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Fat grafting is a well-established surgical technique used in plastic surgery to restore
deficient tissue, and more recently, for its putative regenerative properties. Despite more
frequent use of fat grafting, however, a scientific understanding of the mechanisms
underlying either survival or remedial benefits of grafted fat remain lacking. Clinical use
of fat grafts for breast reconstruction in tissues damaged by radiotherapy first provided
clues regarding the clinical potential of stem cells to drive tissue regeneration. Healthy fat
introduced into irradiated tissues appeared to reverse radiation injury (fibrosis, scarring,
contracture and pain) clinically; a phenomenon since validated in several animal studies. In
the quest to explain and enhance these therapeutic effects, adipose-derived stem cells
(ADSCs) were suggested as playing a key role and techniques to enrich ADSCs in fat, in
turn, followed. Stem cells - the body’s rapid response ‘road repair crew’ - are on standby
to combat tissue insults. ADSCs may exert influences either by releasing paracrine-
signalling factors alone or as cell-free extracellular vesicles (EVs, exosomes). Alternatively,
ADSCs may augment vital immune/inflammatory processes; or themselves differentiate
into mature adipose cells to provide the ‘building-blocks’ for engineered tissue.
Regardless, adipose tissue constitutes an ideal source for mesenchymal stem cells for
therapeutic application, due to ease of harvest and processing; and a relative abundance
of adipose tissue in most patients. Here, we review the clinical applications of fat grafting,
ADSC-enhanced fat graft, fat stem cell therapy; and the latest evolution of EVs and
nanoparticles in healing, cancer and neurodegenerative and multiorgan disease.
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INTRODUCTION

Adipose dysregulation is fundamental to several important
human disease states, such as obesity, chronic lymphedema
and lipedema. In contrast to the unwanted effects of excess
adipose tissue accumulation, however, adipose tissue also plays
a critical physiological role (Fujimoto and Parton, 2011;
Rajabzadeh et al., 2019). In humans, fat performs key
functions, including energy storage and metabolism,
thermoregulation, shock absorption and hormone metabolism
(Nishimura et al., 2000; Yoshimura K, 2010). In addition, clinical
use of fat tissue has revealed important potential therapeutic
applications for adipose tissues in the treatment of human
disease (Nishimura et al., 2000; Yoshimura K, 2010). Whilst
the clinical use of fat initially began as a physical ‘space filler’ or
‘contour correction’ technique, it was through serendipitous
observation of the tissues being filled with fat, that an even
more important role has emerged – the role of adipose tissue as a
putative therapeutic (Matsumoto et al., 2006).

An adipose derived stem cell (ADSC) is defined as a
mesenchymal cell within adipose tissue with multipotent
differentiation and self-renewal capacity. Adult stem cells have
found an important role in tissue engineering and regenerative
medicine, as they may be used to develop novel treatment
approaches (Rajabzadeh et al., 2019). In particular, ADSCs are
a most promising cell type for translational potential and for cell-
based regenerative therapies, as they provide a new and unique
source for multipotent stem cells that boasts ease and
reproducibility of isolation using minimally invasive techniques
with low morbidity. As multipotent ADSCs can differentiate into
various cell types of the tri-germ lineages, including osteocytes,
adipocytes , neural cel ls , vascular endothelial cel ls ,
cardiomyocytes, pancreatic b-cells, and hepatocytes; the use of
fat/ADSCs and their cell products represents a paradigm of tissue
regeneration and cell restoration.

Here, we review the treatment of human diseases using
adipose tissue from its origins as the humble fat graft, through
attempts to enrich the concentration of ADSCs within the grafts;
to selective attempts to harness the potential paracrine effects of
the ADSC secretome, and finally to the most recent evolution –
the targeted use of ADSC exosomes (now known as EVs). We
provide a review of the field to date, exploring the therapeutic
application of ADSCs and small EVs as delivery vehicles of the
ADSC secretome for clinical use in disease. As the focus of the
review is ADSC cell products, previous theories of fat
differentiating or homing in to replace tissue as ‘building
blocks’, are not extensively addressed.

Fat Grafting, the Stromal Vascular Fraction
and ADSCs
Fat Embryology, Anatomy and Physiology
Adipocytes that form adipose tissue arise from perivascular
adipoblast stem cells in the third month of gestation
(Matsumoto et al., 2006) via adipocyte precursors, which, in
turn, differentiate into mature fat cells (Joseph et al., 2002). After
adolescence, minimal new adipocytes are formed, and the role of
Frontiers in Pharmacology | www.frontiersin.org 2
fat cell replication, is thereafter undertaken by post-adipocytes.
The ultimate number of fat cells formed is genetically
determined, and slightly influenced by environment and
nutrition (Fujimoto and Parton, 2011).

Within adipose tissue, lipid droplets may be uni- or multi-
loculated (Fujimoto and Parton, 2011). Unilocular signet-ring
shaped fat cells (25-200 µm diameter) are characteristic of ‘white’
fat. Multilocular cells, typically found in so-called ‘brown’ or
‘beige’ fat, consist of numerous smaller (60 µm) fat droplets
(Joseph et al., 2002). Brown fat occurs in smaller quantities near
the thymus and in dorsal midline region of the thorax, neck and
abdomen (Nueber, 1893; Fujimoto and Parton, 2011) and plays a
role in regulating body temperature via non-shivering
thermogenesis, a mitochondrial mechanism of heat generation
via a specific carrier called an uncoupling protein (Czerny, 1895;
Joseph et al., 2002). In contrast, white fat performs three distinct
functions of heat insulation, mechanical cushioning, and an
energy source/storage sync; (Illouz, 1986; Joseph et al., 2002).
Fat for clinical therapeutic use is sourced predominantly from
areas of white fat.

Adipocytes have two different catecholamines receptors
(lipolytic b -1 receptors that secrete lipase and a -2 receptors
which block lipolysis) (Joseph et al., 2002). During weight gain,
fat deposition occurs throughout the subcutaneous and visceral
areas relatively evenly (Joseph et al., 2002), into existing adipocytes
(hypertrophic growth) (Fujimoto and Parton, 2011). In contrast,
when a patient is greater than thirty percent above the ideal weight
(body mass index (BMI) over thirty-five), new fat cells are produced
(hyperplastic obesity) (Fujimoto and Parton, 2011). Hyperplastic
cells are more resistant to dieting and exercise (Tabit et al., 2012).
During weight loss, visceral fat is preferential lost, due to greater
sensitivity to lipolytic stimulation signals (Joseph et al., 2002). This a
process associated with improved insulin resistance (Ross et al.,
2014). Bariatric surgery reduces both visceral and subcutaneous fat,
leading to overall improved metabolic profiles (Rajabzadeh et al.,
2019), however surgery to remove subcutaneous fat (liposuction or
abdominoplasty) do not lead to improved metabolic profiles (Ross
et al., 2014). The largest amount of visceral fat occurs at level of
umbilicus and the greatest amount of subcutaneous fat is found in
the region of the buttocks; however, these distributions may vary
significantly with gender (Mizuno, 2009). The abdomen and
buttocks are the most commonly used areas for fat harvest for fat
graft surgery (Ross et al., 2014).

The History and Evolution of Fat Grafting
An autologous graft is defined as the transfer of a tissue(s) to a
distant area of the body, without its original blood supply
(Nishimura et al., 2000) (Figure 1A). In order to survive,
therefore, a fat graft needs to gain nutrients and a blood
supply and from the native tissue bed into which it has been
introduced. It needs early revascularization to avoid death of the
grafted tissue (Nishimura et al., 2000; Yoshimura K, 2010).
Unfortunately, due to poor graft re-vascularization, cell
apoptosis or fat cell necrosis, up to 50%–100% of the initial
injected volume may fail to engraft and become resorbed
(Matsumoto et al., 2006).
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Fat graft surgery was first performed by Neuber (1893),
then expanded to breast reconstruction when a lipoma (benign
fatty lesion) was transferred from the back to reconstruct a
breast after cancer surgery (Czerny, 1895). By the 1980s, early
rates of graft take [(approximately 50% (Illouz, 1986)] had
failed to significantly improved, despite multiple technical
refinements in graft harvest, centrifuge or infiltration
(Carraway and Mellow, 1990). Irrespective of these loss
rates, liposuction techniques using syringe harvest enhanced
the popularity of fat grafting for correcting facial contour
defects in the 1980s (Rohrich et al., 2004) and led to the
introduction of fat grafting for the correction of soft tissue
deficits in other body areas (Coleman, 2001; Yoshimura et al.,
2008; Tabit et al., 2012; Ross et al., 2014) (Figures 1A, B).
Nevertheless, significant numbers of patients who underwent
fat grafting continued to suffer graft loss, and those in whom
graft take was achieved endured up to 70% loss of volume
(Matsumoto et al., 2006; Mizuno, 2009).

More recently, fat grafting has been used in staged breast
reconstruction following oncological mastectomy, and has been
adapted in some settings, to a single-stage, large volume injection
procedure (Khouri R, 2009). Various authors have suggested
Frontiers in Pharmacology | www.frontiersin.org 3
differing methods of injection for achieving optimal graft take,
ranging from individual droplet deposits (the so-called pearling
technique) to a multilayered and multidirectional lattice
configuration as an adaptation to the pre-existing standard 3
mm linear graft injections techniques (Coleman, 2001).

Overall, no consensus had been reached regarding the
optimal technical procedure to maximize graft take. Whilst the
nuances have been debated, the basic principle is that adipose
tissues are removed from beneath the skin via minimal-access
incisions using a hollow, blunt-ended but perforated steel
surgical tube, attached to a source of external suction and
collection reservoir.

Principles of Fat Grafting, Graft Enhancement and
Treatment With ADSCs
Several technical modifications have been described to enhance
fat graft reliability. It has been suggested that graft survival occurs
through imbibition then angiogenesis (Kilroy et al., 2007) from
surrounding tissues, promoted through hypoxic-driven protein
growth factors. Therefore, various additions such as collagen,
FGF, and insulin (Hong et al., 2010; Baek et al., 2011) were
suggested to enhance adipocyte survival; however, did not result
FIGURE 1 | Liposuction, fat grafting and the components of adipose tissue. Schematic diagram depicting (A) fat grafting after liposuction of subcutaneous fat from
an abdominal donor site. The components of lipoaspirate (B) separate into layers of oil (discarded), aspirated adipose tissue and infranatant (composed of blood,
plasma, and local anesthetic). The components of adipose tissue and the key constituents of the stromal vascular fraction (SVF) pellet (C) may be re-introduced to
enhance the fat graft. Further processing of this adipose tissue with collagenase digestion and centrifugation allows the isolation of a SVF pellet. Figure adapted from
Shukla et al. (2015) under the CC-BY license (Shukla et al., 2015).
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in significant graft survival gains. The skin quality overlying areas
of fat injection were anecdotally observed to improve, therefore,
it was suggested that this may be an influence of stem cells within
the introduced adipose cell population (Rigotti et al., 2007). The
mesenchymal stem cells (MSCs) thought to be instrumental in
these effects were hypothesized to originate from pre-adipocytes
(ADSCs) within the stromal vascular fraction (SVF) of
liposuction aspirate (Gimble et al., 2011); or from MSCs
derived from blood vessels (Eto et al., 2011).

