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Leveraging Real- World Data for EMA 
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Tool to Optimize Type- 1 Diabetes Prevention 
Studies
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The development of therapies to prevent or delay the onset of type 1 diabetes (T1D) remains challenging, and there 
is a lack of qualified biomarkers to identify individuals at risk of developing T1D or to quantify the time- varying 
risk of conversion to a diagnosis of T1D. To address this drug development need, the T1D Consortium (i) acquired, 
remapped, integrated, and curated existing patient- level data from relevant observational studies, and (ii) used a 
model- based approach to evaluate the utility of islet autoantibodies (AAs) against insulin/proinsulin autoantibody, 
GAD65, IA- 2, and ZnT8 as biomarkers to enrich subjects for T1D prevention. The aggregated dataset was used to 
construct an accelerated failure time model for predicting T1D diagnosis. The model quantifies presence of islet 
AA permutations as statistically significant predictors of the time- varying probability of conversion to a diagnosis of 
T1D. Additional sources of variability that greatly improved the accuracy of quantifying the time- varying probability 
of conversion to a T1D diagnosis included baseline age, sex, blood glucose measurements from the 120- minute 
timepoints of oral glucose tolerance tests, and hemoglobin A1c. The developed models represented the underlying 
evidence to qualify islet AAs as enrichment biomarkers through the qualification of novel methodologies for drug 
development pathway at the European Medicines Agency (EMA). Additionally, the models are intended as the 
foundation of a fully functioning end- user tool that will allow sponsors to optimize enrichment criteria for clinical 
trials in T1D prevention studies.

Type 1 diabetes (T1D) is a chronic autoimmune disease caused by 
progressive destruction of insulin producing β- cells in the islets 
of Langerhans of the pancreas. The ability to generate insulin is 

impaired and patients lose the ability to properly regulate blood 
glucose levels. Approximately 1.25 million Americans have been 
diagnosed with T1D, with an expected increase to 5 million by 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 Currently, development of therapies to prevent or delay the 
onset of type 1 diabetes (T1D) remains challenging, and there 
is a lack of qualified biomarkers for patient selection and quan-
tification of risk of conversion to stage 3 T1D.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This work leveraged existing patient- level data from three 
T1D observational studies to develop a time- to- event model 
for predicting the time- varying probability of T1D diagnosis, 
based on islet autoantibody (AA) seropositivity and other pa-
tient features, for the purposes of optimizing clinical trial de-
sign in T1D prevention studies.

WHAT DOES THIS STUDY ADD TO OUR 
KNOWLEDGE?
 The developed models demonstrates that islet AAs are sta-
tistically significant predictors of the time- varying probability 
of conversion to a diagnosis of T1D during a reasonable dura-
tion for a T1D prevention trial, representing adequate underly-
ing evidence for their use as enrichment tools in clinical trials.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Following the European Medicines Agency (EMA) qualifi-
cation of the islet AAs, the model will be made publicly available 
to sponsors and regulators to help expedite drug development to 
prevent T1D.
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2050.1,2 Europe is seeing a steep rise in the number of children and 
young individuals with T1D in countries with previously lower 
incidence rates, such as Hungary and Poland.3– 5 Worldwide, T1D 
has an incidence rate of ~ 15 per 100,000 individuals6 and T1D- 
related healthcare cost and lost income amounts to over 16 billion 
dollars annually.7

Insulin replacement therapy remains the mainstay of treatment 
for T1D and is used to manage blood glucose levels, as the major 
complications associated with diabetes, such as diabetic ketoaci-
dosis, severe hypoglycemia, nephropathy, neuropathy, retinopathy, 
and cardiomyopathy, arise from poor short-  and long- term glyce-
mic control.

Lowering hemoglobin A1c (HbA1c) levels through intensive 
insulin therapy reduces the risk of diabetes- related complications,8 
but most patients fail to achieve glycemic targets.9 Insulin and other 
blood glucose management approaches have provided substantial 
benefits to patients,8 but insulin replacement is not physiologic leav-
ing patients and their caregivers with substantial disease management 
burden and unmet needs. It also fails to address the underlying etiol-
ogy of T1D (i.e., autoimmune destruction of pancreatic β- cells).

