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ABSTRACT Land conversion for intensive agriculture produces unfavorable changes to
soil ecosystems, causing global concern. Soil bacterial communities mediate essential terres-
trial ecosystem processes, making it imperative to understand their responses to agricultural
perturbations. Here, we used high-throughput sequencing coupled with a functional gene
array to study temporal dynamics of soil bacterial communities over 1 year under different
disturbance intensities across a U.S. Southern Plains agroecosystem, including tallgrass prai-
rie, Old World bluestem pasture, no-tillage (NT) canola, and conventional tillage (CT) wheat.
Land use had the greatest impact on bacterial taxonomic diversity, whereas sampling time
and its interaction with land use were central to functional diversity differences. The main
drivers of taxonomic diversity were tillage . sampling time . temperature, while all meas-
ured factors explained similar amounts of variations in functional diversity. Temporal differ-
ences had the strongest correlation with total nitrogen . rainfall . nitrate. Within land
uses, community variations for CT wheat were attributed to nitrogen levels, whereas soil or-
ganic matter and soil water content explained community variations for NT canola. In com-
parison, all measured factors contributed almost equally to variations in grassland bacterial
communities. Finally, functional diversity had a stronger relationship with taxonomic diver-
sity for CT wheat compared to phylogenetic diversity in the prairie. These findings reinforce
that tillage management has the greatest impact on bacterial community diversity, with
sampling time also critical. Hence, our study highlights the importance of the interaction
between temporal dynamics and land use in influencing soil microbiomes, providing sup-
port for reducing agricultural disturbance to conserve soil biodiversity.

IMPORTANCE Agricultural sustainability relies on healthy soils and microbial diversity.
Agricultural management alters soil conditions and further influences the temporal dy-
namics of soil microbial communities essential to ecosystem functions, including organic
matter dynamics, nutrient cycling, and plant nutrient availability. Yet, the responses to ag-
ricultural management are also dependent on soil type and climatic region, emphasizing
the importance of assessing sustainability at local scales. To evaluate the impact of agri-
cultural management practices, we examined bacterial communities across a manage-
ment disturbance gradient over 1 year in a U.S. Southern Plains agroecosystem and deter-
mined that intensive management disturbance and sampling time critically impacted
bacterial structural diversity, while their interactive effect influenced functional diversity
and other soil health indicators. Overall, this study provides insights into how reducing
soil disturbance can positively impact microbial community diversity and soil properties in
the U.S. Southern Plains.
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Rising human populations have resulted in the need for increased land conversion
to heavily managed environments for greater food production. Yet, land use

change represents one of the largest perturbations to soil ecosystems, significantly
impacting both aboveground and belowground communities (1, 2). Whole ecosystem
diversity is generally diminished when natural land is converted to agricultural sys-
tems, with lasting negative effects on soil health (3). In general, agricultural land use
type regulates microbial diversity, plant diversity, and soil physicochemical properties
(4–7). The effect of land use on microbial communities has become increasingly impor-
tant since microbes represent the bulk of biodiversity in terrestrial ecosystems, perform
essential ecosystem functions, and are fundamental to ecosystem stability (8–10).

While it has been established that changes in land use shift microbial community
structure and diversity, there has been a renewed focus on observing these commun-
ities under a gradient of disturbance intensities due to the quickly growing need for
sustainable agricultural practices. Different intensities of soil disturbance create unique
environments that support microbes with those specific environmental requirements
(11). Although terrestrial microbial studies over large spatial scales (6, 7, 12, 13) have
demonstrated which soil and environmental factors are important for shaping micro-
bial distribution patterns, they are unable to pinpoint the dynamics required to man-
age microbial communities at the local level. Agricultural management practices also
vary locally, with inputs such as tillage, pesticide and fertilizer use, crop rotation, and
residue incorporation directly altering soil microbial biomass (14, 15) and community
composition (2, 16). This is critical as there is no ideal community type (17), soil type, or
set of soil characteristics (18, 19) when trying to define a functional soil system. By
directing attention to gradients of disturbance in a range of land uses commonly
found in agroecosystems, local variation can be captured in soil and environmental
properties, management type, and plant diversity, which may give insight into the
complex dynamics shaping soil communities (11).

Patterns of variability between land use with increasing management disturbance
have been studied extensively at single time points, but much less is known about the
extent to which land use under a gradient of disturbance intensities interacts with tem-
poral dynamics in altering soil bacterial communities. As seasons transition, variations
occur in environmental factors such as solar radiation, temperature, and precipitation,
all of which can affect microbial community structure and functions (20–23). Several
studies investigating soil microbial community changes in relation to temporal variabil-
ity have observed community differences in a range of time scales, many of which are
associated with shifting environmental conditions (21, 22, 24). These variations in environ-
mental conditions and community structure are often related to land management prac-
tices (16, 23, 25) and temporal changes in plant growth and development (26, 27).
Specifically, plant growth alters rhizodeposition, promoting microbial activity (28) and
modifying community composition by enriching specific microorganisms (29). Expanding
on spatiotemporal studies that are specific to the local land use, plant community, and
soil conditions are critically needed.

Functional diversity of the soil microbial community is equally important as compo-
sitional diversity when examining overall ecosystem diversity. Typically, a high struc-
tural and functional microbial diversity is thought to be fundamental to soil health,
function, and sustainability by providing functional redundancy critical for ecosystem
stability in the presence of stress and disturbance (9, 30–32). The use of functional
gene arrays (FGAs) or GeoChip has provided a way to examine relationships between
microbial community structure and function by focusing on genes important to micro-
bial processes like biogeochemical cycling and stress responses (33–39). FGAs allow for
a thorough analysis of essential ecological questions, especially those concerned with
microbial community responses to disturbances (35, 40–44), including soil microbial
community responses to land use, land management, and temporal changes (45–47).
However, it remains unclear how the functional capabilities of soil microbial commun-
ities change under a gradient of disturbance intensities and seasons.
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To investigate the effect of land use with increasing management disturbance and sea-
son on the temporal dynamics of soil bacterial communities and its underlying mechanisms,
we conducted a 12-month field study in agroecosystem land uses with a gradient of dis-
turbance within the U.S. Southern Plains agroecosystem. The agricultural sites included two
perennial grasslands and two annual croplands: a native tallgrass prairie (TGP), Old World
bluestem (OWB) pasture, no-tillage (NT) canola (Brassica napus L.) field, and conventional till-
age (CT) winter wheat (Triticum aestivum L.) field. In this study, we focused on the following
questions. (i) Do land use with various types of management disturbance and season shape
soil properties? (ii) How do land use and seasonal temporal dynamics interact to influence
bacterial community diversity? (iii) What roles do soil and environmental properties play in
influencing bacterial community diversity between seasons and under increasing manage-
ment disturbance? We predicted that soil bacterial diversity would decrease with increasing
management disturbance, while seasonal differences would become more discernible with
increasing management disturbance. Our results revealed that land use drove differences in
taxonomic diversity, while sampling time and its interaction with land use influenced func-
tional gene diversity, and that the biotic and abiotic factors shaping bacterial community di-
versity also differed spatiotemporally with importance varying with management intensity.