Regardless, of all the different variables in fat grafting, the concept
of multipotent stem cells populating fat grafts became the new
justification for the use of fat graft. ADSCs became the central focus
of enhancing grafts and lately, a potential factor in reversing tissue
injury, such as injury occurring in radiotherapy (Haubner et al.,
2013). ADSCswere initially isolated nearly 2 decades ago by Zuk and
colleagues (Zuk et al., 2001). Eto et al. suggested that ADSCs had
lowermetabolic demands andweremore resistant to themechanical
trauma of fat grafting (Yoshimura et al., 2009; Eto et al., 2012;
Trojahn Kolle et al., 2012), and were thus more robust compared to
adipocytes (Zuk et al., 2001; von Heimburg et al., 2005; Shoshani
et al., 2005; Lu et al., 2009; Tremolada et al., 2010; Suga et al., 2010;
Piccinno et al., 2013). Other authors showed enhance graft survival
rates due to greater levels of angiogenesis (via either imported
endothelial progenitor cells or ADSCs) generating neo-vasculature
(Thanik et al., 2009; Zhu et al., 2010; Kolle et al., 2013). Butala et al.
on the other hand, postulated that ADSCs in a graft may themselves
chemotactically recruit further stem cells, particularly from bone
marrow, or differentiate into fat cells themselves (Zhu et al., 2010;
Butala et al., 2010; Kolle et al., 2013).

To enhance the abundance of ADSCs within fat grafts
(Caplan AI, 2006; Eto et al., 2012; Kolle et al., 2013; Wang
et al., 2013) Yoshimura et al. proposed “cell-assisted lipotransfer
enrichment” in which the surplus lipoaspirate was separated into
components by centrifugation and the lipoaspirate
supplemented with additional SVF (Matsumoto et al., 2006;
Fraser et al., 2006; Yoshimura et al., 2008; Yoshimura K, 2010;
Harfouche and Martin, 2010; Rigotti et al., 2010; Krumboeck
et al., 2013). Briefly, SVF [comprised of 10% ADSCs (Zhu Y et al.,
2008; Tabit et al., 2012; Akita et al., 2012)] is derived from a
lipoaspirate component that is surplus to the volume needed to
fill a particular soft-tissue deficit (Ross et al., 2014). Subsequent
to digestion with collagenase, centrifugation creates an SVF
pellet (Figure 1C). Eventually, the SVF pellet is introduced to
the lipoaspirate, in readiness for injection with the ADSCs as part
of a fat graft (Zuk et al., 2001; Kilroy et al., 2007; Mizuno, 2009;
Yoshimura et al., 2009; Yoshimura K, 2010; Tremolada et al.,
2010; Trojahn Kolle et al., 2012; Hsiao et al., 2012). A
randomized control trial was designed by Kolle et al. to assess
enrichment of lipoaspirate with ADSC concentrations of up to
2,000 times over physiological levels (Kim et al., 2009).
Quantification using magnetic resonance scans suggested that
ADSC-enriched groups yielded higher graft retention volumes
(Caplan AI, 2006; Kolle et al., 2013).

Collectively, this work implied that enrichment of fat grafts
could increase viability, volume retention, and neo-
vascularization, whilst reducing necrosis rates. The findings
Frontiers in Pharmacology | www.frontiersin.org 4
also supported the theory that adding ADSCs may augment fat
graft survival by bolstering adipogenesis, the supporting
vasculature and/or diminishing cell apoptosis—key features of
the regenerative properties of fat graft (Phinney and Prockop,
2007; Zhu et al., 2010; Collawn et al., 2012; Kolle et al., 2013).

Characteristics of ADSCs
ADSCs are defined as plastic-adherent cells (in standard culture
conditions) (Dominici et al., 2006; Zimmerlin et al., 2011), cells
exhibiting a CD34+, CD31-, and CD45- cell surface marker
profile (Gronthos et al., 2001; Shayan et al., 2006; Yoshimura
et al., 2006; Karnoub et al., 2007; Walter et al., 2009; Lin et al.,
2010; Zimmerlin et al., 2011; AIHW, A, 2012; Authors on behalf
of, I et al., 2012; Baer and Geiger, 2012; Zuk, 2013) and cells
showing differentiation multi-potency into mature bone,
cartilage, and fat (Zuk PA1 et al., 2002).

In adults, stem cells may uniquely differentiate into more
specialized cell types to: i) replenish injured cells, ii) preserve tissue
integrity, iii) maintain cell homeostasis during normal growth or
healing (Caplan AI, 2006; Kim et al., 2009). Therefore, MSCs show
promising utility in tissue regeneration (Ebrahimian et al., 2009;
Harfouche and Martin, 2010; Bhang et al., 2011; Yan et al., 2011;
Forcheron et al., 2012; Krumboeck et al., 2013; Yuan et al., 2013). As
is the case in bone marrow derived MSCs, ADSCs are may undergo
differentiation into a variety of distinct mature tissue types including
fat, cartilage, bone, skin, muscle, endothelial, and nerve-like cells
when grown with a particular set of induction factors (Zuk et al.,
2001;Mizuno, 2009; Ebrahimian et al., 2009; Tremolada et al., 2010).
ADSCs also boast the additional benefits that the stem cell yield from
fat is 500-fold greater than that obtained from bone marrow (Fraser
et al., 2006)—[5x105 ADSCs can be derived from 400-600g of fat
(Zhu Y et al., 2008;Marigo andDazzi, 2011)]; and that ADSCs easier
and less invasive to harvest overall (Ross et al., 2014; Shukla
et al., 2015).

In terms of the cellular secretory profile, ADSCs produce a
more extensive range of chemokines, cytokines and protein
growth factors (Caplan AI, 2006; Dominici et al., 2006; Kilroy
et al., 2007; Locke et al., 2009; Blaber et al., 2012; Carrade et al.,
2012; Cawthorn et al., 2012; Hsiao et al., 2012; Strioga et al.,
2012). This secretome profile has contributed the understanding
that, in contrast to previously held theories that ADSCs would
differentiate to actually replace damaged cells (the “building
block” or “host replacement” theories (Neuhof and Hirshfeld,
1923; Yoshimura et al., 2006; Kim et al., 2009; Zuk, 2013; Ross
et al., 2014); the paracrine effects of the secretome are now
considered as more likely to orchestrate the events needed tissue
regeneration (Phinney and Prockop, 2007). The distinct makeup
of the ADSCs secretome suggested that ADSCs may influence
tissue regeneration by altering the biological and molecular cues
driving (Gronthos et al., 2001; Kim et al., 2009; Baer and Geiger,
2012; Collawn et al., 2012; Forcheron et al., 2012), angiogenesis
(Bhang et al., 2011; Zimmerlin et al., 2011; Matsuda et al., 2013;
Yuan et al., 2013) and lymphangiogenesis (Lin et al., 2010; Yan
et al., 2011); while suppressing local immune/inflammatory
responses (Fraser et al., 2006; Rigotti et al., 2007; Delay et al.,
2009; Tremolada et al., 2010; Marigo and Dazzi, 2011; Cawthorn
March 2020 | Volume 11 | Article 158
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et al., 2012) and reducing fibrogenesis (Tremolada et al., 2010).
Since the time of the initial description of ADSCs, their

molecular profile has been the subject of debate (Stone et al.,
2003; Mazzola et al., 2011). This has been chiefly due to the
description of different ADSC purification and culture protocols
and differing use of sub-total vs. whole SVF (Coleman, 2001;
Rigotti et al., 2007; Locke et al., 2009; Yoshimura K, 2010;
Cawthorn et al., 2012; Strioga et al., 2012).

Safety Concerns and Legislative Implementation of
Fat Grafting in Clinical Practice
Concerns regarding the use of ADSCs in clinical practice have
been three-fold. Firstly, fears arose that introducing stem cells
into a former cancer field might encourage recurrent cancer
growth due to potential secretion of pro-angiongenic growth
factors such as VEGF-A (Ross et al., 2014; Shukla et al., 2015).
Secondly, it was hypothesized that chronic calcification
occurring in the previously fat grafted areas may make
screening/monitoring for the occurrence further cancer difficult
(Ross et al., 2014; Shukla et al., 2015). Finally, the addition of
components to enhance ADSC efficiency—such as collagenase
processing—created the impression that the fat has been
significantly altered and therefore ceases to be an autologous
tissue transfer, but more a modified therapeutic product
(Raposio and Ciliberti, 2017). The first of these reservations
was addressed when it was contested that, despite in-vitro data
that suggesting that introducing stem cells might promote cell
proliferation, there was no equivalent definitive evidence in-vivo
to that effect (Ross et al., 2014; Shukla et al., 2015; Simonacci
et al., 2016). The second concern was deemed not to be an issue
in the hands of an experienced radiologist, who should be
expected to differentiate between benign “post-graft” and
suspicious calcification (Ross et al., 2014; Shukla et al., 2015;
Simonacci et al., 2016). A recommendation of the American
Society of Plastic Surgeons against fat grafting for breast
reconstruction was dropped in 2009, and subsequent case
studies have upheld an acceptable risk profile. (Ross et al.,
2014; Shukla et al., 2015; Simonacci et al., 2016). Finally, the
addition of processing to fat graft to enhance take rates has
rendered the fat graft unusable in some jurisdictions. In Europe,
the use of collagenase digestion in fat grafting is considered to be
a significant manipulation of the graft and therefore no longer to
be homologous (Raposio and Ciliberti, 2017). The practical use
of manipulative steps is therefore likely to remain a restricted
procedure, and would likely need to pass regulatory approval
steps akin to those stringent steps required of devices or
genetically modified cell treatments.

