O3 nanoparticles (m-nHAP) and added them to a polyvinyl alcohol (PVA) solution
to prepare a m-nHAP/PVA hydrogel [76,77]. PVA, with excellent biocompatibility, high
mechanical properties, and slow biodegradability, was essential for its application in bone
repair. With the increase in m-nHAP content, the pore size inside the hydrogel gradually
increased, which facilitated nutrient exchange and significantly increased the adhesion
and proliferation of osteoblasts. Mahdavinia et al., recombined chitosan and magnetic
Fe3O4 to produce magnetically responsive gel microspheres for the efficient adsorption
of protein [78]. They fixed the Fe3O4 in situ in an inorganic thickening liquid, mixed the
magnetic solution with polyvinyl alcohol and chitosan solution, and then repeatedly froze
and melted the mixing solution to obtain the final gel sample. The results showed that,
due to the introduction of the magnetic material into the gel microspheres, the maximum
adsorption capacity was 240.5 mg/g. Isothermal adsorption data simulation showed that
the sample adsorption process was more consistent with the Langmuir model than the
Freundlich model. The research group also mixed Fe3O4 with carrageenan in situ to obtain
magnetic nanoparticles, which were then crosslinked with chitosan as a crosslinker [79].
The introduction of magnetic particles into the carrageenan/chitosan complex had signifi-
cant effects on the multiple properties of the hydrogel, and the results showed that with the
increase in magnetic particles, the water absorption and encapsulation rate of the gel to the
model drug increased significantly. The combination of xanthan gum and chitosan is also a
new exploration. They can self-assemble in the presence of magnetic nanoparticles and
form a magnetically responsive polyelectrolyte hydrogel under the action of glucuronic
acid [80]. The results showed that the proliferation and adhesion capacity of fibroblasts
on the gel were significantly enhanced under the influence of an external magnetic field.
The addition of magnetic nanoparticles can also significantly improve the gel’s mechanical
strength and improve its rheological energy (increased energy storage modulus). Therefore,
it is expected that this magnetic-responsive hydrogel will have potential applications in the
field of bone defect repair.

It should be mentioned that magnetic materials have been proposed as potential agents
to provide hydrogels with the anisotropy required for their use in tissue engineering. The
intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote
actuators to control the behavior of the cells encapsulated within the hydrogels under the
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application of external magnetic fields. The incorporation of magnetic materials and the
subsequent application of magnetic fields may present different advantages for bone tissue
engineering strategies. First, magnetic nanoparticles can be used to provide the biomaterials
with the visually anisotropic hierarchical architecture in native bone tissues, thus allowing
the controlled design of anisotropic magnetically responsive scaffolding materials. In
addition, the magnetic forces at the interface between cells and hybrid composites display
the capacity for activating the sensitive receptors of the cell’s surface, enhancing cell activity
and promoting the bone formation process and the integration of scaffolds into the host
bone [81–83]. In summary, magnetic hydrogels with anisotropic architectures provide
not only an ordered 3D template in which the complex architectural properties of native
tissues can be replicated but also add control over cell behavior. Therefore, there are
specific strategies in the development of magnetic-responsive hydrogels with the required
architectural properties to properly mimic different anisotropic tissues, such as tendons,
bone, or cartilage (Figure 3) [84]. However, it has been mentioned that when the magnetic
field-responsive hydrogels loaded with concentrated drugs are fixed to a body tissue that is
in a pathological state, although the drugs can be accurately released from the hydrogels to
achieve targeted controlled release for bone regeneration, the potential toxicity of magnetic
nanoparticles derived from the degradation of the hydrogel-based scaffolds should be
carefully considered, and the suitable usage concentration, purity, and geometry of the
magnetic nanoparticles, as well as the rational fabrication of magnetically responsive
hydrogels, remain challenging.
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These stimulus-responsive hydrogels can also be used to fabricate constructs that
replicate the main physicochemical of other tissues, such as tendons or tendon-to-bone
interfaces. For example, Echave et al., developed a gelatin-based multiphasic hydrogel
system with a distinct composition and microstructure [85]. In each phase, HAP particles or
cellulose nanocrystals (CNC) were incorporated into an enzymatically crosslinked gelatin
network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced
with the incorporation of mineralized particles, and magnetic alignment of CNC resulted
in anisotropic structure formation. After the evaluation of biological commitment with
human adipose-derived stem cells toward the tendon-to-bone interface, the results revealed
aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic
phase, which indicated the potential versatility offered by the gelatin–transglutaminase
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tandem enzyme for the development of strategies to mimic the graded, composite, and
complex intersections of the connective tissues.