RESULTS
Changes in soil and environmental variables across land use and management

gradient. Over the 1-year sampling period, all the measured soil properties were sig-
nificantly affected (P , 0.001) by land use (Fig. 1a). Only properties influenced by cli-
mate (soil water content [SWC]) and management practices (topsoil nitrate [TopN]) sig-
nificantly differed by season (P , 0.05). Notably, soil organic matter (OM) and soil total
nitrogen (TN) decreased as management disturbance increased. The OM differed by

FIG 1 Soil chemistry within each land use type across a 1-year sampling period. (a) Soil chemistry averages for each land use across 1 year.
(b) Factors that significantly differed by season across the whole land use gradient shown by season within land uses. Error bars represent
the standard deviations. Letters represent significant differences of P , 0.05 between pairwise land use comparisons or seasons within land
use. The same letter indicates no significant difference.
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season only for CT wheat. SWC significantly decreased (P , 0.05) in CT wheat, with the
lowest SWC of all sites being observed in CT wheat during January, whereas all other
land uses had lows in SWC during summer months (Fig. 1b). Minimum daily air temper-
atures occurred in December 2016 and January 2017, and maximum air temperatures
occurred in August 2016 and July 2017. The greatest monthly rainfall was recorded in
April 2017 (227 mm) and the lowest monthly rainfall in November 2016 (15 mm). Both
croplands had higher averages of TopN that significantly differed from those of the
grasslands less management disturbed (P , 0.05). Elevated levels of TopN were pres-
ent during summer and fall in both croplands. Ammonium (NH4) was significantly
(P, 0.05) lower in NT canola than other land uses.

Impact of land use and seasonality on soil bacterial communities. To determine
the effect of land use and season over the sampling period, a-diversity was calculated
for the bacterial communities (Table 1). For all land uses, seasonal variability had a
greater impact on a-diversity than land use, with all indices significantly different
between seasons (P , 0.001). Overall, bacterial richness was lower in summer and fall
than winter and spring, but no single land use had a more diverse or rich community
throughout the sampling period. Shannon diversity was the lowest in the fall across all
land use types, and fall was significantly different from other seasons (P , 0.05). The
two fields that differed the most as far as management disturbance, TGP and CT wheat,
were compared separately to see if land use differences were observed when focusing
on the most different land use types and levels of management disturbance (Table 1);
interestingly, significant differences were still driven by season.

The effect of land use and season on the b-diversity of soil bacterial communities
was examined using principal-coordinate analysis (PCoA) based on the Bray-Curtis dis-
tance metric. The bacterial community structure of soils was visibly separated by land
use, with CT wheat generally isolated from the other land uses (Fig. 2). NT canola and
OWB pasture were the most similar in community structure. Each field had observable
temporal differences in community structure, and the visible temporal differences
increased with increasing management disturbance. Permutational multivariate analy-
sis (PERMANOVA) supported the PCoA plot (Table 2), indicating that the structure of
the bacterial community was significantly shaped by land use (P = 0.001, R2 = 0.2949)
and season (P = 0.001, R2 = 0.1067), but the effect of season was not as strong as that
of land use. When comparing just the TGP and CT wheat, the same significant differen-
ces were observed, but the effect of land use (P , 0.05, R2 = 0.3614) on the bacterial
community structure was even greater.

Responses of soil bacterial community composition across the land use gradient. The
soil bacterial community was dominated on average by several bacterial taxa across all

TABLE 1 Bacterial community structural and functional differences in a-diversity based on
land use and sampling timea

Alpha diversity Effect

16S GeoChip

All fields TGP and CT TGP and CT

F P F P F P
Chao 1 Field 0.517 0.672 0.896 0.350

Season 12.05 ,0.001 5.196 0.005

Observed OTUs Field 0.573 0.635 1.401 0.244
Season 11.16 ,0.001 3.663 0.022

Pielou Field 1.891 0.138 1.738 0.195 0.410 0.529
Season 3.494 0.020 0.280 0.839 1.790 0.192

Shannon Field 0.426 0.735 0.415 0.523 0.939 0.343
Season 9.129 ,0.001 1.970 0.137 1.772 0.195

aCorrelations based on analysis of variance. Season for GeoChip represents sampling time since only three times
were used across the data set. TGP, native tallgrass prairie; CT, conventionally tilled winter wheat.
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land use types commonly found in soils, including Actinobacteria (20.16% to 24.67%),
Proteobacteria (21.20% to 24.36%), Firmicutes (9.68% to 18.03%), Acidobacteria (9.20%
to 13.53%), and Chloroflexi (4.23 to 9.90%) accounting for over 75% of the relative
abundance of each system (see Fig. S2 and Table S1 in the supplemental material). The
lower-relative-abundance phyla were comprised of Bacteroidetes, Gemmatimonadetes,
Planctomycetes, and Verrucomicrobia, all of which made up at least 1% of the bacterial
community in all land uses over the sampling period (Fig. S2 and Table S1).