Given the progressive nature of T1D a staging paradigm was 
established in 2015 identifying three distinct stages of the T1D 
disease continuum. Stage 1 marks activation of the autoimmune 
process, and is characterized by the presence of two or more islet 
autoantibodies (AAs) with normoglycemia and the absence of 
clinical symptoms. Stage 2 is defined as the presence of β- cell auto-
immunity with dysglycemia and the absence of clinical symptoms, 
and indicates further β- cell destruction. Finally, stage 3 is defined 
as the onset of symptomatic disease. This staging paradigm is now 
widely accepted and is able to support the development of novel 
therapies aiming to delay or prevent the onset of T1D. Targeting 
earlier stages of disease is important, as intercepting progression 
after T1D diagnosis (i.e., preserving residual β- cell function) 
might be quite late to impart a large clinical benefit, as substantial 
mass and functionality of endogenous β- cells has already been lost.

Development of therapies that prevent or delay T1D remains 
challenging. One major barrier lies in quantifying the time- varying 
risk of progression to stage 3 disease, which can support the design 
of clinical trials of more feasible duration. Numerous T1D natural 
history studies have identified individual risk factors for developing 
T1D. Individuals who have a first- degree relative (FDR) with T1D 
or express a specific human leukocyte antigen (HLA) haplotype 
(HLA- DR3/3, DR4/4, DR3/4, DR3/X [X ≠ 3], DR4/X [X ≠ 4]) 
are likely to be at a higher risk for developing T1D. Additionally, 
the presence of multiple islet AAs, specifically insulin/proinsulin 
autoantibody (IAA), glutamic acid decarboxylase 65 autoantibody 
(GAD65), insulinoma antigen- 2 autoantibody (IA- 2), or zinc trans-
porter 8 autoantibody (ZnT8), has been shown to be relevant bio-
markers for predicting a clinical diagnosis of T1D.10 Past findings 
indicate individuals at risk of developing T1D (FDR and specific 
HLA haplotype) with two or more islet AAs11 will eventually lead 
to the onset of T1D over time, and the rate of conversion to stage 3 
T1D12 becomes higher with an increased number of islet AAs.13– 15

Integrating findings from past natural history studies into pa-
tient enrollment criteria in T1D prevention trials is also challeng-
ing, given the variability of the latency phase (i.e., progression 

from stage 1 or 2 to stage 3 disease).12 To use islet AAs as enrich-
ment biomarkers in T1D prevention trials, quantitative estimates 
of timing to T1D diagnosis, based on baseline information that 
is routinely collected in prevention trials is required. By including 
islet AA status and other clinically relevant covariates, sponsors 
can quantify the heterogeneity in the latency phase and optimize 
the design of clinical trials of appropriate and reasonable size, du-
ration, and cost.

In response to this drug development need, the T1D Consortium 
(T1DC) was founded by the Critical Path Institute (C- Path) in 
2017 as a public- private partnership, including pharmaceutical 
industry, patient- advocacy organizations, philanthropic organiza-
tions, clinical researchers, the National Institutes of Health, and 
the Food and Drug Administration. The primary aim of this con-
sortium was to support drug development in T1D prevention by 
obtaining the regulatory qualification of biomarkers for T1D pre-
vention trials. T1DC acquired and curated existing patient- level 
data from 3 observational studies and evaluated the utility of IAA, 
GAD65, IA- 2, and ZnT8 as biomarkers to enrich subjects for in-
clusion in T1D prevention trials, using a model- based approach. 
T1DC explored a wide range of patient characteristics, including 
demographics, HLA- haplotype, FDR T1D status, blood glu-
cose assessments, C- peptide levels, age- adjusted body mass index 
(BMI), and the various combinations of islet AA presentation. 
T1DC developed a time- to- event model to quantify the time- 
varying probability of reaching a diagnosis of T1D, which could 
be used to optimize subject enrichment strategies for T1D preven-
tion trials aiming to delay or prevent T1D. Based on this model, 
in March 2020, the European Medicines Agency (EMA) issued a 
public Letter of Support for “Islet autoantibodies as enrichment 
biomarkers for type 1 diabetes prevention studies, through a quan-
titative disease progression model.” The EMA letter of support 
reiterated the need for collection and sharing of relevant data to 
“permit timely and robust development and validation of such a 
model...,” stating this would “facilitate development and validation 
of the proposed quantitative [tool].”