Functions of ADSCs in Tissue
Regeneration
Since the initial observations made in clinical fat grafting,
adipogenic differentiation of ADSCs has been thought to result
in restoration of tissue contour and volume. Clinical work
indicates that there is new fat near the area of the fat graft
introduction, which must have occurred via either; i) direct
differentiation of introduced ADSC into adipocytes; or ii)
Frontiers in Pharmacology | www.frontiersin.org 5
ADSCs exerting paracrine effects to influence local stem cells
to differentiate into adipocytes (Zuk et al., 2001; Rigotti et al.,
2007; Delay et al., 2009; Ebrahimian et al., 2009; Kim et al., 2009;
Mizuno, 2009; Uysal et al., 2009; Eto et al., 2011; Mazzola et al.,
2011; Karathanasis V et al., 2013). The latter has gained favor
of late.

Differentiation of Transplanted ADSC During Wound
Healing
There are several studies demonstrating that transplanted ADSC
can potentially promote wound healing by differentiating into
specific cell types in animal models of wound healing. For
example, Nie et al. showed that intradermally administered
ADSCs facilitated wound closure in rats by enhancing re-
epithelialization and granulation tissue deposition (Nie et al.,
2011). The enhanced wound repair in these rats was attributed to
differentiation of ADSC into epithelial and endothelial cells,
which accelerated cutaneous regeneration and angiogenesis
(Nie et al., 2011). Kim et al. assessed the efficacy of ADSCs in
promoting wound healing introduced via three different
techniques (topical application, intravenous injection and
intramuscular injection) (Kim et al., 2019). This study found
that mice treated with ADSC exhibited more stratified and
differentiated epidermal and dermal layers, with more rapid re-
epithelialization and vascularization regardless of the type of
ADSC administration compared to control mice (Kim et al.,
2019). Further, Wu et al. employed an ADSC-seeded silk fibroin
chitosan film in a rat incisional cutaneous wound healing model,
and showed accelerated wound healing and colocalization of
transplanted ADSCs which displayed enhanced levels of
endothelial markers CD31 and alpha-smooth muscle actin (a-
SMA) (Wu et al., 2018). These findings were consistent with
another study using an acute radiation ulcer model in rats, in
which a portion of transplanted ADSCs were also shown to be
colocalized with CD31 (Huang et al., 2013). These findings
suggest that these ADSCs may have partially differentiated into
endothelial cells to promote angiogenesis during wound healing.
Lastly, subcutaneously injected ADSCs resulted in a significant
increased angiogenesis and enhanced wound healing at 8 weeks
post-implantation in rats (Kuo et al., 2016). Unfortunately,
however, these studies failed to directly address the question of
whether ADSCs promoted wound healing by differentiating into
specific cells types, such as epithelial or endothelial cells, or
whether—as the authors claimed—that the increased
angiogenesis was due to the ADSC secretomes, including
VEGF-A (Kuo et al., 2016). A limitation of these studies was
that they were conducted using tissue immunofluorescence,
which relies on optical co-localization of markers that can be
more misleading in terms of positive ADSC and CD31 signals,
compared to PCR that will tease out distinct cell populations that
co-express numerous specific markers. Finally, no differentiation
of ADSCs was detected in a rabbit model of wound healing 7
days after topical application, although the animals treated with
ADSCs did increase granular tissue formation in the wound area
(Hong et al., 2013). This finding may suggest that the
microenvironment in wounds between rodents and rabbits is
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critically different, or that ADSC differentiation may not play a
significant role as the paracrine secretome of the ADSC
population. Further research is required to better understand
the differentiating capacity of transplanted ADSC in vivo.

Non-Differentiation Related Mechanisms: Enhancement
of Angiogenesis and Lymphangiogenesis
Angiogenesis
Injection of the ADSCs into the recipient tissue bed is thought to
increase perfusion of injured tissues and/or graft viability by: i)
paracrine promotion of angiogenesis, or ii) supporting existing
vascular structures. The concepts that support the existence of
such regenerative mechanisms are based on several key findings
regarding fat grafting in murine ischemic injury models (Eto et al.,
2011). These experiments demonstrated that: i) ADSCs may
differentiate into CD31+ ECs in-vivo; ii) there was enhance density
of blood vessels and co-localized fluorescent-labeled ADSCs in or
near the vessels; and iii) ADSCs formed a vWF+ vessel networks in a
Matrigel matrix (Karathanasis V et al., 2013). Further, the release of
angiogenic growth factors by ADSCs has been shown to promote
revascularization and wound healing. These included proteins such
as IGF, PDGF-bb, FGF, TGF-b, and interleukins IL-6, IL-8, stromal-
related proteins MMP inhibitor 1 precursor, MCP-1, ANG, and
SDF-1, and vascular-related proteins such as vascular endothelial
growth factor (VEGF) -A, -C, and -D, (Rehman et al., 2004;
Benvenuto et al., 2007; Kilroy et al., 2007; Kim et al., 2008; Lu
et al., 2008; Ebrahimian et al., 2009;Mizuno, 2009; Pallua et al., 2009;
Uysal et al., 2009;Marigo andDazzi, 2011; Eto et al., 2011; Heo et al.,
2011; Zografou et al., 2011; Baer and Geiger, 2012; Forcheron et al.,
2012; Hsiao et al., 2012; Kapur and Katz, 2013; Haubner et al., 2013;
Jiang et al., 2013; Karathanasis V et al., 2013; Yuan et al., 2013).

Lymphangiogenesis
ADSCs secrete lymphangiogenic factors that aid in
lymphangiogenesis, improving or reversing lymphedema in
damaged tissues. Lymphatic fluid stasis was found to result in
increased TGF-b1, exerting a hypothesized further anti-
lymphangiogenic effect. Blockade of TGF-b1 and ADSC
stimulation, in contrast, lead to increased expression levels
within ADSCs of lymphatic endothelial cell markers
podoplanin and Prox-1 and of lymphangiogenic growth factor
VEGF-C. In addition, the protein growth factors detected in
ADSCs that differentiate them from other MSCs (VEGF-D, IGF-
1, and IL-8) at baseline, all display pro-lymphangiogenic activity
(Ji, 2007; Rigotti et al., 2007; Delay et al., 2009; Avraham et al.,
2010; Mazzola et al., 2011; Yan et al., 2011).

Anti-Oxidant, Anti-Inflammatory
and Anti-Fibrosis Effects
ADSCs may elicit regenerative benefits by exerting anti-oxidant
effects, which in turn provide protective effects combatting
cellular injury induced by radical oxygen species, hypoxia, and
reperfusion effects following ischemia. Protein growth factors
that have been implicated include PDGF-AA, HGF, IL-12, G-
CSF, GM-CSF, IGFBPs. Pigmented epithelial derived growth
factor, Superoxide dismutase may mediate these effects (Chen
et al., 2008; Kim et al., 2008; Kim et al., 2009; Heo et al., 2011;
Frontiers in Pharmacology | www.frontiersin.org 6
Chang et al., 2013). Specific ADSC-induced cytokines have also
been shown to modulate immune and inflammatory responses,
as BMSCs, and ADSCs restrict the proliferation T-cells and B-
cells through NFKB-mediated pathways. Further, IL-6 and IL-8
secretion act as attractants for monocytes and macrophages,
which also promote wound healing processes (Ohnishi et al.,
2007; Chen et al., 2008; Goh et al., 2010; Heo et al., 2011; Marigo
and Dazzi, 2011; Nambu et al., 2011; Forcheron et al., 2012;
Rodriguez-Menocal et al., 2012; Kapur and Katz, 2013; Haubner
et al., 2013; Jiang et al., 2013).

An additional method of improving epithelialization and
wound healing has been shown to be through modulation of
granulation tissue formation and of fibrosis. ADSCs co-cultured
with fibroblasts in-vitro appeared to modify extracellular matrix
(ECM) remodeling through down-regulation of gene expression
related to production of collagen types I and types III by
fibroblasts. Functionally, treatment of keratinocyte and
fibroblasts with conditioned media (CM) harvested from
ADSC (ADSCCM) lead to improved re-epithelialization
(Bensidhoum et al., 2005; Francois et al., 2007; Mouiseddine
et al., 2007; Ohnishi et al., 2007; Greenberger and Epperly, 2009;
Gimble et al., 2010; Goh et al., 2010; Lee et al., 2010; Heo et al.,
2011; Nambu et al., 2011; Lee et al., 2012; Rodriguez-Menocal
et al., 2012; Zhang et al., 2012; Chang et al., 2013).

Overall, the endogenous stem cell recruitment along a
chemokine gradient to the site of injury or inflammation
resulted in improved wound healing, truncation of prolonged
inflammatory responses and tissue regeneration (Greenberger
and Epperly, 2009). Murine models have demonstrated that
MSCs respond by aggregating to a site of tissue damage.
Studies tracking systemically introduced human MSCs showed
that they home to and became grafted into the site of ischemia or
of a necrotic injury. In these studies, SDF1a, produced by ADSCs
was the key chemoattractant of other stem cells to the injured
area of tissue (Bensidhoum et al., 2005; Francois et al., 2007;
Mouiseddine et al., 2007; Dewhirst et al., 2008; Greenberger and
Epperly, 2009; Gimble et al., 2010; Suga et al., 2010; Eto et al.,
2012; Zhang et al., 2012; Chang et al., 2013; Frazier et al., 2013).

Implications of Age-Related Changes to Fat Grafting
in Clinical Practice
Several clinical applications for adipose-derived stem cell therapy
are related to diseases that become more prevalent with age. In
studies that examined the changes to the stem cell population, it
was found that the differentiation and other functional profiles
changes between cells from infanthood, middle age, and elderly
donors (Jin et al., 2017). Other studies also demonstrated
reduced proliferation and migration profile with age, however,
this effect was less marked in adipose-derived cells than it was in
bone marrow derived stem cell populations (Efimenko et al.,
2015). When stem cells were harvested from aged patients and
mice, ADSCs were more robust in terms of potential cell yield
than was the case with other MSCs, however, in terms of the
paracrine signaling and angiogenic potential of stem cells (e.g., in
terms of VEGF-A production), there was a marked impairment
seen in cells taken from older donors in both in vivo and in vitro
models (Efimenko et al., 2015). Similarly, clonogenic potential in
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ADSCs was reduced with age and all the effects were linked to a
likely telomere shortening and accumulation of reactive oxygen
species-related cellular injury (Efimenko et al., 2015). Overall,
aging of donor stem cell populations may form an important
limitation of the ability of ADSCs to delivery therapeutic benefits
that can be derived from younger donor stem cell populations.
This limitation may constitute an indication for ADSC function
testing prior to clinical use, bolster the case for procedures to
enhance ADSC efficacy, or herald the requirement for a delivery
system that by-passes the ADSC itself to harness the paracrine
secretome and cell products in a more targeted fashion—such as
the use of exosomes.