Significant differences in the relative abundance of the main bacterial taxa between
types of land use were evident at the phylum level (P = 0.001). The greatest number of
significant differences of relatively abundant phyla were between CT wheat and TGP
communities, while NT canola and OWB pasture had the smallest number of significant
community differences (detailed in Table S2 in the supplemental material). Within indi-
vidual land uses, the phylum relative abundance of the bacterial communities differed
significantly by season (P, 0.01), except for OWB pasture (P = 0.066). Markedly, signifi-
cant changes in many phyla across seasons were unique to specific land use types
(detailed in Table S3 in the supplemental material). At a lower taxonomic level, roughly
20% of the operational taxonomic units (OTUs) in each land use were not present in
any of the other land uses, with the smallest percentage of shared OTUs between CT
wheat and the TGP (see Fig. S3a in the supplemental material). Within all land uses, the
greatest percentage of unique OTUs was observed during the spring (Fig. S3b to e),
corresponding to warming air temperatures, rainfall peaks, and resuming plant growth.
CT wheat had the most shared OTUs during the fall and spring, which were the wheat
growing seasons. TGP also had the most shared OTUs during the peak growing season
for warm grasses during summer and fall. In general, as the amount of management
disturbance increased between land uses, the bacterial communities became increas-
ingly different at the phylum and OTU levels.

Effect of soil and environmental factors on soil bacterial diversity.While a-diver-
sity indices were not significantly different across the land management disturbance gradi-
ent, they were affected by local soil properties that differed between land uses. The rich-
ness and diversity of the CT wheat bacterial community significantly (P , 0.05) decreased
when there were high levels of TopN present. Similarly, the diversity and evenness signifi-
cantly (P , 0.05) decreased in the presence of elevated TopN in NT canola. Only the rich-
ness in the TGP was significantly influenced by SWC. There were no detectable relation-
ships between soil variables and a-diversity for OWB pasture.

FIG 2 Principal-coordinate analysis of Bray-Curtis dissimilarity for soil bacterial communities (16S rRNA gene) showing the differences in four fields along a
management disturbance gradient over a 1-year sampling period. (a) Differences in community structure between land uses. Land uses include
conventionally tilled (CT) wheat, no-till (NT) canola, Old World bluestem (OWB) pasture, and native tallgrass prairie (TGP). (b) Differences in community
structure separated by season.
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The influence of management, soil, and environmental factors on b-diversity was deter-
mined using the Mantel test and multiple regression on a distance matrix (MRM), with corre-
lations to individual taxa within land uses shown in Table S4 in the supplemental material.
Overall, bacterial community differences were significantly driven by tillage . SWC . sam-
pling time . minimum air temperature according to the Mantel test (Fig. 3a). Between
fields (spatially), soil factors shaped by land use were significantly important, including
OM . TN . SWC. In comparison, sampling time had the greatest correlation to temporal
community differences as well as OM and TN. Since potentially significant correlations
among factors could exist, MRM was further used to determine the contributions of differ-
ent environmental factors to shaping bacterial community structure. In general, differences
based on MRM were similar to those of the Mantel test, with tillage . sampling time .

minimum air temperature being significant (Fig. 3b). Notably, spatially related factors had a
stronger impact (R2 = 0.62) on the bacterial community than temporally related factors (R2 =
0.46). The same soil factors were key to spatial difference based on the MRM and Mantel
test (Fig. 3c), with average air temperature also having moderate importance. Sampling
time again had the strongest relationship with temporal differences (Fig. 3d). The factors av-
erage rainfall. TN. TopN were also key to temporal community dynamics.

Each land use was then examined separately to determine if soil and environmental
variables contributed equally to the variation in bacterial community structure. Based on
canonical correspondence analysis (CCA) (see Fig. S1 in the supplemental material), var-
iance partitioning was used to determine if climate variables, nitrogen measurements, or
other soil properties explained the most variations in community structure (Fig. 4).
Nitrogen measurements had the largest impact on the CT wheat bacterial community and
interacted with the other soil properties and climate variables (Fig. 4a). The majority of the
variation of bacterial communities was explained by the soil properties for the NT canola
site (Fig. 4b), with nitrogen measurements and climate variables having a minor interac-
tion. For OWB pasture, the variations explained by all groups were similar, with soil proper-
ties and nitrogen measurements explaining almost the same amount of variation (Fig. 4c).
The distribution of the variation explained for TGP was similar to what was observed at the
OWB site (Fig. 4d), with all sets of variables having a relatively equal impact on the bacterial
community structure. The greatest interaction of all variables was observed for the TGP.
Therefore, management and sampling time had the greatest impact on diversity, and man-
agement greatly impacted the importance of different soil and climatic factors in shaping
bacterial communities within fields.

Functional community differences between tilled cropland and native prairie.
Functional diversity at three distinct times across the 1-year data set was investigated
using functional gene array for the CT wheat and TGP. For the a-diversity of the func-
tional community, no significant differences were found based on land use or sampling
time when looking at evenness and diversity (Table 1). Significant differences were

TABLE 2 Effect of land use and season on bacterial community structuresa

Distance metric Effect

16S GeoChip

All fields TGP and CT TGP and CT

R2 P R2 P R2 P
Bray-Curtis Field 0.2949 0.001 0.3614 0.001 0.0842 0.005

Season 0.1067 0.001 0.1140 0.014 0.1363 0.034
Field� Season 0.1102 0.104 0.0783 0.112 0.1049 0.011

Jaccard Field 0.2057 0.001 0.2394 0.001 0.0798 0.004
Season 0.0876 0.001 0.1125 0.018 0.1299 0.042
Field� Season 0.1303 0.032 0.0928 0.083 0.1054 0.014

aThe 16S permutational multivariate analysis of variance (adonis) model was set up as dissimilarity; field�
season. 16S analysis was done by including 4 fields: TGP, OWB pasture, NT, and CT. It was also performed using
only prairie and CT since GeoChip included only those two fields. The GeoChip permutational multivariate
analysis of variance (adonis) model was set up as dissimilarity; field� season1 block with permutation
constrained by block to deal with the effect of data on multiple arrays.
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observed for the functional b-diversity of the two fields. Land use, sampling time, and
the interaction of the two factors were all significant in shaping functional diversity
(Table 2). Interestingly, sampling time and the interaction of sampling time and land
use had a stronger effect on the functional structure than land use alone.