Accordingly, the T1DC leveraged shared data from multiple 
sources to develop quantitative models that provided evidence for 
formal regulatory submissions through the qualification of novel 
methodologies pathway at the EMA.16 The EMA has now ad-
opted its final qualification opinion, formally endorsing the use of 
the islet AAs, with additional relevant clinical features, as enrich-
ment biomarkers for use in T1D prevention studies.

METHODS
Data
Patient- level data were obtained from three studies, TrialNet (TN01), 
The Environmental Determinants of Diabetes in the Young (TEDDY), 
and Diabetes Auto Immunity Study in the Young (DAISY) studies, to 
perform the analysis and support the qualification effort.10,17,18 TN01 
and TEDDY datasets were used for model development and DAISY was 
set aside for external validation. All three studies are observational, with 
different inclusion criteria and scheduled frequency of follow- up.

Data curation and visualization
To build the analysis set, a subset of common variables from all possible 
variables in each dataset was constructed. Relevant subject features based 
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on prior knowledge were chosen for the analysis set. These features in-
cluded (i) presence of islet AAs (IAA, GAD65, IA- 2, and ZnT8) measured 
as a binary variable of either seropositivity or seronegativity, (ii) blood glu-
cose measurements (0 and 120- minute timepoints of oral glucose tolerance 
tests (OGTTs)), (iii) HbA1c measurements, (iv) demographic information 
(sex, baseline age, and FDR status), and (v) HLA subtype. The baseline in-
formation from the three studies was used for the time- to- event modeling 
analysis. A derived baseline (Figure 1) was used for the analysis set defined 
as the first record, (i.e., timepoint), for each individual in which the fol-
lowing criteria are satisfied: (i) presence of any two or more islet AAs, (ii) 
complete, (i.e., non- missing) information for OGTT (0 and 120- minute 
timepoints), HbA1c measurements, age, and sex. The rationale for choos-
ing two or more islet AAs was based on the utility of the biomarker for 
drug development, as presence of one or zero islet AAs at baseline have 
significantly longer expected times to T1D diagnosis compared to two or 
more islet AAs. These criteria also allow for assessment of glycemic sta-
tus, and are representative of those likely to enter T1D prevention studies. 
Figure S1 shows risk of T1D diagnosis stratified by using only the number 
of islet AAs present at the first patient record, including zero.

Table S1 lists the baseline covariates evaluated and tested as predictors 
in the time- to- event model. Of note, C- peptide and BMI were not in-
cluded as covariates due to significant missing information in the available 

data. BMI was tested as a covariate in the model and did not show statis-
tical significance as a model predictor. The islet AA combinations were 
represented separately as binary predictors (presence or absence). As the 
definition of the derived baseline does not include individuals with miss-
ing information for OGTT (0 and 120- minute timepoints), HbA1c, sex, 
and age. Hence, no imputations were necessary for these variables. All con-
tinuous covariates were standardized, (i.e., computed as (original value –  
mean(value))/(standard deviation of original values)), and OGTT values 
were first log transformed. The subscript “s” denotes this standardization. 
A comprehensive tabulation and visualization of the data contained in the 
analysis set were performed.