Alternative Approaches to Deliver
Beneficial Effects of ADSCs: Small
Extracellular Vesicles
Extracellular Vesicles: Understanding
Their Composition
Extracellular vesicles (EVs) are a heterogeneous population of
nano- and micro-sized membrane-encapsulated cell particles
tha t a r e fundamenta l med i a to r s o f in t e r c e l l u l a r
communication. EVs constitute a diverse range of subtypes,
namely microvesicles, exosomes, and several other EV
populations, classified by The International Society for
Extracellular Vesicles (ISEV) (Thery et al., 2018). All cell types
continuously secrete EVs to the extracellular environment. EVs
contain select proteins, peptides, RNA species (microRNAs,
mRNAs, and long noncoding RNAs), lipids, and DNA
fragments, that act locally or disseminate through circulation
to act at specific distal sites to pleiotropically modulate cellular
responses via paracrine signaling (Greening et al., 2016; Xu et al.,
2018; Rai et al., 2019). The origin, nature, morphology, size and
content of EVs are diverse and represent a novel signaling
paradigm (Antonyak and Cerione, 2015). EV trafficking has
been studied extensively in the area of oncology; however,
there is now evidence of their seminal roles in intercellular
communication in fetal-maternal signaling (Evans et al., 2019)
and metabolism and tissue regeneration - particularly as
trafficking intermediates for adipose tissue (Thomou et al.,
2017). EVs may be divided into distinct classes, each with
differing composition, capacity for selective packaging and
potential for targeted delivery (and thus potential roles in
disease). Comprehensive examination of the composition and
molecular function of EVs in physiology and pathophysiology
must be explored in the context of individual cell types, in order
to facilitate cell-specific functions and therapeutic use [reviewed
in (Greening and Simpson, 2018)].

Defining Extracellular Vesicles
Numerous terminologies have been described to define and
identify EVs (Gould and Raposo, 2013). Overall, two main
classes of EVs exist: large EVs (or shed microvesicles) and
small EVs (or exosomes) (Colombo et al., 2014; van Niel et al.,
2018). Large EVs (~150–1500 nm) are generated by outward
blebbing of specific regions of the plasma membrane (Tricarico
et al., 2017; van Niel et al., 2018; Mathieu et al., 2019). Small EVs
Frontiers in Pharmacology | www.frontiersin.org 7
(30–150 nm) originate as intraluminal vesicles (ILVs) through
the endosomal maturation pathway (i.e., multivesicular bodies
(MVBs)), which can release ILVs as exosomes into the
extracellular space (Raposo and Stoorvogel, 2013).

During their biogenesis, EVs are selectively enriched with
diverse cellular bioactive cargo molecules. RNAs (coding, non-
coding), DNAs (single-/double-stranded), proteins (peptides,
fusion proteins), and lipids are selectively incorporated into
distinct types of EVs (van Niel et al., 2018; Mathieu et al., 2019).
Further, diverse surface-bound proteins (e.g., receptors,
tetraspanins) that are characteristic of the cell of origin, are
selectively displayed on secreted EVs and play a crucial role in
the recognition of target recipient cells and orchestrating EV
localization; as well as uptake by recipient cells (Xu R. et al.,2019).

Although a growing number of studies have investigated the
roles of EVs in cell–cell communication, an understanding of
specific mechanisms behind their biogenesis and the
heterogeneity of EVs and their subtypes remains rudimentary
(Greening and Simpson, 2018). The heterogeneity of small EVs
and the identification of non-vesicular extracellular content has
raised concerns as to the content and function of some
exosomes (Jeppesen et al., 2019). Currently, the extent to
which small EVs (and exosomes) differ from other EVs in
terms of their biogenesis and functions remains ill-defined; and
specific markers that distinguish large from small EVs are the
subject of much research (Ji et al., 2014; Greening et al., 2017;
Greening and Simpson, 2018; Thery et al., 2018; van Niel et al.,
2018; Xu et al., 2018; Zhang et al., 2018; Claridge et al., 2019;
Jeppesen et a l . , 2019) . This research includes the
characterization of EV classes and their subtypes, imaging
and tracking of EVs, mechanisms of cell and tissue targeting
and internalization, post-translational and transcriptional
regulation of EVs and their cargo, and administration and
duration (i.e., transient vs. stable) of functional effects (Xu
et al., 2016; Greening and Simpson, 2018; van Niel et al.,
2018; Xu et al., 2018; Mathieu et al., 2019).

Isolating and Purifying Extracellular Vesicles
for Biophysical Studies and Clinical Utility
The majority of rapid/one-step approaches for isolating EVs do
not account for the fact that samples may contain a mixture of
vesicle classes/subtypes and co-isolated contaminants such as
high-molecular weight protein oligomers, RNA granules, and
protein-RNA complexes (e.g., high-/low-density lipoproteins,
argonaute-2/AGO2) complexes (Jeppesen et al., 2019). Varying
methodologies for purifying (enriching) EVs and their modified
vers ions ex i s t , inc lud ing di ff e ren t i a l ( sequent i a l )
ultracentrifugation, density-based fractionation, gel permeation
chromatography, affinity chromatography using bio-specific
reagents (e.g., antibody targets), membrane ultrafiltration using
low-centrifugal force, microfluidic devices, and synthetic
polymer based precipitation reagents [for a discussion on
application, yield/purity and scalability of these methods, see
(Xu et al., 2016; Li et al., 2017)]. The choice of which method for
EV isolation used depends on the specific research question or
proposed use, as outlined below. Further detail of specific
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guidelines as recommended by ISEV for studies of EVs has been
reported elsewhere (Thery et al., 2018).

Stringent EV Isolation Procedures
EVs can be isolated and purified depending on the application. For
stringent biochemical analysis [e.g. define their luminal cargo—
RNA/DNA/lipid/protein species and surface-exposed proteins (Xu
R. et al., 2019)] or specific functionality, rigorous purification
strategies are critical, including immunoaffinity targeting.
Antibody targets that have been successfully employed in this
process include those directed against A33 (Mathivanan et al.,
2010), EpCAM (Yoo et al., 2012; Tauro et al., 2012), MHC-II
antigens (Clayton et al., 2001; Keryer-Bibens et al., 2006), CD45
(Coren et al., 2008; Mercier et al., 2013), CD63 (Caby et al., 2005;
Oksvold et al., 2014), CD81 (Oksvold et al., 2014), CD9/CD1b/
CD1a/CD14 (Wiley andGummuluru, 2006), CD24/SWA11 (Rupp
et al., 2011), and HER2 (Koga et al., 2005). Further, targeted EV
capture basedonbio-specific synthetic peptides (Ghosh et al., 2014)
and proteoglycan enrichment (Christianson et al., 2013; Balaj et al.,
2015) have been described. Other approaches to purify EVs include
sequential centrifugalmembraneultrafiltration (Xu et al., 2015) and
density-based fractionation using differential centrifugation (i.e.,
top- or bottom-loaded) (e.g., OptiPrep™/iodixanol) (Ji et al., 2013;
Carrasco-Ramirez et al., 2016; Greening et al., 2016; Willms
et al., 2016).

Generation of EVs for Therapeutic Studies
By virtue of their bioactive cargo EVs have inherent therapeutic
potential (Dean et al., 2013; De Toro et al., 2015; Reiner et al.,
2017). Small EVs from human MSCs have been used in tissue
regenerative medicine to reduce infarction size in a mouse model
of myocardial ischemia/re-perfusion injury (Lai et al., 2015). For
these studies, large-scale production of functional homogeneous
MSC-derived exosomes was accomplished using size-based
fractionation. In another therapeutic application, small EVs
from dendritic cells (and tumor cells) have been trialed in
vaccine studies (Romagnoli et al., 2014; Kunigelis and Graner,
2015; Pitt et al., 2016; Tian and Li, 2017). Navabi et al. described
a large-scale production method combining ultrafiltration and
sucrose/deuterium oxide for generating good manufacturing
(GMP) grade small EVs for use in clinical trials (Navabi
et al., 2005).

Extracellular Vesicle Regulation of Adipose Function
Several key studies have demonstrated the role of EVs in adipose
function. Recently, adipose tissue macrophages were shown to
release exosomes containing a specific miRNA to facilitate
glucose intolerance (from fat mice population) and insulin
resistance (in lean mice population) (Wu et al., 2017). Exosome-
containing miR-155 was shown to transfer into insulin target cell
types, regulating cellular insulin response, insulin sensitivity, and
glucose homeostasis (Wu et al., 2017). The ability of adipose tissue
macrophage-derived exosomes to modulate systemic insulin and
glucose tolerance via different miRNA compositions depended on
their adipose phenotype (Wu et al., 2017). Thomou et al. further
highlighted the contribution of adipose EVs to adipose function,
Frontiers in Pharmacology | www.frontiersin.org 8
with 653miRNAs expressed in serum-derived exosomes fromnon-
obese, or non-diabetic mice (Thomou et al., 2017). Importantly,
adipocyte-specific Dicer KO mice were used to deplete adipocyte-
derived miRNAs, revealing that exosomes from adipocytes
containing miR-99b, inhibited liver FGF21 expression (Thomou
et al., 2017). It was further suggested that these changes in FGF21
facilitated theoverall phenotypeof theDicerKOmice. Interestingly,
Ying et al. demonstrated that such changes were only marginally
affected by adipose tissue macrophages-derived exosomes (Wu
et al., 2017), indicating that significant differences are present
between the miRNA profiles of different cell types within the
source adipose tissue. Finally, it was observed that in adipocyte-
specific Dicer KO, there was a substantial reduction in circulating
exosomal microRNAs (Thomou et al., 2017).

A seminal study by Flaherty et al. identified that adipocytes
communicate with adipose tissue macrophages through EVs
(Flaherty et al., 2019). This is achieved by directly transferring
lipids to differentiate bone marrow precursors into adipose tissue
macrophage-like cells, with critical implications for obesity-
associated pathologies (Flaherty et al., 2019). The authors
highlighted the fact that adipose tissue from lean mice releases
~1% of its lipid content per day via exosomes ex-vivo, a rate that
more than doubles in obese animals. Amose et al. also showed that
EVs in human plasma increased significantlywith BMI, supporting
a role of EVs as metabolic relays in obesity (Amosse et al., 2018).
This study demonstrated a key role for large EVs in the transfer of
macrophagemigration inhibitory factor (MIF) andthe linkbetween
adipose-derived EVs and macrophage regulation.