To investigate the significant differences in functional community structure, response
ratios were used to compare relative gene abundances between land use and sampling
time. When compared by land use, all genes that were significantly different were greater
in the TGP. Comparisons of sampling times between land use had significant differences in
genes involved in carbon cycling, organic remediation, nitrogen, and metal homeostasis.
Surprisingly, very few functional gene differences were observed when comparing the two
fields during August (see Fig. S4 in the supplemental material). The greatest significant dif-
ferences between the functional community structures of CT wheat and the TGP occurred
during January (Fig. 5a), when the relative abundances of almost all genes that were signif-
icantly different were greater in the TGP. Fewer significant differences in function were
observed in May (Fig. S4) than in January.

Soil and environmental factors also impacted the functional potential of CT wheat
and TGP. The local diversity of the CT wheat field was impacted by OM, SWC, and tem-
perature measurements. Evenness and diversity significantly decreased (P , 0.05) as
OM increased, while both indices significantly increased (P , 0.05) with increasing air
temperature. An increase (P , 0.05) in local diversity was also associated with increas-
ing SWC. No significant relationships were identified in the TGP land use. CCA was also
used to explore the impact of soil and environmental factors on the functional commu-
nity composition (Fig. 5b). Nitrogen measurements (TopN and NH4

1) appeared to have

FIG 3 Effects of soil and environmental factors on soil bacterial community structure. (a) Correlations on overall, spatial, and temporal differences based
on Mantel test. (b) Multiple regression on distance matrix (MRM) on overall community structure. (c) MRM for spatial differences in community structure.
(d) MRM for temporal differences in community structure. Bars with diagonal lines represent negative regression coefficients. Gdist, geographical distance
between sampling sites. Significance is expressed as follows: ***, P , 0.001; **, P , 0.01; and *, P , 0.05.
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a greater impact on CT wheat, and soil properties (SWC and OM) appeared to be more
important for the functional structure in the TGP. Average air temperature (AvgTemp)
had a more important relationship with the function of the TGP community than the
CT functional community. Overall, OM grouped closer to the first axis, where functional
differences were observed based on land use, while AvgTemp and NH4

1 were closer to
the second axis, where functional differences were separated by sampling time. SWC
and TopN appeared to influence functional structure the most based on the interaction
between land use and sampling time. Similarly, variance partitioning analysis (VPA)
showed a large amount of the variation in the functional structure to be unexplained
(Fig. 5c), and soil properties, nitrogen measurements, and climatic factors all explained
a comparable amount of variation. Soil properties greatly interacted with climatic fac-
tors and nitrogen measurements. While all soil factors and climatic variables were im-
portant to variations in functional diversity, more links to these factors and local func-
tional diversity were observable for the highly managed CT wheat field.

Links between structural and functional community types in tilled cropland
and native prairie. The Mantel test was used to examine the relationship between taxo-
nomic, phylogenetic, and functional bacterial community structure, focusing on key func-
tional groups (e.g., carbon cycling, nitrogen cycling, and virulence). When considering

FIG 4 Variation partition analysis (VPA) of bacterial community structure explained by soil properties, nitrogen
measurements, and climate variables for each land use. Variable groupings include soil variables (SWC and
OM), nitrogen measurements (TopN, NH4

1, and TN), and climate (rainfall and temperature) variables. Total
nitrogen (TN) was included only in the CT wheat nitrogen measurements based on the CCA results. Bacterial
community data are based on 16S rRNA gene sequencing data.
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overall community interactions for the TGP, almost all functional groups had a negative
relationship with taxonomic diversity (see Fig. S5a in the supplemental material). In com-
parison, most of the relationships between functional groups and phylogenetic diversity
were positive, with a moderately significant association with methane cycling genes
(r = 0.229, P = 0.07). The strength of the relationship between functional groups and phylo-
genetic diversity was significantly greater (P, 0.001) on average than that with taxonomic
diversity for the TGP. For individual sampling times, a similar pattern was observed where
the strength of the relationships between functional groups and phylogenetic diversity
was greater than taxonomic diversity. For the CT wheat field, the majority of relationships
between functional groups, taxonomic diversity, and phylogenetic diversity were negative
(Fig. S5b). The most significant relationships were found between functional groups and
taxonomic diversity for CT wheat, including carbon cycling (r = 0.26, P = 0.05), methane cy-
cling (r = 0.31, P = 0.02), and organic remediation (r = 0.24, P = 0.05). The strength of the
relationships was significantly greater (P , 0.001) between taxonomic diversity and func-
tional groups on average. The correlation strength for each sampling time for CT wheat
was greater between taxonomic diversity and functional diversity for individual sampling
months as well. Primarily, functional structure was more strongly associated with phyloge-
netic structure in the TGP compared to CT wheat, where functional structure was more
closely related to taxonomic structure.

To look closer at relationships between structure and function, functional groups
were compared to OTUs. Several OTUs had a significant relationship (P # 0.05) with
functional groups that were present in both fields (see Table S5 in the supplemental

FIG 5 Functional differences between conventional tilled (CT) wheat cropland and native tallgrass prairie (TGP). (a) Differences in relative gene abundance
during January between TGP and CT wheat functional community based on response ratio. All genes greater than 0.0 were greater in the TGP community.
All genes present are indicated as significantly different by 90% confidence interval, 95% confidence interval (*), and 99% confidence interval (**). (b)
Canonical correspondence analysis (CCA) examining the relationships between soil and environmental factors on function community structure using
GeoChip data. (c) VPA of functional community structure explained by soil properties (SWC and OM), nitrogen measurements (TopN and NH4

1), and
climate variables (rainfall and temperature).
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material) with the direction of the relationship often varying between fields. For exam-
ple, all the OTUs linked to carbon cycling, carbon degradation, and methane cycling in
both fields had a negative correlation for the TGP and a positive correlation for CT
wheat, likely related to their importance to the processes directly or indirectly within
each field. OTUs significantly correlated with N fixation present in both fields were all
Bacillus spp. and were present in a much greater abundance in CT wheat, generally
having highs in August and May compared to highs in just May for the prairie. One
OTU (Massilia sp.) significantly correlated with organic remediation in both fields and
had a higher abundance overall in the TGP, with peaks in August, whereas abundance
was greatest in May for CT wheat. Significant OTUs were then compared within fields
to determine if OTUs were significantly correlated with more than one function. When
examining the functional groups of carbon cycling, nitrogen cycling, and organic reme-
diation, the TGP had almost 60 OTUs that significantly correlated with all three proc-
esses, compared to only 3 in CT wheat, potentially reflective of how specialized the
community is in the CT wheat field. The three OTUs in CT wheat all belonged to a dif-
ferent phylum, while the significant OTUs in the TGP included many species in the
orders Rhizobiales, Bacillales, and Solirubrobacterales.