Modeling analysis
The flow chart shown in Figure 2 provides a workflow for model devel-
opment, where subsequent steps were executed based on best practices for 
model building and engagement with EMA’s Scientific Advice Working 
Party (SAWP) as part of the qualification pathway. In brief, the model 
building process included: (i) building a Cox proportional hazard (PH) 
model using the analysis dataset as a parsimonious initial step; (ii) test-
ing the PH assumption, and if violated continuing the model building 
process; (iii) building a parametric accelerated failure time (AFT) model 
using the analysis dataset; (iv) evaluate model performance with k- fold 

Figure 1 Schematic of data curation process to obtain the derived baseline. OGTT, oral glucose tolerance test. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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cross- validation and external validation using DAISY as an independent 
dataset. The selection of an AFT methodology was based on initial test-
ing of the PH assumption and consensus with the SAWP regarding the 
added value of a parametric approach.

The final developed model was an AFT model using a Weibull distribu-
tion for the baseline hazard, and predictors of T1D diagnosis. The hazard 
function for the AFT model is given by:

where hi(t) is hazard function for individual i determined by a set of j co-
variates {Xij} and corresponding (estimated) coefficients {βj}, t is the sur-
vival time, and ho(t) is the baseline hazard. The corresponding survival 
function with a Weibull baseline hazard is given by:

where Si(t) is the survival function for the ith individual at time t, λ is the 
scale parameter, and a is the shape parameter.

In both model development phases (Cox and AFT), univariate analyses 
were carried out and covariates with no significant univariate association 
(P value ≥ 0.1) to a T1D diagnosis were not considered for the full model 
development. The Wald test was used to compute the P values and check 
whether the covariate coefficient value was statistically different from zero. 

Additionally, a multiplicity adjusted alpha value based on Bonferroni cor-
rection was used for univariate analysis. The covariates selected after the 
univariate analysis were analyzed for multicollinearity and associations 
before performing multivariate analysis. Pearson’s correlation was used to 
test the correlation between continuous covariates and a correlation value 
above 0.3 was initially chosen as significant. However, in dialogue with the 
EMA, it was recommended that certain covariates (age and sex) be con-
sidered even with a correlation value above 0.3 as it is expected that future 
populations may have such correlations preserved. In such cases, accuracy 
of the model could be improved.

The association between continuous and categorical covariates was 
tested using the Wilcoxon test and the association between categorical co-
variates was tested using the chi- square test.

In both cases, a P value < 0.001 (multiplicity adjusted) was used as the 
threshold for significance.

The multivariate analyses were performed on the covariates selected 
from the univariate analysis. All possible combinations of covariates were 
tested in the multivariate analysis as the number of covariates was reason-
able. Models were compared using Akaike’s information criteria (AIC), and 
a reduction in AIC value greater than or equal to 10 was considered strong 
evidence in favor of the model with lower AIC.19 In the case of the Cox 
model, the PH assumption was tested using Schoenfeld residuals, which 
quantify potential time- dependency on survival times. No additional 
model diagnostics were performed for the Cox PH model due to a violation 
of the PH assumption observed with the Schoenfeld residuals test.

To build the parametric AFT model, multiple parametric distributions 
were tested to define the underlying hazard function, including exponen-
tial, Weibull, gamma, generalized gamma, generalized F, log logistic, log 
normal, and Gompertz. AIC values and graphical methods were used 
to compare the different parametric forms. The “flexsurvreg” function 
in the “flexsurv” R package was used to perform the selection of the best 
parametric distribution for the underlying hazard function. The univari-
ate analysis, correlation, and association between covariates analysis, and 
multivariate analysis for AFT model were performed similar to Cox PH 
model, as previously described. Model diagnostics were performed using 
Q- Q plots to test the AFT model assumption for two groups of survival 
data. In this case, only categorical groupings are permitted, and continuous 
covariates were split into binary groups according to a chosen threshold.