Further investigating the role of exosomes in adipose tissue,
Crewe et al. showed that adipose tissue EVs modulated crosstalk
between adipocytes and stromal vascular cells for metabolic
signaling and regulation (Crewe et al., 2018). Quantities of
adipose tissue EVs were increased in a fasted state (compared
with genetic and diet-induced obesity), partially because of
glucagon-stimulated EV secretion from endothelial cells (Crewe
et al., 2018). The authors showed dysregulation of important
signaling proteins (antioxidant response, mitochondrial
respiration) and lipid species involved in stress response. A
critical finding was that extracellular molecules are internalized
and packaged into EVs (Crewe et al., 2018), representing a new
mechanism by which blood-borne signals are integrated into and
supplied to adipose tissues.

In addition to influencing fat biology, components of the
ADSC secretome have also been shown to promote wound
healing and neuro-regeneration, making it an exciting focus for
discovery of potential therapeutic targets (Hu et al., 2016; Yim N
et al., 2016); particularly as engineering-specific EV delivery
systems is now a reality (Yim N et al., 2016).

ADSCs for Therapeutic Application
in Human Disease
Pre-clinical studies of ADSCs and ADSC-exosomes/EVs are
listed in Table 1 and Table 2, respectively. As the exosome/EV
field is far less advanced than the clinical practice of fat grafting,
the respective advances in the clinical application of each are
considered together.
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Wound Healing
Awound consists of an area of disrupted tissue integrity, architecture
and homeostasis. It may be caused by trauma or by thermal or
radiation injury (Devalia and Mansfield, 2008; Fry, 2017). The
process of wound healing involves a series of organized molecular
events including inflammation, neo-vascularization, scar tissue
formation, and tissue remodeling (Gurtner et al., 2008); processes
tightly regulated by specific growth factors, such as TGF-b, FGF, and
PDGF (Grazul-Bilska et al., 2003). In most injuries, wound repair
results in scar formation due to recruitment of collagen secreting
fibroblasts to enhance the deposition of collagenous ECM (Gurtner
et al., 2008).Thebeneficial effects ofADSCCMonwoundhealinghave
been reported in several pre-clinical studies. For example, reduced
proliferative capacity and increasedapoptosis seen inUVB-irradiated
human dermal fibroblasts were reversed with ADSCCM treatment
(Kim et al., 2009). Similarly, it was shown that ADSCCM stimulated
synthesis of type I collagen by humandermalfibroblasts and reduced
UVB-induced wrinkles in mice (Kim et al., 2009). Another study
demonstrated that the mRNA expression of types I and III collagens
were enhanced inhumandermalfibroblasts following treatmentwith
ADSCCM (Jung et al., 2011).
Frontiers in Pharmacology | www.frontiersin.org 9
In addition, animal models have shown promising effects of
ADSCs on accelerating wound repair. For example, treatment
using artificial dermis as a supportive matrix impregnated with
autogenic ADSCs in wounded rats resulted in increased
vascularization and healing, which was mediated by increased
gene expression of genes involved in tissue repair or angiogenesis
[e.g., Tgfb-1 and -3, Fgfb and Vegf (Hamada et al., 2019)]. Also in
rats, Nie et al. employed an excisional wound healing model and
demonstrated that ADSCs secreted pro-angiogenic mediators
both in vitro and in vivo (e.g., VEGF-A, HGF, and FGF), in-turn
promoting neo-vascularization and re-epithelial regeneration of
wounds, thus accelerating the wound repair (Nie et al., 2011).
Further, the wound healing effects of ADSCs in skin seems to be
augmented when administered in combination with platelet-rich
plasma containing several different protein growth factors and
cytokines, including FGF, TGF-b and PDGF (Zhang et al., 2019).
The study suggested enhanced wound closure in treated mice via
activation of the Rho GTPase signaling pathway, which is
involved in cell migration and invasion (Lawson and Ridley,
2018). Collectively, these findings suggest that ADSCs are a
potential therapeutic tool for promoting wound healing.
TABLE 1 | Pre-clinical studies of ADSCs.

Disease
model

In vitro or
In vivo

Function Key findings with ADSC-CM Reference

Cutaneous
wound

In vitro
and in
vivo

Wound healing Reduced UVB-induced wrinkles in mice. Also, ADSC-CM (conditioned media) inhibited UVB-induced
apoptosis and enhanced type I collagen synthesis of human dermal fibroblasts

(Kim et al.,
2009)

Cutaneous
wound

In vitro Wound healing Accelerated collagen deposits in human dermis through up-regulation of fibroblasts TGF-b1 (Jung et al.,
2011)

Cutaneous
wound

In vivo Wound healing Promote neovascularization and wound repair by up-regulating Tgfb-1, Fgfb, & Vegf gene expression (Hamada
et al., 2019)

Cutaneous
wound

In vitro
and in
vivo

Wound healing Enhanced neovascularization and re-epithelialization of wounds by up-regulating VEGF, HGF an FGF
protein expression

(Nie et al.,
2011)

Cutaneous
wound

In vivo Wound healing ADSC + platelet-rich plasma activated Rho GTPase signaling and lead to accelerated wound cell
migration & re-epithelialization

(Zhang
et al., 2019)

Secondary
lymphedema

In vivo Reduce tail swelling Promote VEGF-C-mediated lymphangiogenesis and anti-inflammatory M2 macrophages recruitment (Shimizu
et al., 2012)

Radiation
injury

In vitro Lymph-angiogenesis Promoted bFGF-mediated lymphangiogenesis in irradiated LECs (Saijo et al.,
2019)

Alzheimer’s
disease

In vivo Neurogenesis Secreted IL-10 and VEGF to reduce Ab plaques and promote neurogenesis and cognitive functions (Kim et al.,
2012)

Alzheimer’s
disease

In vivo Neurogenesis Reduce oxidative stress and stimulate neuroblast proliferation to improve cognitive function (Yan et al.,
2014)

Parkinson’s
disease

In vivo Neuroprotection Inhibit dopaminergic neuronal cell death and reduce brain mitochondrial damage, restore
mitochondrial function

(Choi et al.,
2015)

Parkinson’s
disease

In vivo Neuroprotection Improved motor function by increasing BDNF and GFPA (Berg et al.,
2015)

Huntington’s
disease

In vivo Neuroprotection ADSC-extracts improve rotarod test and reduce mHtt aggregates and striatal atrophy via CREB-
PGC1a

(Im et al.,
2013)

Huntington’s
disease

In vivo Neuroprotection Improved rotarod performance and limb clasping, increased survival, protected striatal neurons and
decreased mHtt aggregates

(Lee et al.,
2009)

Acute kidney
injury

In vivo Renal protection Attenuate I/R-induced renal damage by suppressing apoptosis and inflammation via reduction in levels
of pro-apoptotic and pro-inflammatory cytokines

(Zhang
et al., 2017)

Diabetic
nephropathy

In vivo Renal protection Reduce oxidative stress and inflammation by inhibiting p38 MAPK signaling pathway (Fang et al.,
2012)

Breast
cancer

In vivo Tumor promotor or
tumor suppressor

ADSC injected into tumor promote tumor growth, c.f. ADSC injected around tumor inhibits tumor
growth

(Illouz,
2014)

Breast
cancer

In vivo Tumor promotor Promoted pulmonary metastases by inhibiting miR-20b & activating c-Kit/MAPK-p38/E2F1 signaling (Xu H.
et al., 2019)
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Extracellular Vesicles in Wound Healing
Geiger et al. investigated the application of human fibrocyte-
derived exosomes in diabetic mice. They found that wound
healing was significantly enhanced in all parameters studied
(Geiger et al., 2015). Zhang et al. found human umbilical cord
MSC-derived EVs to promote re-epithelialization of a wound
model and improved the Wnt4 expression profile (Zhang et al.,
2015). Similarly, Zhang et al. suggested that MSC-derived
exosomes promote collagen formation and angiogenesis
(Zhang et al., 2015). ADSC-derived exosome treatment of
human dermal fibroblasts seemed to also induce enrichment
of the microRNA within the fibroblasts that contribute to
healing (Choi et al., 2018). In a murine wound model, Wang
et al. suggested that IV administration of ADSC-exosome
resulted in reduced scar size and altered metalloproteinases
that may improve healing (Wang et al., 2017). Finally, Ren et al.
showed that MVs from ADSCs stimulated proliferation and
migration of fibroblasts, keratinocytes, and endothelial cells,
particularly via the AKT and ERK signaling pathways both in
vitro and in vivo (Ren et al., 2019).
Frontiers in Pharmacology | www.frontiersin.org 10
Radiotherapy Soft Tissue Injury
Radiotherapy (RTX) is administered as part of cancer treatment,
either before or after surgery or, unusually, in the absence of
surgery (Ross et al., 2014; Shukla et al., 2015). The resulting
injury may have devastating consequence in terms of chronic
tissue fibrosis and breakdown that may expose vital underlying
structures; or can cause secondary pain, contracture and
functional impairment. ADSCs have been shown to enhance
the quality of skin and soft tissues in clinical RTX injury and in
animal models. These influences are thought to be mediated in a
paracrine fashion by ADSC-secreted elements that counter the
chemokine environment generated by the RTX-injury; this
includes anti-inflammatory and anti-apoptotic effects (Ross
et al., 2014; Shukla et al., 2015).

Haubner et al. investigated the influences of RTX in blood ECs,
and showed enhanced gene expression of pro-inflammatory
cytokines IL6, FGF, ICAM-1, and VCAM1. This model of co-
culture with ADSCs showed restoration of expression profiles of all
RTX-altered cytokines (Haubner et al., 2013). Chang et al. also
utilized intra-peritoneal ADSCs after local RTX to show abrogation
March 2020 | Volume 11 | Article 15
TABLE 2 | Pre-clincial studies of ADSC-EVs.