DISCUSSION
Impact of land use and seasonality on soil properties. Land use change, manage-

ment intensification, and season have different effects on soil properties and thus
impact microbial communities in different ways. In this study, we examined how the
soil ecosystem was affected by an increasing amount of management disturbance
across four land uses commonly found in the U.S. Southern Plains. Land use change
and management intensification modify the soil environment and generally reduce
soil quality (48), as illustrated by the decrease in OM, TN, and SWC under tillage man-
agement compared to other land uses (49). Reducing management disturbance
resulted in several soil properties being indistinguishable between land uses, further
signifying that removing intensive management improves vital soil properties (1).
Meanwhile, it had been previously observed that land uses under comparable amounts
of management resulted in similar edaphic properties when cropland and non-crop-
land soil properties were compared (3, 50), which may explain parallels between prop-
erties in NT canola and OWB pasture, which received similar yearly management. Only
soil properties related to climate and management significantly differed by season.
Lower SWC was evident in times of low monthly rainfall or increased daily tempera-
tures. For the croplands, soils exhibited highs of TopN during summer and fall due to
fertilizer application, which is expected as management practices in agricultural fields
are largely seasonally dependent (23, 51). Overall, even though land use was the great-
est determinant of soil properties, sampling time was also key for explaining differen-
ces in soil properties, especially as management disturbance increased.

Impacts of land use and seasonality on soil bacterial diversity. Determining how
soil microbial community diversity is impacted across time and space is crucial for pre-
serving soil health against continued environmental changes. The a-diversity and b-di-
versity of bacterial communities were distinctively altered by land use and season. As
has been observed in a similar study comparing land use types and temporal dynamics
(21), season had the most significant impact on a-diversity, with different land uses
having greater diversity at various times of the year. However, the interactive effect of
season and land use on belowground diversity remains unclear as most studies
emphasize spatial variability over temporal variability (52). On large spatial scales, vari-
ation in a-diversity is not significantly explained by land use but rather soil properties
(7), with moisture and nutrient availability generally being the most notable factors
(20, 53, 54). Increases in TopN in the croplands decreased a-diversity (55, 56), while
SWC influenced a-diversity in the TGP. Both properties generally vary over shorter peri-
ods of time, making them potentially better predictors of seasonal microbial commu-
nity changes (6). Even with the documented impact of season on a-diversity, it is
thought that the importance of temporal dynamics is underestimated due to the
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presence of relic DNA (57), the response of different taxa to environmental changes
(52), and the lack of focus on living/active cells (58, 59). Given that no land use had the
greatest a-diversity throughout the whole 1-year period and a-diversities were influ-
enced by soil properties that vary seasonally, it is important to assess temporal dynam-
ics when trying to determine differences in the microbial community.

The effects of land use were far more critical for regulating the b-diversity of the
bacterial communities across the management gradient. The b-diversity of all land use
types differed from that of the TGP (Fig. 2), with tillage management having the most
significant impact (Fig. 3). Between land uses, several soil factors and air temperature
were critical for differences in bacterial diversity (Fig. 3), while the distance between
sites had no significant effect on the smaller scale of our study. Within fields, as man-
agement decreased, less variation in b-diversity was explained by the measured prop-
erties, of which the relative importance became more evenly distributed (Fig. 4). No
group of variables was the most important to variations in TGP bacterial diversity. In
comparison, slightly greater importance of nitrogen and other soil properties was
found to be associated with variations in OWB pasture, possibly due to changes in mi-
crobial community composition and diversity from management disturbances in grass-
lands (60, 61). More variation in bacterial diversity was explained in the croplands. While
both croplands were fertilized, soil N content was far more important to bacterial diversity
in CT wheat, presumably because fertilizer was applied with no residue cover and directly
incorporated through tillage. Soil properties that increased under NT management like
SWC and OM explained more variations in the NT canola, supporting that reduced man-
agement increases carbon storage and moisture availability (62, 63). Sampling time was
also a significant driver of diversity differences (Fig. 3), with rainfall and soil nutrients again
having considerable influence. This is consistent with previous studies where climate varia-
bles, soil moisture, and nutrient availability dictated temporal changes (6). Although several
factors were exclusive to shaping bacterial diversity based on time or space, SWC, OM, and
TN continually appeared to be notable factors impacting the bacterial communities (64–
67), with land use type being critical to explain differences in diversity, especially compared
to the native system. It should be noted, that this was the first time canola was planted on
the NT cropland, which had previously been a long-term winter wheat system. While plant
species can influence the microbial communities, many other factors in croplands likely
outweigh the introduction of a new crop. In agricultural systems, crops are cultivated in
various soils being impacted by the soil type, soil properties, and land management, often
reducing the importance of the rhizosphere microbial community for plant growth com-
pared to native ecosystems (28). Soil properties have also been shown to override the influ-
ences of crop type on soil bacterial communities (68), with land use and management
strongly shaping soil properties (1, 21). Additionally, a mesocosm experiment using soil col-
lected from long-term monoculture cropping systems determined that the cropping his-
tory of the soil was the main factor determining the microbial community composition
when a new crop was introduced (69). Together, these points help emphasize that the
plant type during this single growing season was likely not responsible for the overall
observed differences.