Model performance and validation
Time- dependent receiver operating characteristic (ROC) curves were gen-
erated to assess the predictive performance of the analysis set.20 For model 
validation, a k- fold cross- validation technique was used,21 and data were 
split into k = 5 subsets with roughly equal numbers of subjects. Four of the 
five subsets were used as a training set, and the remaining set was used as an 
individual test set. This process was repeated by assigning one of the five 
subsets as the new test set, whereas the remaining were used as the training 
set for all combinations. Additionally, goodness- of- fit plots were generated 
for all 5 folds and the concordance index (c- index) was computed for each 
of the 5 folds estimated by time increments of 1 year up to 6 years.

An additional internal validation was performed by analyzing predic-
tive performance on pediatric subpopulations in the data. T1DC selected 
a random portion (50%) of individuals aged less than 12  years old and 
used this population as a test data set. The remaining data were used for 
model training. Goodness- of- fit plots were created by overlaying model 
estimated survival on Kaplan- Meier curves. The concordance index was 
computed for time increments of 1 year up to 6 years.

The DAISY dataset was used to perform the external validation. The 
definition of the derived baseline was applied to obtain the external vali-
dation set. The AFT model built using the analysis set was used to predict 
survival for the external validation set. The visual predictive check (VPC) 
style goodness- of- fit plots were created to assess the performance of the 
AFT model on the external dataset.

All analysis was carried out in the R programming language. Model 
building, visualization, model assumptions, diagnostics, and external 
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Figure 2 Modeling development workflow. AFT, accelerated failure 
time; PH, proportional hazard.
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validation was conducted in R (version 4.0.0; R Core Team, Vienna, 
Austria, 2018) using the packages “survival,”22 “flexsurv,”23 “survminer,”24 
“dplyr,”25 “survAUC,”26 “rms,”27 survParamSim,28 and “riskRegression.”29

RESULTS
Data curation and visualization
A total of 2,022 subjects were curated for the analysis set with 
complete information for islet AA positivity, age, sex, HbA1c, 
and 0 and 120- minute time points of OGTTs. Data summa-
ries for the covariates and the diagnosis information for both 
TN- 01 and TEDDY are shown in Table S2. The distribution 
of diagnosis by each of the continuous covariates is shown in 
Figure S2.

Modeling analysis
As indicated in Figure 2, a Cox PH model was first explored. 
Details can be found in the Supplementary Materials below 
Figure  S2. The development of the AFT model was initiated 
by selecting the most appropriate distribution of the hazard 
function. Several parametric distributions were tested and com-
pared based on AIC and graphical inspection. The Weibull 
distribution was found to be the most appropriate parametric 
distribution.

The univariate analysis using AFT model with Weibull distri-
bution showed covariates age at derived baseline, sex, several islet 
AA combinations (GAD65_IAA, GAD65_ZnT8, IA- 2_ZnT8, 
IA- 2_IAA_ZnT8, and GAD65_IA- 2_IAA_ZnT8), log trans-
formed 0 and 120- minute glucose from OGTTs, and HbA1c 
had statistically significant beta coefficients. The covariates trial 
ID, BMI, high- risk HLA subtype, FDR, and several AA combi-
nations (GAD65_IA- 2, IA- 2_IAA, IAA_ZnT8, GAD65_IAA_
ZnT8, GAD65_IA- 2_ZnT8, and GAD65_IAA_IA- 2) did not 
show a significant effect on overall survival and were dropped 
from subsequent analysis. Based on the univariate analysis and 
analysis of correlation and association previously performed for 
the Cox PH model (see Supplementary Material), the covariates 
GAD65_IAA, GAD65_ZnT8, IA- 2_ZnT8, IA- 2_IAA_ZnT8, 
GAD65_IA- 2_IAA_ZnT8, Log_GLU0_s, Log_GLU120_s, and 
HbA1c_s were chosen for AFT multivariate analysis. In the mul-
tivariate analysis, a total of eight possible models were obtained 
with islet AA combinations as the base model (Table  1). The 
models were compared using their AIC values. Model 6 was se-
lected as it produced a lower AIC with fewer covariates. Table S3 
shows shape and scale parameters for the Weibull distribution, 
estimated beta values, and Wald test P values for each covariate.