Disease model In vitro or
In vivo

Function Key findings Reference

Myocardial I/R injury In vivo Cardio-
protection

Reduced oxidative stress-induced necrosis and apoptosis in myocardium (Cui et al.,
2017)

Acute myocardial infarction In vivo Cardio-
protection

Reduced cardiac apoptosis, fibrosis & inflammation via S1P/SK1/S1PR1 pathway &
macrophage M2 polarization

(Deng et al.,
2019)

Acute myocardial infarction In vivo Cardio-
protection

miR-126-enriched ADSC-exosomes reduced cardiac inflammation & fibrosis, induce
microvascular generation & migration

(Luo et al.,
2017)

Stroke In vivo Neuro-
protection

miR-126-enriched ADSC-exosomes induced neurogenesis, vasculogenesis & inhibit post-
stroke inflammation

(Geng et al.,
2019)

Stroke In vivo Neuro-
protection

miR-181-b-5p-enriched ADSC-exosomes promote angiogenesis of brain microvascular
ECs post O2-glucose deprivation

(Yang et al.,
2018)

Neural injury In vivo Neuro-
protection

Reduced neuro-inflammation by suppressing microglia cells activation by inhibiting NF-kb
and MAPK pathways

(Feng et al.,
2019)

Neural injury In vivo Neuro-
regeneration

Promote axonal regeneration & myelination in atrophied gastrocnemius by stimulating
secretion of neurotrophic factors from Schwann cells

(Chen et al.,
2019)

Alzheimer’s disease In vitro Neuro-
protection

Inhibit formation of Ab plaques and induce neuronal cells proliferation (Lee et al.,
2018)

Huntington’s disease In vitro Neuro-
protection

Reduce mutant Huntingtin protein aggregates, ameliorated abnormal apoptotic protein
levels, & restored mitochondrial function

(Lee et al.,
2016)

Parkinson’s disease In vivo Neuro-
protection

Reduce gene expression of GFAP, restore astrocytic injury, and increasing dopamine
levels

(Meligy et al.,
2019)

Acute kidney injury and
chronic kidney disease

In vivo Renal
protection

Promoted tubular regeneration and inhibit AKI-CKD transition via SOX9 activation (Zhu et al.,
2017)

Acute kidney injury In vivo Renal
protection

Combined ADSC + ADSC-exosomes reduce renal inflammation, oxidative stress,
apoptosis, fibrosis, & glomerular & tubular damage

(Lin et al.,
2016)

Diabetic nephropathy In vivo Renal
protection

Inhibit podocyte apoptosis and induced podocyte autophagy through miR-486-mediated
inhibition of Smad1/mTOR signaling pathway

(Jin et al.,
2019)

Breast cancer In vitro Tumor
promotor

Promote migration/proliferation of MCF7 human breast cancer cells via Wnt/b-catenin
signaling pathway

(Lin et al.,
2013)

Prostate cancer In vitro &
in vivo

Tumor
suppressor

Inhibit tumor growth by activating caspase-3/7 pro-apoptotic miR-145 pathway (Takahara
et al., 2016)

HCC In vivo Tumor
suppressor

miR-122 enriched ADSC-exosomes increase HCC chemosensitivity & inhibit tumor
growth

(Lou et al.,
2015)

Breast cancer In vivo Tumor
suppressor

miR-379 enriched ADSC-exosomes inhibited tumor growth over 6 weeks (O’Brien et al.,
2018)
8
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of inflammation in treatment groups, with restored gastrointestinal
tract (GIT) regenerationand enhanced survival (Chang et al., 2013).
ADSC treatment was also linked with increased serum levels of
IL10, VEGFA, bFGF, and EGF; in addition to increased SDF-1-
mediated stem cells recruitment to the injured area (Chang et al.,
2013). Further, Kojima et al. and Lim et al. showed protective
influences ofADSCagainst RTX-induced salivary gland irradiation
(Kojima et al., 2011; Huang et al., 2013).

In terms of skin and subcutaneous RTX-induced damage,
ADSC treatment resulted in improvement in mouse models of
chronic RTX-related impaired wound healing and in
unwounded RTX-damaged skin [marked by altered collagen-
based scar index measurements, increased dermal thickening
and reduced fibrosis marker Smad-3 (Sultan et al., 2011; Huang
et al., 2013)]. A similar study, investigating ADSC-enriched fat
grafting in larger animals exposed to RTX, showed labeled ADSC
integration into skin and concomitant enhanced wound repair,
epithelialization, subcutaneous fat reserves and lower apoptotic
rates. In addition, recruitment and activation of lymphoid cells
was seen (Forcheron et al., 2012; Chen et al., 2014).

Lymphoedema
Lymphoedema is the chronic swelling of a limb caused by an
accumulation of excess interstitial fluid. In time, if unresolved,
the fluid accumulation may lead to the formation of excess
subcutaneous fibro-adipose tissue (Brorson, 2003). This
condition most commonly occurs in a limb and may be the
result a developmental malformation that leads to poor
interstitial fluid drainage via the lymphatic system (primary
lymphoedema) (Lee and Villavicencio, 2010). Alternatively, as
is the case in most patients, lymphoedema may develop
subsequent to a trauma to the lymphatic system. Typically,
secondary lymphoedema occurs following surgery or RTX for
cancer (in the developed world) or due to filarial infection (in the
developing world) that damage lymphatic vessels and impair
lymphatic drainage. The pathological features of secondary
lymphoedema include inflammation, adipogenesis, and fibrosis.

Shimizu et al. demonstrated the therapeutic potential of
ADSCs in lymphangiogenesis by implanting ADSCs into a
surgical mouse model of secondary lymphoedema. They
showed that ADSCs stimulated lymphangiogenesis by secreting
VEGF-C, and enhanced the recruitment of anti-inflammatory
M2 macrophages, which were associated with significantly
reduced tail swelling in the model (Shimizu et al., 2012). A
recent study by Saijo et al. suggested FGF as a novel factor in the
ADSC secretome that could potentially contribute to
lymphangiogenesis in irradiated human dermal lymphatic
endothelial cells (LEC), implying that ADSCs may ameliorate
RTX-injury in LECs (Saijo et al., 2019). Counter to this, however,
early lymphangiogenesis has been highlighted as a possible risk
factor associated with developing the later stages of
lymphoedema in a surgical mouse model of secondary
lymphoedema; and, paradoxically, pharmacological inhibition
of lymphangiogenesis suppressed lymphedema development in
the model (Ogata et al., 2016). Thus, whether ADSC-mediated
lymphangiogenesis could be therapeutically beneficial in
lymphoedema remains elusive and requires further investigation.
Frontiers in Pharmacology | www.frontiersin.org 11
Mechanistic and small EV-based functional studies by
Greening et al. linked key components of cancer cell-derived
EVs to the modulation lymphatic vessel formation and
metastasis, demonstrating that lymphatics can also be
responsive to secretome components (Carrasco-Ramirez et al.,
2016). This study demonstrated critical functional effects on
lymphangiogenesis mediated by vesicle surface podoplanin
(hitherto considered a passive marker of lymphatic endothelial
tissue) on small EVs, using a specific neutralizing monoclonal
surface-specific antibody. It also highlighted a key role of
podoplanin in biogenesis and release of EVs, and in
lymphangiogenesis function. However, the role of the ADSC
secretome as a driver of lymphatic repair after RTX or other
lymphatic injury, remains to be revealed.

Neurodegenerative Diseases
ADSCs in the Treatment of Neurodegenerative Diseases
The use of ADSCs has shown promising pre-clinical results in
studies investigating several important neurodegenerative
disorders, such as Parkinson’s disease, Alzheimer’s disease, and
Huntington’s disease. A study using a murine Alzheimer’s disease
model showed that treatment with human ADSCs significantly
enhanced levels of the anti-inflammatory cytokine IL-10, as well as
key neurotrophic (and vasculogenic) factors, including VEGF-A -
which led to a marked reduction in Ab plaques and memory
impairment, and elevation of endogenous neurogenesis and
dendritic stability (Kim et al., 2012). Furthermore, autologous
implantation of mouse ADSCs in mice with Alzheimer’s disease
enhanced regeneration of neuroblasts and reduced oxidative stress
in the brain, which in turn alleviated cognitive impairment (Yan
et al., 2014). Exosomes from ADSCs have also been shown to
transfer enzymatically active neprilysin, aAb-degrading enzyme, in
vitro (Katsuda et al., 2013). Importantly, this study showed that
ADSC exosome-mediated functionwasmore significant than bone
marrow derived MSCs, contributing to prevention of extracellular
plaque formation, subsequent pathogenesis and a potential
Alzheimer’s disease therapeutic.

In terms of Parkinson’s disease, a common chronic
progress ive neurodegenerat ive movement disorder
characterized in patients as diminished brain dopamine levels,
numerous studies have been performed assessing the therapeutic
potential of human ADSCs on a 6-hydroxyldopamine (6-
OHDA)-induced mouse Parkinson’s disease model (Berman
and Hastings, 1999). Mitochondrial dysfunction in the brain is
known to contribute to pathogenesis of the disease by increasing
reactive oxygen species and hence oxidative stress, which
exacerbates damage to the dopaminergic neurons in
Parkinson’s disease (Berman and Hastings, 1999). Choi et al.
demonstrated that ADSCs significantly improved behavioral
performance by decreasing dopaminergic neuronal cell death
and the population of damaged mitochondria in the mouse
brain; as well as by recovering mitochondrial functions in the
brains of ADSC-injected mice (Choi et al., 2015). It has also been
shown that human ADSCs significantly enhanced expression of
brain-derived neurotrophic factor (BDNF) and improved motor
lost function in the 6-OHDA murine Parkinson’s disease model
(Berg et al., 2015), suggesting a pro-healing effect. Interestingly,
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however, the levels of glial fibrillary acidic protein (GFAP), were
shown to be up-regulated in the brain of ADSC-treated animals
(Berg et al., 2015). GFAP is a common indicator of dysfunctional
astrocytes, the most abundant central nervous system glial cells.
They may contribute to the progression of Parkinson’s disease
and GFAP upregulation is a possible sign of neuronal
regeneration, however, it should be noted that a definitive role
for GFAP is not yet agreed upon (Berg et al., 2015).

Huntington’s disease is a progressive, fatal hereditary
neurodegenerative disorder characterized by accumulated
mutant Huntingtin (mHtt) protein in neural cells, which affects
mitochondrial energy metabolism to accelerate cell death by
progressive brain atrophy. Therefore, altered mitochondrial
energy metabolism due to an impaired CREB-PGC1a pathway
is a key risk factor in disease progression, which is characterized
by an accumulation of mHtt in the brain (Cui et al., 2006;
Chaturvedi et al., 2010). Im et al. investigated the influences of
cell-free extracts of human ADSC (ASC-E) on R6/2 mice, which
developed Huntington’s disease, and found that ASC-E induced
activation of the p-CREP-PGC1a pathway and amelioration of
mHtt aggregates as well as striatal atrophy in the brain of R6/2
mice (Im et al., 2013). Also, injection of ASC-E in the mouse
model slowed progression of the Huntington’s disease
phenotype, including weight loss and declining rotarod
performance; although the molecular contents of the ASC-E
that exerted these therapeutic effects was not assessed in this
study (Im et al., 2013). Similarly, ADSC implantation in the R6/2
murine Huntington’s disease model also showed beneficial
effects, such as enhanced rotarod performance, limb clasp and
survival; and attenuation of striatal neurons loss; as well as
diminished brain aggregation of mHtt (Lee et al., 2009). These
results were found to be driven by CREB-PGC1a pathway
activation (Lee et al., 2009). Altogether, these studies suggest
that ADSC treatment could constitute a novel treatment tool
useful in ameliorating key pathogenic steps in the development
of Huntington’s and other similar neurodegenerative diseases.