While much is still unknown about the relationship between taxonomic/phyloge-
netic and functional diversity, it is widely believed that increased diversity, including
functional diversity, sustains soil functions and creates greater resilience to disturbance
and stress (70, 71). Taxonomic/phylogenetic and functional diversity can also be differ-
entially affected by soil and environmental properties. Based on results from the FGA
analysis, land use and sampling time were both central in shaping the functional diver-
sity of the CT wheat and TGP field, although land use alone had less of an effect than
sampling time or the interaction of sampling time with land use. The reduced effect of
land use on functional diversity is likely due to shared taxa between communities lead-
ing to more similar functional traits (72, 73) and the redundancy of many biogeochemi-
cal gene families across microbial groups (74). TGP functional diversity was associated
with greater SWC, OM, and air temperature, and CT wheat functional diversity was
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associated with higher N content. Available N has been shown to significantly impact
the active bacterial community and increase the number of taxonomic and phyloge-
netic groups that specialize in using N compounds (58). We also attempted to uncover
the correlations between taxonomic/phylogenetic diversity and functional diversity,
although deciphering such correlations is not straightforward. Functional diversity had
stronger correlations to taxonomic diversity than to phylogenetic diversity in the CT
wheat field, whereas in the TGP, functional diversity had stronger relationships with
phylogenetic diversity. It is possible that the CT wheat community remains more phy-
logenetically similar over time, while the taxonomic community changes more rapidly.
These types of patterns have been previously observed and suggested as warning
signs of biodiversity loss due to environmental changes (75, 76) resulting from inten-
sive management practices in agroecosystems.

Impacts of land use and seasonality on soil bacterial community composition.
Throughout our study, the greatest management disturbance resulted in the greatest
impact on the bacterial community, as shown by the results of tillage treatment at
both the phylum and OTU levels. The impact of land management, especially tillage,
on bacterial community composition has been extensively documented (1, 77, 78), and
although less studied, season has considerable influence on composition as well (21,
23, 79). For all land uses, the most unique OTUs were present during the spring season.
During spring, air temperatures begin to rise and rain increases. Temperature and
moisture not only impact the physiological activity of bacterial communities, but also
regulate plant activity, including rapid growth and increasing root exudates (80, 81).
Such large seasonal changes are likely responsible for differences in community com-
position observed between land uses as well as the increase in bacterial richness dur-
ing the spring season. Monitoring changes in microbial composition over time and in
response to management is one of the best ways to determine sustainable agricultural
practices as it can indicate early potential changes in soil functionality, although it is
necessary to remember there is not one optimal microbial community composition.

To examine the functional gene community composition, relative gene abundances of
the whole communities were compared between CT wheat and the TGP. Between the two
land uses, the abundances of all genes that significantly differed were always greater in the
TGP. Such differences are believed to be reflective of microbial functional gene abundance
and diversity (46), although gene presence does not necessarily mean the gene is being
actively transcribed. More distinct differences in gene abundances between land uses were
apparent when comparing specific sampling times (Fig. 5; Fig. S4). In general, seasonal mi-
crobial community differences are usually more evident in agricultural soils compared to
native soils (21) due to seasonal management practices and plant activity. The greatest dif-
ferences occurred during January, when plants in both fields were generally not active, air
temperatures reached yearly lows, and CT wheat had the lowest SWC. The importance of
soil water content in regulating microbial activities is well known, with soil water content
being a key abiotic factor linked to functional diversity (82). Furthermore, the greater ground
cover (i.e., residues) during the winter in the TGP may help alleviate the stress of the colder
temperature on the microbial community, with greater plant litter amounts also increasing
water infiltration and reducing soil evaporation (83). Therefore, the effects of reduced SWC
and reduced ground cover could lead to decreased microbial diversity and activity under CT
wheat. The smallest number of differences in the functional gene community was observed
in August. The tallgrass prairie mainly consists of warm-season grasses; therefore, the plant
community is in peak growth during this time, likely releasing nutrients to support microbial
activity. In comparison, the CT wheat field is tilled during the summer fallow season to incor-
porate residues for decomposition providing organic carbon and nitrogen, again likely
resulting in increased microbial activity (84, 85). Even though there were clear differences in
the functional diversities of the microbial communities in relation to land use and sampling
time, it is equally necessary to survey changes in functional gene abundance as shifts in di-
versity alone do not always result in differences in the biogeochemical functional ability of
the soil microbial community (86, 87).
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Conclusions. Environments in agroecosystems are continually modified due to
land use and management practices that can, directly and indirectly, influence soil bac-
terial communities. Soil communities are exposed to variability in space and time, mak-
ing no single biotic or abiotic factor the sole reason for shifts in bacterial community
composition, raising the need for continued research on a range of agricultural sys-
tems. In this study, we investigated the effects of land use and sampling time on the
structural and functional diversity of bacterial communities as well as the interactions
with soil and environmental factors in four land uses in the U.S. Southern Plains. First,
our results indicated that land use, especially with intensive management, had the
greatest impact on taxonomic diversity, while sampling time and time within a specific
land use were more important for differences observed in functional diversity. Next,
soil nutrients, particularly nitrogen, and soil water content were determined to be criti-
cal for variations in community taxonomic and functional diversity across land man-
agement and sampling time. Last, functional diversity was also reduced under inten-
sive management, with species likely being more specialized in function due to
fertilizer usage and more strongly linked to taxonomic diversity than phylogenetic di-
versity. Although the impacts on functional and structural diversity may have different
relationships with land use and sampling time, it is clear that both types of diversity
are important for structuring the interactions of edaphic properties, climatic factors,
and bacterial communities. The results contribute to the idea that preserving microbial
diversity should be one of the main focuses of sustainable agriculture. While these
observations may be regionally specific, we recommend sampling around manage-
ment practices (e.g., August) as sampling in relation to a specific management practice
or environmental change likely provides the most insight when trying to determine
the impact on soil health. This is one reason why microbes show great promise as a
soil health indicator as they can respond to disturbance before plant communities and
soil properties. Additionally, we further recommend the use of no tillage as it increased
the total nitrogen, organic matter, and water content in the soil, in comparison to CT
management, which increased the reliance on nitrogen inputs, generating a less
diverse and likely more specialized bacterial community. Moving forward, continued
monitoring of changes in bacterial communities within local land uses’ corresponding
natural and anthropogenic disturbances will likely be most useful when trying to make
informed decisions about managing soil health and ecosystem services.

MATERIALS ANDMETHODS
Site description and field sampling. The study was conducted at the United States Department of

Agriculture, Agricultural Research Service, Grazinglands Research Laboratory at El Reno, OK (35°34.19N,
98°03.69W; 414 m above sea level), from August 2016 to July 2017. Soil was collected from four sites:
native tallgrass prairie (TGP), introduced (OWB) pasture, NT canola field, and CT winter wheat field. The
grasslands and croplands were approximately 2.7 km apart. All four sites are included in the Southern
Plains site of the Long-Term Agroecosystem Research (LATR) Network (88, 89). The soil type for the
research area was Bethany silt loam (a fine, mixed, superactive, thermic Pachic Paleustolls). The study
area has a temperate continental climate, with summer months being characteristically hot and dry with
a 30-year (1980 to 2010) average daily maximum and minimum air temperatures of 22.5°C and 8.8°C,
respectively, and rainfall mostly occurring in May to June and September to October, with an average
annual rainfall of 860 mm (90–93).