As stated earlier, based on feedback received from the SAWP, 
alternative models were developed by including bAGE_s and SEX 
in different combinations using model 6 (Table 2). Although these 
covariates are strongly associated with others, they were included 
given the expectation that future populations will have such asso-
ciations preserved.

For comparison, T1DC will refer to model 6 as the original 
model (orig_model). The AIC value of alternative model 3 (alt_
mod3) was significantly lower (with a reduction > 10) compared 
with all other alternative models and the original model. Hence, 

alternative model 3 (alt_mod3) was chosen as the final multi-
variate parametric AFT model. Table  3 shows shape and scale 
parameters for the Weibull distribution, estimated beta values, 
Wald test P values for each covariate, and interpretation of the 
beta coefficient.

The model diagnostics using Q- Q plots indicated that the 
AFT models adequately described the effect of AA combi-
nation status (presence or absence), HbA1c above or below a 
defined threshold of 5.25%, age as a binary measure above or 
below 11  years, sex, and the log transformed and standardized 
120- minute results from OGTTs as a binary with a threshold of 
100 mg/dL (Figure S3).

Model performance and validation
The time- dependent ROC analysis and area under the curve 
(AUC) values showed good predictive performance (Figure S4). 
Additionally, the results showed AUC values greater than 0.8 for 
up to 2.5 years, which is typically used as a reasonable duration for 
a clinical trial.

The k- fold cross validation with k = 5 showed c- index values 
close to or greater than 0.8, indicating good predictive perfor-
mance. VPC- style plots showed good graphical fit for folds 
1, 2, 3, and 4, whereas fold 5 only performed well within the 
first year. The black curve represents the Kaplan– Meier esti-
mate, and the red curve represents model prediction (Figure 3). 
The internal cross- validation on the pediatric population (age 
< 12 years old) was derived in the analysis dataset comprised of 
1,330 subjects, with 345 from TEDDY and 985 from TN01. 
Half of this population, (n = 665), were randomly selected as a 
test set for this cross- validation analysis. The c- index was 0.8 or 
greater until 3 years and more than 0.75 until 6 years. The VPC 
style on the pediatric population showed reasonable graphical 
fit (Figure S5).

The external validation performed using the DAISY dataset 
gave a c- index value of 0.91 in year 1 and 0.82 in year 2, even with 
the limited number of subjects. The c- index post- 3  years were 
lower compared to the first 2  years, likely due to the sparsity of 

Table 1 Values of AIC for AFT models fitted with a Weibull 
distribution

Model Covariates AIC

1 GAD65_IAA + GAD65_ZnT8 + IA- 2_
ZnT8 + IA- 2_IAA_ZnT8 + GAD65_IA- 2_

IAA_ZnT8 (Base model)

3,292.476

2 Base model + Log_GLU0_s 3,278.769

3 Base model + HbA1c_s 3,173.157

4 Base model + Log_GLU120_s 3,059.067

5 Base model + Log_GLU120_s + 
Log_GLU0_s

3,052.591

6 Base model + Log_GLU120_s + 
HbA1c_s

2,981.886

7 Base model + Log_GLU0_s + HbA1c_s 3,172.244

8 Base model + Log_GLU0_s + Log_
GLU120_s + HbA1c_s

2,983.369

AFT, accelerated failure time; AIC, Akaike’s information criteria.
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T1D diagnoses during the later years in the DAISY dataset. The 
VPC plot showed good graphical fit even with limited number of 
events (Figure 4). These findings provide evidence for good pre-
dictive performance of the model for time duration over which a 
trial of reasonable duration would be conducted.

DISCUSSION
This work aimed to leverage existing data sources that captured 
islet AA measurements and glycemic markers in a population 
likely to participate in T1D prevention trials and generate evi-
dence supporting an EMA qualification opinion for the islet AAs 
as enrichment biomarkers in T1D prevention trials. Data were 
obtained from observational studies and harmonized to ensure 
interoperability. Initially, a semiparametric Cox PH model was 
assessed using an analysis set from the curated dataset. During 
model analysis, the PH assumption was found to not hold true. 
Given SAWP’s recommendation to explore a parametric modeling 

approach, a parametric AFT model was selected, as this does not 
require the PH assumption to hold true.