Exosomes in the Treatment of Neurological Diseases
There have been a few studies demonstrating critical roles of
ADSC-exosomes in neuro-protection and neuro-regeneration
owing to their capacity to cross the blood-brain barrier
(Alvarez-Erviti et al., 2011). For instance, ADSC-exosomes
have been shown to mediate functional neuro-regeneration in
stroke. Geng et al. demonstrated in a rodent model that miR-126
enriched ADSC-exosomes enhanced neurogenesis and
vasculogenesis after stroke (Geng et al., 2019). These results are
in keeping with a rat experiment undertaken by Yang and
colleagues, in which miR-181b-5p-enriched ADSC-exosomes
promoted mobility and angiogenesis of brain microvascular
endothelial cells in stroke (Yang et al., 2018). The manner in
which exosomes transverse the blood-brain barrier by using
transcytosis through endothelial cells are capable of mediating
astrocytes to degrade the cell cytoskeleton (Morad et al., 2019),
and have only recently been elucidated. Furthermore,
neuroinflammation is a major complication of brain injury,
which is triggered by the activation of microglia cells in the
Frontiers in Pharmacology | www.frontiersin.org 12
central nervous system (Dheen et al., 2007). miR-126-enriched
ADSC-exosomes were shown to significantly inhibit post-stroke
inflammation by suppressing activation of microglial cells and
reducing pro-inflammatory cytokine levels in the rat brain (Geng
et al., 2019). Feng et al. also demonstrated ADSC-exosomes to
inhibit microglial activation by inhibiting the pro-inflammatory
MAPK and NF-kb signaling pathways, which protected rat brain
neural cells from injury (Feng et al., 2019).

Potential gene candidates in ADSC-exosomes that underpin
these therapeutic effects have been explored using models of
neurite outgrowth and sciatic nerve regeneration. Bucan et al.
showed rat ADSC-exosomes to contain a range of neurotrophic
factors, such as glial-cell derived neurotrophic factor, FGF-1,
BDNF, ILGF-1, as well as nerve growth factor (NGF) (Bucan
et al., 2019). Schwann cells are also simulated by neurotrophic
factors NGF and BDNF and elicited pro-regenerative effects in
nerve regeneration after nerve damage (Jessen and Mirsky,
2019). Chen et al. also demonstrated that exosomes derived
from human ADSCs enhanced secretion of BDNF and NGF by
Schwann cells, which led to increased proliferation, myelination,
migration of cells in a dose-dependent manner in vitro (Chen
et al., 2019). Additionally, this study assessed the effects of
ADSC-exosomes on gastrocnemius muscle atrophy (a readout
of sciatic nerve injury in rats) and found that treatment with the
ADSC-exosome improved muscle atrophy by promoting axonal
regeneration and myelination; although exosomal components
that exerted these effects remained unidentified (Chen et al.,
2019). Lastly, another study showed ADSC-exosomes to inhibit
apoptosis and increase proliferation of Schwann cells in rats after
nerve injury (Chen et al., 2019); an additional potential
mechanism by which the ADSC-exosomes may promote
nerve regeneration.

Several other studies demonstrated beneficial effects of
ADSC-exosomes on key neurodegenerative diseases. Lee et al.
demonstrated that ADSC-EVs significantly reduced the levels of
Ab plaques in Alzheimer’s disease, inhibiting apoptosis of
neuronal cells and augmenting neurite outgrowth of neuronal
cells in vitro (Lee et al., 2018). In Huntington’s disease (Cho et al.,
2019), Lee el al. showed that Huntington’s disease model that
ADSC-EVs profoundly decreased mHtt aggregates and inhibited
apoptosis of neuronal cells in vitro. Mitochondrial dysfunction
was attenuated by activation of the proliferator-activated
receptor g coactivator 1a (PGC1a) and cAMB response
element binding protein (CREB)-peroxisome pathways (Cui
et al., 2006; Chaturvedi et al., 2010; Lee et al., 2016). Finally, in
Parkinson’s disease (McGregor and Nelson, 2019). Meligy et al.
studied a rotenone-induced rat model of Parkinson’s disease to
demonstrate that ADSC-EVs significantly increased levels
dopamine in the treatment group compared to the control
(Meligy et al., 2019). In contrast to the overexpression of
GFAP seen in animals treated with ADSCs (Clairembault et al.,
2014), it was shown that ADSC-EVs markedly decreased the gene
expression of GFAP, restored astrocytic injury, and improved
motor performance in their Parkinson’s disease model (Meligy
et al., 2019). This suggested that GFAP may play a different role
in neuroprotection in the same model whether treated with
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ADSCs or ADSC-EVs. Overall, these results indicated that the
ADSC-EVs may have reparative potential in incurable
neurodegenerative disorders. Further studies are needed to
understand the neuroprotective mechanisms by EVs.

ADSCs in Renal Diseases
AKI is a complex clinical condition characterized by deteriorating
renal function due to decreased renal perfusion, blood supply and
glomerular filtration rates, caused by damage to nephron structures
(Prowle et al., 2010; Ostermann and Joannidis, 2016). AKI may
progress to long-term chronic kidney disease (CKD), for which
there is currentlynocure (Rafieian-Kopaei, 2013).Thus, prevention
of transition of AKI to CKD is critical. Implantation of ADSCs has
been shown to yield beneficial effects on rat models of acute kidney
injury (AKI). For example, ADSC treatment in an ischemia/
reperfusion (I/R)-induced rat model of AKI significantly
decreased the number of apoptotic kidney cells and effectively
restored urine protein and serum creatinine levels (Zhang et al.,
2017). This finding suggested restoration of kidney function by
ADSC treatment, and was consistent with the findings by Lin et al.
(Lin et al., 2016). Moreover, ADSC treatment lead to markedly
reduced expression levels of multiple pro-inflammatory cytokines,
for example, IL-6, TNF-a, and IFN-g; however, was associatedwith
elevated expression of anti-inflammatory cytokine, IL-10 (Zhang
et al., 2017) at the mRNA level. Furthermore, ADSC treatment
effectively ameliorated diabetic nephropathy by reducing oxidative
stress and inflammatory cytokines levels (e.g. IL-6 and TNF-a), by
mediating the inhibition of the pro-inflammatory p38 MAPK
signaling pathway (Fang et al., 2012), a factor involved in the
development of human diabetic nephropathy (Adhikary
et al., 2004).

Extracellular Vesicles and Renal Disease
ADSC-EVs have been demonstrated to have a pivotal role in
protection from the development of AKI. Zhu et al. studied
downstream effects of using ADSC-EVs to prevent transition of
AKI to CKD, in a mouse model of renal I/R injury. The authors
showed that mice treated with ADSC-EVs exhibited decreased
renal I/R injury and increased proliferation of renal tubular
epithelial cells, thus attenuating AKI (Zhu et al., 2017).
Notably, treatment with ADSC-EVs resulted in upregulation of
tubular SOX9 gene expression (Zhu et al., 2017), a key gene
involved in renal repair and renal tubule epithelial cell
regeneration (Kumar et al., 2015; Kang et al., 2016).
Furthermore, reduced levels of the pro-fibrotic cytokine TGF-
b1 were observed following the ADSC-EV treatment in the
model, suggesting that the EVs inhibited TGF-b1-induced
renal fibrosis (Zhu et al., 2017), a key feature of CKD
(Humphreys, 2018). Another study by Lin et al. demonstrated
that inflammation, oxidative stress, apoptosis, fibrosis, and
glomerular and renal tubular damage were mitigated by a
combined treatment of ADSC-EVs and ADSCs in a rat model
of renal I/R injury (Lin et al., 2016).

In diabetic nephropathy, a common variety of CKD due to
impaired podocyte autophagy resulting from aberrant activation
of the mTOR signaling pathway, a more recent study employed a
spontaneous diabetic mouse model to assess the roles of
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ADSC-EVs (Godel et al., 2011; Tagawa et al., 2016). It was
demonstrated that serum creatinine and blood urea nitrogen and
total urinary protein levels, indicators of renal dysfunction, were
significantly reduced by ADSC-EVs in diabetic mice (Jin et al.,
2019). This finding correlated with the study in AKI carried out
by Lin et al. (Lin et al., 2016). Additionally, ADSC-EVs were
shown to enhance autophagy (the body’s clearance of cellular
debris) and diminish podocyte apoptosis by restricting Smad1/
mTOR pathway activation via miR-486 (Jin et al., 2019).
Activation of miR-486 is important as expression of miR-486
has been found to be down-regulated in diabetic patients when
compared with non-diabetic individuals (Regmi et al., 2019),
implying that miR-486-enriched ADSC-EVs could be a potential
therapeutic for treating diabetic nephropathy. Overall, these
findings suggest a therapeutic use for ADSCs in kidney
diseases such as AKI and diabetic nephropathy, given their
capacity to suppress oxidative stress and inflammation; and the
possible additional future efficacy of ADSC-EV in AKI.

ADSCs in Cancer
A study using a xenograft mouse model of human breast cancer
showed that human ADSCs promoted tumor growth when
injected into a tumor. In contrast, ADSCs inhibited tumor
growth when injected around the tumor (Illouz, 2014),
suggesting distinct influences of ADSCs in different tumor
microenvironments. A recent study by Xu et al. showed that
ADSCs could promote metastases in mice xenografted with
breast carcinoma through ADSC-released stem cell factor-
mediated inhibition of miR20b, which in turn, lead to
activation of the c-Kit/MAPK-p38/E2F1 signaling pathway and
increased expression of HIF-1a and VEGFA (Xu H. et al., 2019).
Meanwhile, upregulation of miR20b reduced metastasis of 4T1
breast cancer cells to the lung, suggesting that miR20b acted as a
tumor suppressor miRNA, and that ADSCs may be able to
induce lung metastases in vivo, through miR-20b inhibition
(Xu H. et al., 2019). In contrast, miR-20b was also shown to
enhance breast cancer proliferation both in vitro and in vivo by
inhibiting expression of the phosphatase and tensin homologue
(PTEN) gene (Zhou et al., 2014), a well-known tumor suppressor
gene involved in regulation of breast cancer cells (DeGraffenried
et al., 2004). This discrepancy may be due to heterogenous roles
of miR-20b in regulating breast cancer development in the
presence of ADSCs and the ADSC secretome; or may be due
to poor study design. Hence, before conclusions can be drawn,
this area warrants further detailed studies. Controversies
regarding the regulatory approval for use of fat grafting in a
former or current tumor bed are summarized above and in
(DeGraffenried et al., 2004).

