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Abstract: This paper studies the problem of upper bounding the number of independent sets in
a graph, expressed in terms of its degree distribution. For bipartite regular graphs, Kahn (2001)
established a tight upper bound using an information-theoretic approach, and he also conjectured an
upper bound for general graphs. His conjectured bound was recently proved by Sah et al. (2019),
using different techniques not involving information theory. The main contribution of this work is
the extension of Kahn’s information-theoretic proof technique to handle irregular bipartite graphs.
In particular, when the bipartite graph is regular on one side, but may be irregular on the other, the
extended entropy-based proof technique yields the same bound as was conjectured by Kahn (2001)
and proved by Sah et al. (2019).
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1. Introduction

The Shannon entropy and other classical information measures serve as a powerful
tool in various combinatorial and graph-theoretic applications (see, e.g., [1–20]), such as the
method of types, applications of Shearer’s lemma, sub- and supermodularity properties of
information measures and their applications, entropy-based proofs of Moore bound for
irregular graphs, Bregman’s theorem on the permanent of square matrices with binary
entries, and a discrepancy theorem by Spencer.

The enumeration of discrete structures that satisfy certain local constraints, and partic-
ularly the enumeration of independent sets in graphs, is of interest in discrete mathematics.
Many important structures can be modeled by independent sets in a graph, i.e., subsets of
vertices in a graph where none of them are connected by an edge. For example, if a graph
models some kind of incompatibility, then an independent set in this graph represents
a mutually compatible collection. Upper bounding the number of independent sets in a
regular graph was motivated in [21] by a conjecture which has several applications in com-
binatorial group theory. A survey paper on upper bounding the number of independent
sets in graphs, along with some of their applications, is provided in [22]. The problem
of counting independent sets in graphs received, in general, significant attention in the
literature on discrete mathematics over the last three decades, and also in the information
theory literature ([13,14]).

A tight upper bound on the number of independent sets in finite and undirected
general graphs was proved in the special setting of bipartite regular graphs in [11], and it
was conjectured to hold for general (irregular) graphs (2001, see Conjecture 4.2 in [11]).
A decade later (2010), it was extended in [23] to regular graphs (that are not necessarily
bipartite); a year later (2011), it was proved in [24] for graphs with a small maximal degree
(up to 5). Finally, this conjecture was recently (2019) proved in general [25], by utilizing a
new approach. The reader is referred to [26] for an announcement on the solution of this
conjecture as a frustrating combinatorial problem for two decades, along with the history
and ramifications of this problem, and some reflections of the authors on their work in [25].
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The recently introduced proof of the conjecture for general undirected graphs [25]
uses an induction on the number of vertices in a graph, and it obtains a recurrence in-
equality whose derivation involves some judicious applications of Hölder’s inequality (see
Sections 2 and 4 in [25]). The work in [25] proved, for the first time, Conjecture 4.2 in [11]
by using an interesting approach which is unrelated to information theory. The possibility
of generalizing the information-theoretic proof in [11] to irregular bipartite graphs was left
in [25] as an open issue. It should be noted that by proving Kahn’s conjecture for irregular
bipartite graphs, this readily enables the extension of the proof to general undirected
graphs (by invoking Zhao’s inequality, see Lemma 3 in [24]).

The main contribution of this work is the extension of Kahn’s information-theoretic
proof technique for bipartite regular graphs [11] to handle irregular bipartite graphs.
In particular, when the bipartite graph is regular on one side, but may be irregular on
the other, the extended entropy-based proof technique yields the same bound that was
conjectured by Kahn [11] and proved by Sah et al. [23].

The structure of the paper is as follows: Section 2 provides preliminaries and notations
that are essential for the analysis in this paper. Section 3 explains (in more detail) the
scientific merit and contributions of the present work; for the sake of causal presentation,
we provide these explanations after Section 2. Sections 4 and 5 are the core of this work.

2. Preliminaries and Notation

In this section, we provide the notation and preliminary material which are essential
for the presentation in this paper.

2.1. Notation and Basic Properties of the Entropy

The following notations are used in the present paper:

• N , {1, 2, . . .} denotes the set of natural numbers;
• Xn , (X1, . . . Xn) denotes an n-dimensional random vector of discrete random vari-

ables, having a joint probability mass function (PMF) that is denoted by PXn ;
• For every n ∈ N, [1 : n] , {1, . . . , n};
• XS , (Xi)i∈S is a random vector for an arbitrary nonempty subset S ⊆ [1 : n];

if S = ∅, then conditioning on XS is void. Note that Xn = X[1:n], though Xn is a
commonly used notation;

• 1{E} denotes the indicator of an event E; i.e., it is equal to 1 if this event is satisfied,
and it is zero otherwise;

• Let X be a discrete random variable that takes its values on a set X , and let PX be the
PMF of X. The Shannon entropy of X is given by

H(X) , − ∑
x∈X

PX(x) logPX(x), (1)

where throughout this paper, we take all logarithms to base 2;
• For p ∈ [0, 1],

Hb(p) , −p log p− (1− p) log(1− p), (2)

where Hb(·) is the binary entropy function. By continuous extension, the convention
0 log 0 = 0 is used;

• Let X and Y be discrete random variables with a joint PMF PXY, and a conditional
PMF of X given Y that is denoted by PX|Y. Let X and Y take their values in the sets X
and Y , respectively. The conditional entropy of X given Y is defined as
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H(X|Y) , − ∑
(x,y)∈X×Y

PXY(x, y) logPX|Y(x|y) (3)

= ∑
y∈Y

PY(y) H(X|Y = y), (4)

and

H(X|Y) = H(X, Y)−H(Y). (5)

This paper relies on the following basic properties of the Shannon entropy:

• Entropies and conditional entropies of discrete random variables (or vectors) are
nonnegative;

• If X is a finite set, then

H(X) ≤ log |X |, (6)

with equality in (6) if and only if X is equiprobable over the set X ;
• Conditioning cannot increase the entropy, i.e.,

H(X|Y) ≤ H(X), (7)

with equality in (7) if and only if X and Y are independent;
• Generalizing (5) to n-dimensional random vectors gives the chain rule for the Shannon

entropy:

H(Xn) = H(X1) + H(X2|X1) + . . . + H(Xn|X1, . . . , Xn−1) (8)

=
n

∑
i=1

H(Xi|Xi−1). (9)

• The following subadditivity property of the entropy is implied by (7) and (9)

H(Xn) ≤
n

∑
i=1

H(Xi), (10)

with equality in (10) if and only if X1, . . . , Xn are independent random variables.