In the model, baseline islet AA positivity was represented as a sin-
gle covariate with 11 distinct levels, representing all possible com-
binations of 2 or more relevant islet AAs. This approach is more 
comprehensive than considering the total numbers of islet AAs 
and allows for quantification of risk by islet AA type. Performing a 
cross- sectional assessment permits the possibility that subjects pos-
itive for two or three islet AAs may convert to the three or four islet 
AAs before diagnosis. However, this method reflects how sponsors 
will recruit subjects for T1D prevention studies, as subject’s islet 
AA time history will likely not be available to sponsors. Hence, the 
use of baseline information is preferred in this context.

Results from the AFT modeling analysis showed GAD65_
IAA and GAD65_ZnT8 combinations have the least relative 
risk compared with all other combinations, whereas IA- 2_ZnT8 
has the highest relative risk. Presence of any three islet AAs was 

Table 2 Value of AIC for original model (model 6) and other alternative models

Model Covariates AIC

Original model (orig_mod) GAD65_IAA + GAD65_ZnT8 + IA- 2_ZnT8 + IA- 2_IAA_ZnT8 + 
GAD65_IA- 2_IAA_ZnT8+ Log_GLU120_s + HbA1c_s

2,982

Alternative model 1 (alt_mod1) GAD65_IAA + GAD65_ZnT8 + IA- 2_ZnT8 + IA- 2_IAA_ZnT8 
+ GAD65_IA- 2_IAA_ZnT8+ Log_GLU120_s + HbA1c_s + SEX

2,972

Alternative model 2 (alt_mod2) GAD65_IAA + GAD65_ZnT8 + IA- 2_ZnT8 + IA- 2_IAA_ZnT8 
+ GAD65_IA- 2_IAA_ZnT8+ Log_GLU120_s + HbA1c_s + 

bAGE_s

2,937

Alternative model 3 (alt_mod3) GAD65_IAA + GAD65_ZnT8 + IA- 2_ZnT8 + IA- 2_IAA_ZnT8 
+ GAD65_IA- 2_IAA_ZnT8+ Log_GLU120_s + HbA1c_s + 

bAGE_s + SEX

2,921

AIC, Akaike’s information criteria.

Table 3 Final selected model (alt_mod3) parameter estimates

Covariates Beta 95% lower CI 95% upper CI P value Interpretation of beta coefficient

Shape 1.370 1.280 1.470 < 0.0001 Weibull Shape parameter

Scale 6.780 5.990 7.670 < 0.0001 Weibull Scale parameter

log_GLU120_s −0.546 −0.623 −0.469 < 0.0001 Unit increase in log_GLU120_s value reduces the 
time to T1D diagnosis by 40%

HbA1c_s −0.322 −0.392 −0.252 < 0.0001 Unit increase in HbA1c_s value reduces the time to 
T1D diagnosis 30%

SEX 0.275 0.147 0.403 < 0.0001 Having SEX = Male increases the time to T1D 
Diagnosis by 30%

bAGE_s 0.267 0.183 0.350 < 0.0001 Unit increase in bAGE_s value increases the time to 
T1D diagnosis by 30%

GAD65_IAA 0.506 0.284 0.728 < 0.0001 Presence of GAD65_IAA increases the time to T1D 
diagnosis 70%

GAD65_ZnT8 0.474 0.225 0.723 0.0002 Presence of GAD65_ZnT8 increases the time to T1D 
diagnosis by 60%

IA- 2_ZnT8 −0.346 −0.603 −0.087 0.0084 Presence of IA- 2_ZnT8 reduces the time to T1D 
diagnosis by 30%

IA- 2_IAA_ZnT8 −0.257 −0.512 −0.002 0.0482 Presence of IA- 2_IAA_ZnT8 reduces the time to T1D 
diagnosis by 20%