2.6. Enzyme-Responsive Hydrogels

Enzyme-responsive hydrogels generally contain enzyme-responsive polypeptides,
which can make structural changes in response to specific enzymes, thus promoting the
formation or degradation of the hydrogel network. At the design level, enzyme-responsive
hydrogels often use natural enzymes present in organisms or abnormally highly expressed
in the lesion, such as matrix metalloproteinase (MMP) [86], phosphatase [87], and tyrosi-
nase [88]. In the field of tissue engineering, enzyme-responsive hydrogels, acting as cell and
protein carriers, can catalyze the degradation of the hydrogel cytoskeleton, thereby promot-
ing the release of cell growth factors or providing an environment for cell proliferation and
differentiation. Anjum et al., prepared a dual-responsive hydrogel based on the ECM sugar
695 aminoglycan (GAG) to regulate the delivery of cell growth factors and stem cell differ-
entiation [89]. Using an MMP-sensitive glutamine transaminase factor XIII (FXIIIa)-specific
lysine polypeptide sequence (TG-MMP-Lys) to functionalize the chondroitin sulfate (CS),
CS was crosslinked with eight-arm PEG (PEG-Gln) modified by glutamine polypeptide to
form a hydrogel. The cell adhesion polypeptide as a model ligand (TG-RGD-Lys) could im-
prove the cell adhesion capacity of the hydrogel. After the encapsulation of bone-forming
protein (BMP-2) and BM-MSCs into the hydrogels, BMSCs could maintain cell viability and
realize proliferation and migration, and the released BMP-2 could induce the osteogenic
differentiation of BMSCs (Figure 4). Therefore, a CS-PEG composite hydrogel can flexibly
integrate the molecular tools that are needed to induce various tissues to simulate the char-
acteristics of the extracellular environment, thus achieving the control of cell differentiation
and tissue regeneration.
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from [89] with permission. Copyright 2016 Elsevier.
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3. Conclusions and Perspectives

At present, stimulus-responsive hydrogels are emerging as a new type of smart bio-
material that can sense external physical stimuli (light, temperature, pressure, electric field,
magnetic field, etc.), chemical stimuli (pH, redox reaction, ions, etc.), biochemical stimuli
(glucose, enzymes, etc.), and other different stimuli. They can respond to stimuli such as the
characteristics of the 3D shape and solid–liquid phase state, and exhibit special properties,
such as injection ability, self-repair, and shape memory, thus becoming an ideal material to
provide tissue engineering scaffold adhesion, cell proliferation, and differentiation, and
achieve precise bone defect repair. Nowadays, stimulus-responsive hydrogels not only have
the advantages of being highly hydrophilic and good biocompatibility, but also possess
regulated stimulus responsiveness, which makes them emerging scaffold materials, widely
used for bone defect repair in tissue engineering. However, although many scholars have
affirmed the efficacy of bone defect repair through stimulus-responsive hydrogels, their
therapeutic effect on large bone defects has not been demonstrated due to the minimally in-
vasive treatment of bone defects, the mechanical strength, and the degradation rate of bone
regeneration. Thus, stimulus-responsive hydrogels with biocompatible, osteoconductive,
osteoinductive, and osteogenic effects should have mechanical properties matching their
degradation rate to meet the complex requirements of large bone defect repair.

During the last few decades, although significant progress ranging from cell biology
up to advanced biomaterials has been made for tissue engineering in bone, we still have
a long way to go to achieve functional bone tissue with the promise of revolutionizing
healthcare by providing artificially engineered functional tissue and organ substitutes. In
particular, the following three aspects still need further attention in the future.

First, although hydrogels with biocompatible composition and stimulus response are
achievable for tissue-engineered scaffolds, a single response often cannot achieve the ideal
treatment effect because of the complexity of the human physiological environment and the
diversity of the lesion site environment; thus, a new kind of intelligent nanofiller-loaded
hydrogel, such as magnetoelectric nanoparticles with multi-responsive performance, could
be combined in the same carrier [90–92]. The hydrogel can choose the appropriate means
of response according to the characteristics of the environment to achieve the ideal effect.

Second, the extensive development of precise fabrication and personalized medicine
treatments for individual complexities will enable the engineering of biomaterials with
precise structures and specific functions. Therefore, an in-depth study of the processing tech-
nologies and application of additive manufacturing in the biomedical field is needed, owing
to its potential to provide personalized solutions for patients. For example, biofabrication
is an emerging and rapidly growing research field in which additive manufacturing has
been merged with tissue engineering to generate hierarchical tissue-like and personalized
constructs. On the basis of 3D bioprinting technology, bioinks combining high-resolution
printability with cytocompatibility have been developed as one ideal scaffold material
for clinical translation, which will continue to be an active participant in the process of
bone regeneration, not only as cells and molecular carriers, but also playing an important
role in controlling delivery efficiency and delivery rate, thus making bioprinting hydrogel
systems appealing alternatives for tissue engineering and drug delivery purposes, among
others [93–96]. Therefore, it is of great significance to construct osteoblast and osteoclast
co-culture models based on 3D printing techniques for promoting bone regeneration and
studying the interaction between cells. In addition, the conception of green nanofabrication
and the development of microfluidic particles with improved functionalities are essential
for the creation of granular hydrogels, which will be also an innovative, green, sustained,
and highly promising solution for different therapies in regenerative medicine areas [97].

Finally, further efforts to research hydrogel scaffolds with suitable degradation perfor-
mance, mechanical properties, and vascular functionalization will be the main aspect and
major challenge in the field of bone defect repair—for example, the design and development
of extremely sensitive hydrogels that can be manipulated by using extremely weak external
stimuli after implantation, thus avoiding the potential toxicity risks associated with some
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functional but harmful nanofillers (Au NPs, Ag NPs, MNPs) under strong magnetic radia-
tions [88]. Another major challenge is the degree to which biomaterials bind to the local
microenvironment in vivo. After biomaterial implantation, the altered microenvironment
has a great impact on bone formation, so monitoring the material changes produced in the
body in real time is crucial. It is believed that with the continuous progress of bone tissue
engineering, stimulus-responsive hydrogels will develop rapidly to provide more solutions
for the clinical treatment of bone defects and realize the transformation of clinical results.
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