Native tallgrass prairie consists of mainly warm-season native mixed grasses. This mixture includes
big bluestem (Andropogon gerardii Vitman.), little bluestem [Schizachyrium scoparium (Michx.) Nash],
Indiangrass [Sorghastrum nutans (L) Nash], and switchgrass (Panicum vergatum L.). Old World bluestem
(Bothriochloa spp.) is a monoculture pasture site that was established well over 20 years before this
study was conducted. Both pasture sites had deep soils (.1-m depth) and high water-holding capacity
(90, 94). During the sampling period, the TGP was grazed by beef cattle for approximately five of the
sampling months at a stocking density of 0.13 head/ha for 30 days and 0.83 to 1.06 head/ha for the
remaining months. The OWB pasture was grazed for roughly eight of the sampling months at a stocking
density ranging from 0.65 to 0.94 head/ha. Prescribed burns of the pasture sites are on a 4-year rotation,
with the most recent burning occurring in February 2014. The OWB pasture is managed using annual
fertilizer and herbicide treatments (91), while the native TGP is not fertilized treated. In these pastures,
vegetation generally greens up in April and enters the senescence phase toward the end of October,
with peak growing season occurring during the May to June period (95).

As a cool-season crop, winter wheat is the dominant cultivated ecosystem in the U.S. Southern
Plains, generally converted from native tallgrass prairies. Winter wheat has been planted in the study

Disturbance Gradient Impact on Bacterial Communities mBio

May/June 2022 Volume 13 Issue 3 10.1128/mbio.03829-21 13

https://journals.asm.org/journal/mbio
https://doi.org/10.1128/mbio.03829-21


sites under CT management since the late 1990s. In Oklahoma, winter wheat fields are managed for mul-
tiple purposes, such as grain-only, graze-grain, and graze-out. The CT wheat field was grain-only during
the 2015 to 2016 growing season and graze-out (no grain production; cattle grazing from November
through May) during the 2016 to 2017 growing season. Each year, the seedbed was prepared for plant-
ing using a chisel plow treatment to a depth of 31 cm, which resulted in complete disturbance of soil
and residue mixing (84). The NT canola field was converted from a CT wheat field in 2015. It was grain-
only wheat during the 2015 to 2016 growing season and on canola rotation during the 2016 to 2017
growing season as a part of the 4-year crop rotation (canola, grain-only wheat, graze-grain wheat, and
graze-out wheat). It was the first year canola had been grown in the NT plot. Both croplands were left
fallow from June to September, being fertilized and planted between late August and mid-October.
Crops had fall and spring growing seasons and were dormant during the winter months. The CT wheat
site was harvested in early June, and the NT canola site was harvested in late June. Detailed manage-
ment data have been previously published (96).

Soil sampling began in August 2016 for all sites. Soil sampling was conducted every 2 weeks during
the fall and spring months and once a month during summer and winter months, resulting in 20 sam-
pling times per field between August 2016 and July 2017 for a total of 80 soil samples. During each soil
sampling time point, eight cores roughly 20 m apart were taken in a random-walking pattern through-
out each field at a depth of 0 to 15 cm using a 2.5-cm-diameter soil probe. Soil cores were pooled and
homogenized at each sampling time for a representative sample of each plot. Soils were sieved to 2 mm
to remove debris and stored at 280°C until analysis.

Soil properties and climate data.Weather data, including average monthly rainfall, maximum air tem-
perate, average air temperature, and minimum air temperature, were gathered from an Oklahoma Mesonet
weather station (http://www.mesonet.org/index.php/weather/local/elre) in El Reno (ELRE), Oklahoma. The
Mesonet tower is located on the native TGP site used in this study (35°32.99N, 98°02.29W). Soil chemical analy-
ses were performed at the Oklahoma State University Soil, Water and Forage Analytical Laboratory (https://
agriculture.okstate.edu/departments-programs/plant-soil/soil-testing/). Tests included topsoil nitrate (TopN),
soil organic matter (OM), soil total nitrogen (TN), and ammonium (NH4

1). Gravimetric soil water content
(SWC) was determined by oven drying for$24 h at 65°C or until the weight no longer changed (84).

Soil DNA extraction, PCR amplification, and sequencing. Microbial genomic DNA was extracted
from 0.25 g of soil using the Quick-DNA fecal/soil microbe miniprep kit (Zymo Research, Irvine, CA,
USA) according to the manufacturer’s instructions, and DNA was eluted with sterile water. For each
soil sample, four technical replicates were extracted. DNA was quantified with the Qubit double-
stranded DNA (dsDNA) BR assay kit (Thermo Fisher Scientific, Waltham, MA, USA), as described in the
manufacturer’s instructions. DNA dilutions of 2 ng/mL were prepared for use in PCR. PCR was per-
formed using a two-step barcoding protocol (97). For the first DNA amplification, primer pair M13-
tagged 341F (59-GTAAAACGACGGCCATACGGGNGGCWGCAG-39) and 785R (59-GACTACHVGGGTATC
TAATCC-39) were used (98). The second PCR step used a barcoded version of the forward primer and
the 785R primer stated above. The PCR for amplification used a 50-mL mixture containing 0.1 mL of
each primer (100 mM), 2 mL of template DNA, 25 mL of Phusion high-fidelity PCR master mix with HF
buffer, and 23 mL of water. The PCR conditions were a preliminary denaturation phase at 95°C for
5 min then 30 cycles at 95°C for 30 s, 55°C for 30 s, 72°C for 60 s, and final extension at 72°C for
10 min. PCR products were checked on a 1% agarose gel for amplification and purified using a
QIAquick PCR purification kit (Qiagen, USA) before the barcoding reaction. The PCR barcoding step
used a 30-mL reaction mixture containing 0.15 mL of reverse primer, 1 mL of the barcode forward
primer, 5 mL of purified PCR product, 15 mL Phusion high-fidelity PCR master mix with HF buffer, and
8.85 mL of water. The PCR conditions for the barcoding reaction were 95°C for 5 min, followed by 6
cycles at 95°C for 30 s, 55°C for 60 s, and 72°C for 90 s, and a final extension at 72°C for 10 min. PCR
product was then pooled and further purified before sequencing using an Illumina MiSeq platform
(Illumina, USA) at the Oklahoma Medical Research Foundation (Oklahoma City, OK).