GAD65_IA- 2_IAA_
ZnT8

−0.064 −0.226 0.099 0.4400 Presence of GAD65_IA- 2_IAA_ZnT8 reduces the time 
to T1D diagnosis by 10%

CI, confidence interval; IA, insulin antibody; IAA, insulin/proinsulin autoantibody; T1D, type 2 diabetes.
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not shown to be significantly different from baseline hazard, and 
presence of all four islet AAs had a marginal risk increase rela-
tive to the baseline hazard. Incorporating 120- minute OGTTs, 
baseline age, sex, and HbA1c values provide a significant ability 
to further stratify risk of T1D diagnosis within this islet AA pos-
itive populations.

Both internal and external validation procedures were carried 
out for the final selected model (alt_mod3). During internal val-
idation, a time- dependent ROC analysis showed high overall con-
cordance across AUC values (>  0.75), especially within the first 
2- years following the derived baseline, which represents a time 
frame concordant with feasible trial design for T1D prevention. 
Concordance in the first 2  years was also high (c- index >  0.75). 
As pediatric populations (< 12 years of age) are of keen interest to 
sponsors, additional internal cross- validation was carried out in this 
population, also resulting in a high degree of concordance (c- index 
≈ 0.8). External validation using the DAISY study showed a high 
concordance in the first 2 years (c- index > 0.8) in this population.

An important data consideration was the selection of individ-
uals with non- missing glycemic measurement information for 
inclusion in the derived baseline population used in the AFT 
model. This population is representative of those likely to enter 
a T1D prevention study. The modeling analysis indicated that 
dysglycemia measured by OGTT is highly predictive of timing 
to T1D diagnosis, thereby providing utility for further strati-
fication. Another key data consideration is the unknown time 
history of islet AA positivity in TN01, representing a source of 
variability. Although this variability is contained by each islet 
AA combination, it represents the practical reality of drug devel-
opment and trial design for prevention studies. The purpose of 
this effort was to qualify islet AAs as enrichment biomarkers for 
T1D prevention studies. As such, study sponsors will typically 
not know the islet AA time history of participating subjects, and 
the TN01 data used are therefore representative of a population 
likely to enter T1D prevention studies. Finally, the size of the 
external validation was relatively small, due to the definition of 

Figure 3 Visual predictive check (VPC)- style plots for k- fold cross validation (red shaded region shows the 95% prediction interval and the 
black shaded region shows the 95% confidence interval (CI) for the observed data). [Colour figure can be viewed at wileyonlinelibrary.com]
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baseline used in the analysis. Although the model performed 
well, additional credibility could be established with larger num-
bers of subjects from other independent datasets.

In conclusion, T1DC’s analysis of integrated data from indepen-
dent observational data sources represented adequate supporting 
evidence to receive EMA qualification for the use of islet AAs as en-
richment biomarkers for T1D prevention trials. When used in this 
setting, islet AAs can identify populations likely to reach a T1D di-
agnosis during T1D prevention studies of reasonable duration. The 
model presented provides a basis to quantitatively link independent 
sources of risk, measured by islet AAs, baseline age, sex, and glyce-
mic measures. Regulatory endorsement of the islet AAs (when used 
according to the qualified context- of- use) through the EMA qual-
ification of novel methodologies pathway, based on the evidence 
provided through the modeling exercise, is expected to facilitate 
drug development in T1D prevention by providing sponsors with 
increased confidence and regulatory certainty when implement-
ing these biomarkers into clinical trial design. The underpinning 
model will support a fully functioning end- user tool enabling spon-
sors to optimize enrichment criteria for T1D prevention studies. In 
accordance with T1DC’s and EMA’s qualification of novel meth-
odologies goals, the model will be made publicly available.

SUPPORTING INFORMATION
Supplementary information accompanies this paper on the Clinical 
Pharmacology & Therapeutics website (www.cpt-journal.com).
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