ADSC-Derived Extracellular Vesicles in Cancer
Given the capacity of EVs to exert their effects by transferring
proteins and RNA to target cells, the effects of EVs in promoting
cancer progression has been studied extensively [reviewed in (Xu
et al., 2018)]. It appears that ADSC-EVs have dual (or
contradictory) functions in regulating tumorigenesis, both by
promoting and inhibiting the growth of cancer cells. For
instance, platelet-derived growth factors stimulate ADSCs to
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release EVs containing pro-angiogenic factors—such as Axl
(Tanaka and Siemann, 2019), artemin (Banerjee et al., 2012)
and stem cell factor (Zhang et al., 2000)—which have been
shown to enhance angiogenesis in human microvascular
endothelial cells (Lopatina et al., 2014). An in vitro study
demonstrated that ADSC-EVs promoted migration and
proliferation of MCF7 human breast carcinoma cells through
activation of Wnt/b-catenin signaling (Lin et al., 2013), although
the involvement of angiogenesis was not assessed.

In contrast, there have been a few studies demonstrating that
ADSC-EVs can act as tumor suppressors. For example, Takahara
et al. demonstrated notable reduction in prostate cancer growth
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in tumor-bearing mice following ADSC-EVs treatment, an effect
mediated via activation of the caspase-3/7 pro-apoptotic
pathway, itself signaling via miR-145 (Takahara et al., 2016).
The therapeutic potentials of microRNA-enriched EVs have also
been explored in several tumor models. For example, miR-122 is
highly expressed in the liver, and loss of miR-122 correlated with
development of hepatocellular carcinoma (HCC) in mice (Tsai
et al., 2012). Lou et al. demonstrated that miR-122 transfected
ADSC-secreted EVs were rich in miR-122, and that uptake of
these EVs by cultured HCC cells lead to increased
chemosensitivity to chemotherapeutic agents and significant
reduction in tumor growth in vivo (Lou et al., 2015). Similar
TABLE 3 | Completed and ongoing clinical trials of ADSCs.

Diseases Study phase Intervention or treat-
ment

Autologous/Het-
erologous/Allo-

geneic

Key findings ADSC/EVs Reference

Continued

Fingertip injury Pilot study Injections at the site of
injury

Autologous Accelerate wound healing process and
recovery of sensory function

(Tarallo et al.,
2018)

Idiopathic pulmonary
fibrosis

Ib Intravenous injections
of ADSC-derived SVF

Autologous Similar survival rates disease progression time
in untreated populations.
Fail to demonstrate any beneficial effect by
ADSC therapy

(Ntolios et al.,
2018)

Refractory Perianal fistula
in Crohn’s disease

III Local injections of
allogenic expanded
ADSCs

Autologous Remission of fistula openings and reduce
perianal disease (MRI)

(Philandrianos
et al., 2018)

Secondary progressive
multiple sclerosis

I/II Intravenous injections Autologous Safe & feasible in patients. No significant
changes in safety parameters

(Fernandez et al.,
2018)

osteoarthritis I/IIa Intra-articular injections Autologous Safe and improved pain, function and cartilage
volume of knee joint

(Song et al., 2018)

Diseases Study phase Intervention or
treatment

Autologous/Heterologous/Allogeneic NCT number

Chronic kidney diseases I/II Intravenous
injection

Autologous NCT03939741

Diabetic foot ulcer I/II ADSC-enriched
fibrin gel

Autologous NCT03865394

Chronic obstructive
pulmonary disease

I Intravenous
injection

Autologous NCT02161744

Isolated Articular Cartilage
Defects

Unknown ADSC-enriched
acellular dermal
matrix

Autologous NCT02090140

Moderate to Severe
Chronic Kidney Disease

I/II Allogenic injection Allogeneic NCT02933827

Knee Osteoarthritis I/II Intra-articular
injection

Allogenic NCT02784964

Scars or cutis laxa I/II Autologous
injection combined
with laser therapy

Autologous NCT03887208

Stroke I Intravenous
injection

Unknown NCT03570450

Knee osteoarthritis III Intra-articular
injection

Autologous NCT03467919

Knee osteoarthritis Unknown Transplantation Autologous NCT03014401
Vestibulodynia Unknown Transplantation Unknown NCT03431779
Alopecia Unknown Transplantation Unknown NCT03427905
Ischemic Heart Disease
and Left Ventricular
Dysfunction

I ADSC-enriched
VB-C01 collagen
patches

Allogeneic NCT03746938

Facial Rejuvenation Unknown Intradermal
injection

Autologous NCT03928444
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results were shown in a breast cancer study (O’Brien et al., 2018)
employing ADSC-EVs enriched with miR-379, a tumor
suppressor miRNA whose expression is down-regulated in
breast cancer (Khan et al., 2013). It was found that the miR-
379-enriched ADSC-EVs significantly inhibited tumor growth
without adverse effects in mice over the 6 weeks of monitoring
Frontiers in Pharmacology | www.frontiersin.org 15
(O’Brien et al., 2018). These findings suggested a potential
application of genetically engineered ADSCs to promote
secretion of EVs encapsulated in tumor suppressor miRNAs
may be a promising, novel strategy to treat cancer. However,
whether ADSC-EVs have long-term therapeutic effects after
withdrawal of administration is unknown.
FIGURE 2 | Fat therapeutics of adipose tissue in human disease. Schematic summary of adipose tissue “fat graft” obtained via liposuction of subcutaneous fat.
Refinement of this fat graft can has occurred at various levels from the acquisition of the rudimentary fat graft, further processed with digestion to obtain the stromal
vascular fraction cell pellet, further refinement with extraction of ADSCs, and extracellular vesicle isolation (left column). Each of these components demonstrate
significant therapeutic potential in reversing the pathology of human disease, across a range of body systems (middle column). The mechanisms by which these
effects are mediated are illustrated in the right-hand column. Figure adapted from Shukla et al. (2015) under the CC-BY license (Shukla et al., 2015).
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Extracellular Vesicles in Cardiac Disease—Pathology
and Cardio-Protection
EVs derived from human ADSCs have been shown to demonstrate
cardioprotective roles through their paracrine effects rather than
the direct differentiation into cardiomyocytes. Cui et al. used a
rodent myocardial I/R injury model to show that ADSC-EVs
protected the myocardium from ischemia- or hypoxia- induced
necrosis and apoptosis (Cui et al., 2017). Implantation of ADSC-
EVs in the ratmodel resulted in significant reduction in the levels of
apoptotic proteins detected (e.g. Bax), and a significant increase in
the expression of pro-survival proteins, including Bcl-2 and Cyclin
D1 in rat myocardium (Cui et al., 2017). Further, ADSC-EVs
exerted cardioprotective effects via activation of Wnt/b-catenin
signaling (Cui et al., 2017). Another experiment investigating
treatment of a rodent model of myocardial infarction with
ADSC-EVs profoundly improved cardiac dysfunction by
suppressing cardiac apoptosis and fibrosis (Deng et al., 2019).
Interestingly, ADSC-EVs promoted macrophage M2 polarization
by activating the sphingosine 1-phosphate/sphingosine kinase 1/
sphingosine-1-phosphate receptor 1 signaling pathway, which
inhibited inflammatory responses and reduced myocardial
fibrosis, suggesting that ADSC-EVs may exert potential anti-
inflammatory effects (Deng et al., 2019). In addition, Luo et al.
employed genetically modified ADSCs to overexpress miR-126 (a
microRNA shown to exhibit cardioprotective effects in myocardial
infarction) in EVs (Long et al., 2012; Fei et al., 2016). ThemiR-126-
enriched ADSC-EVs significantly decreased myocardial injury by
inhibiting inflammation andfibrosis, and enhancingmicrovascular
generation and migration in rats (Luo et al., 2017). Limitations of
ADSC treatments for ischemia heart disease include low cardiac
retention rates and insufficient concentrations and retained
volumes (Li et al., 2019). Numerous clinical trials of ADSCs-
derived products have shown promise and an account of
completed and ongoing clinical trials using ADSCs are
summarized in Table 3.

Summary of ADSC-Derived Clinical Trials
The focus of this review is pre-clinical data supporting ADSC-
derived therapy; however, it is worth noting that several early
clinical trials have been completed. Studies using non-adipose
sourced stem cells are not discussed. Trials conducted to assess
the benefit of ADSC-derived treatment of wounds, have only
reached pilot study or phase I stage in simple cutaneous
wounds (Kim et al., 2009; Holm et al., 2018); however, in
Crohn’s disease-related peri-anal fistulae, a phase III study
(Panes et al., 2018) has shown good efficacy. Similarly, good
efficacy has been shown in phase I and IIa studies involving
treatment of osteoarthritis (Song et al., 2018) and phase III
Frontiers in Pharmacology | www.frontiersin.org 16
studies are ongoing at the time of writing (Table 3). Finally,
promise has also been shown in central nervous system disease
[phase I and II studies in multiple sclerosis (Fernandez
et al., 2018)].

The dynamic nature of the field warrants close observation of
the ongoing results of these clinical studies. It is hoped, however,
that the application of genetically modified ADSC-derived small
EVs may overcome issues encountered in trials of ADSCs
and enhance our capacity to tailor and target future
treatment approaches.
CONCLUSION

Fat has played a critical role in basic survival and function
throughout the history of human evolution. Now, through
evolving the role of fat, humankind may unlock critical
answers that assist in novel therapeutic approaches to age-old
human diseases; as well as those brought upon ourselves by the
evolution of the modern lifestyle. The humble, and until recently
rather unfashionable, fat cell may hold the secrets to combatting
these diseases—be it through old-fashioned “en-bloc” delivery as
raw fat graft, through more sophisticated ADSC-enrichment or
cutting-edge discovery and harnessing of paracrine factors in
exosomes and other EV types as depicted in Figure 2. Together,
these insights and the putative treatment that result, may
themselves form the cornerstone of the future treatment
approaches in regenerative medicine.
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