Sequence analyses. Raw FASTQ files were checked for quality with FASTQC (https://www.bioinformatics
.babraham.ac.uk/projects/fastqc) then demultiplexed and processed using QIIME (version 1.9.0) (99). Low-qual-
ity sequences and chimeras were removed. Operational taxonomic units (OTUs) were clustered at 97%
sequence similarity using the UCLUST function in QIIME. Technical replicates for each sample were combined
to increase sequence number per sample and get one representative sample per time point. The OTU repre-
sentative sequences were taxonomically identified using the SILVA 16S database. Sequences were rarefied to
12,000 sequences per sample based on the lowest sequence number sample to use for a-diversity, calculated
using the vegan package (100) in R version 4.0.3 (101). b-Diversity was calculated using the vegan package
using the unrarefied data.

Functional gene array. The GeoChip 5.0S array containing ;60,000 probes per array (35) was used
for functional gene analysis. Microarray analysis was conducted following previously described protocols
(34, 35). In short, three time points were chosen from the 1-year sampling period to represent various
sampling seasons from TGP and CT wheat. These two fields were chosen for further examination
because CT wheat croplands are the most common type of land conversion of native prairie systems.
The DNA extracted for sequencing was also used for this part of the study. Each DNA sample was puri-
fied using Agencourt AMPure XP (Beckman Coulter, CA, USA) bead purification following the manufac-
turer’s protocol. The quality of the DNA was determined using a Nanodrop ND-1000 spectrophotometer
(NanoDrop Technologies, Wilmington, DE) based on the A260/A280 and A260/A230 ratios, and DNA concen-
trations were quantified again using Qubit dsDNA BR assay kit (Thermo Fisher Scientific, Waltham, MA,
USA). DNA was labeled using random priming and cyanine dye, purified using Qiagen QIAquick purifica-
tion kit per manufacturer’s instructions, and dried. Resuspended labeled DNA was mixed with
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hybridization solution and pipetted into the center of the well of the gasket slide (Agilent), and the array
was assembled and sealed and placed into a rotisserie hybridization oven to hybridize in the presence
of 10% formamide at 67°C for 24 h. Once hybridization was complete, slides were washed and imaged
using a NimbleGen MS200 microarray scanner (Roche NimbleGen, Madison, WI, USA).

GeoChip data were normalized and quality filtered with methods modified from previous ones (34,
35). Probes flagged as outliers (bad spots) were removed from all samples. Then, for each array, the sum
of the signal intensity was calculated, and the maximum sum value was applied to normalize the signal
intensity in each array, producing a normalized value for each spot in each array. Normalized data were
further denoised as follows. A probe signal is counted as low rank in a sample if a raw signal is ,500, a
signal/noise ratio (SNR) is ,2, a signal/background ratio (SBR) is ,1.3, a coefficient of variation (CV) is
.0.8, a signal is ,99% of detected probes, or a signal is ,50% of designed probes. Only the probes
showing low-rank signals across all samples were removed as noise. Then, probe signals with an SBR of
,1.1 were filled with zeros, considered undetected.

Statistical analyses. Differences in measured soil properties were compared across land use and
season using the Kruskal-Wallis rank sum test. The effects of land use type and seasonal sampling time
and their interactions with a-diversity and b-diversity indices were analyzed using R. The main effects
and interactions of land use and season on a-diversity indices were tested using avop in the “lmPerm”
package (102) in R. Tukey’s post hoc test was used when significant values (P , 0.05) were returned for
one of the main effects or interactions. Analysis of variance (ANOVA) was used to compare the effect of
soil properties to a-diversity within land use types. Principal-coordinate analysis (PCoA) was performed
using Bray-Curtis distance metrics. The statistical significance of effects of season and land use on b-di-
versity was assessed by permutational multivariate analysis of variance (PERMANOVA) using adonis in
the vegan package (100). The same analysis was used for a-diversity and b-diversity of the functional
community. Bacterial community composition differences were compared by field using adonis and
pairwise field comparisons. The same method was used for within-field seasonal differences of bacterial
community composition. To link b-diversity to measured soil and environmental factors, the Mantel test
and multiple regression on distance matrix (MRM) were modified as previously described (103). In the
modified Mantel test and MRM, b-diversities of spatial, temporal, or all pairwise comparisons were,
respectively, subjected to a linear mixed model with random effect of intercepts in different seasons.
The significance test was based on constrained permutation of samples considering the repeated mea-
surement. The factors in the MRM models were forward selected based on adjusted R2. Canonical corre-
spondence analysis (CCA) was conducted to determine the effect of soil properties and environmental
factors on the bacterial community within land use and for the overall functional data set. CCA models
were considered significant when P was ,0.05 and redundant variables had been removed (variance
inflation factor [VIF] of .15). Each variable was additionally checked for significance within each model.
Variance partitioning analysis was conducted for bacterial community composition of each field based
on CCA results. Variables were separated into three groups representing nitrogen measurements (TopN,
NH4

1, and TN), soil variables (OM and SWC), and climate factors (rainfall and air temperature). To exam-
ine differences in relative gene abundance based on GeoChip data, genes present in at least 50% of the
samples across treatment were used. Response ratios were determined using an online available
MicroArray functional gene microarray analysis system (http://ieg.ou.edu/microarray/) based on 90%,
95%, and 99% confidence intervals for land use and sampling time (104, 105). The Mantel test was also
used to examine correlations between functional diversity, taxonomic diversity, and phylogenetic diver-
sity. Correlation coefficients were compared using a two-sided t test. Spearman’s correlation was used to
look at relationships between functional groups and OTUs using cor.test in R.

Data availability. 16S rRNA gene sequences were deposited in the Sequence Read Archive (SRA)
database under BioProject accession no. PRJNA816491.
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