2.2. Shearer’s Lemma

Shearer’s lemma extends the subadditivity property (10) of the entropy. Due to its
simplicity and usefulness in this paper (and elsewhere), we state and prove this lemma here.

Proposition 1 (Shearer’s Lemma, [2]). Let X1, . . . , Xn be discrete random variables, and let the
sets S1, . . . ,Sm ⊆ [1 : n] include every element i ∈ [1 : n] in at least k ≥ 1 of these subsets. Then,

k H(Xn) ≤
m

∑
j=1

H(XSj). (11)

As a special case of (11), setting Si , {i} as singletons for all i ∈ [1 : n] gives (10) by
having k = 1 and m = n.
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Proof. Let S = {i1, . . . , i`} with 1 ≤ i1 < . . . < i` ≤ n. By invoking the chain rule in
this order,

H(XS ) = H(Xi1) + H(Xi2 |Xi1) + . . . + H(Xi` |Xi1 , . . . , Xi`−1
)

≥ ∑
i∈S

H(Xi|Xi−1)

=
n

∑
i=1

1{i ∈ S} H(Xi|Xi−1), (12)

where the last inequality holds since an additional conditioning cannot increase the entropy
(i.e., H(X|Y, Z) ≤ H(X|Y) for all X, Y and Z). By assumption, for i ∈ [1 : n],

m

∑
j=1

1{i ∈ Sj} ≥ k, (13)

since the number of subsets {Sj}m
j=1 that include i as an element is at least k. Consequently,

it follows that

m

∑
j=1

H(XSj) ≥
m

∑
j=1

n

∑
i=1

{
1{i ∈ Sj} H(Xi|Xi−1)

}
(14)

=
n

∑
i=1

{
m

∑
j=1

1{i ∈ Sj} H(Xi|Xi−1)

}
(15)

≥ k
n

∑
i=1

H(Xi|Xi−1) (16)

= k H(Xn), (17)

where (14) follows from (12); (15) holds by interchanging the order of summation; (16) holds
by (13); (17) holds by the chain rule (8).

Remark 1. Inequality (11) holds even if the sets S1, . . . ,Sm are not necessarily included in [1 : n].
To verify this, define the subsets S ′j , Sj ∩ [1 : n] for all j ∈ [1 : m]. The subsets S ′1, . . . ,S ′m are
all included in [1 : n], and every element i ∈ [1 : n] continues to be included in at least k ≥ 1 of
these subsets. Hence, Proposition 1 can be applied to the subsets S ′1, . . . ,S ′m. By the monotonicity
property of the entropy, the inclusion S ′j ⊆ Sj implies that H(XS ′j ) ≤ H(XSj) for all j ∈ [1 : m],
which then yields the satisfiability of (11).

Remark 2. A generalized inequality which extends both Shearer’s lemma and Han’s inequality is
provided in Proposition 1 in [14].

Shearer’s lemma and some of its variants (see [7,9]) have successfully been applied
on various occasions (see, e.g., [7–9,11,12,19]). Shearer’s lemma is also instrumental in
this paper.

2.3. Graphs, Independent Sets, and Tensor Products

Let G be an undirected graph, and let V(G) and E(G) denote, respectively, the sets of
vertices and edges in G.

A graph G is called d-regular if the degree of all the vertices in V(G) is equal to d.
Otherwise, if the graph G is not d-regular for some d ∈ N, then G is an irregular graph.

A graph G is called bipartite if it has two types of vertices, and the edges cannot connect
vertices of the same type; we refer to the two types of vertices of a bipartite graph G as left
and right vertices.
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A graph G is called complete if every vertex v ∈ V(G) is connected to all the other
vertices in V(G) \ {v} (and not to itself); similarly, a bipartite graph is called complete if
every vertex is connected to all the vertices of the other type in the graph. A complete
(d− 1)-regular graph is denoted by Kd, having a number of vertices

∣∣V(Kd)
∣∣ = d, and a

number of edges
∣∣E(Kd)

∣∣ = 1
2 d(d− 1). Likewise, a complete d-regular bipartite graph is

denoted by Kd,d, having a number of vertices
∣∣V(Kd,d)

∣∣ = 2d (i.e., d vertices of each of the
two types), and a number of edges

∣∣E(Kd,d)
∣∣ = d2.

An independent set of an undirected graph G is a subset of its vertices such that none of
the vertices in this subset are adjacent (i.e., none of them are joined by an edge). Let I(G)
denote the set of all the independent sets in G, and let

∣∣I(G)
∣∣ denote the number of

independent sets in G. Similarly to [8,11,13,14,19,21–25] (and references therein), our work
considers the question of how many independent sets G can have.

The tensor product G× H of two undirected graphs G and H is a graph such that the
following holds:

• The vertex set of G× H is the Cartesian product V(G)× V(H);
• Two vertices (g, h), (g′, h′) ∈ V(G× H) are adjacent if and only if g is adjacent to g′,

and h is adjacent to h′, i.e., (g, g′) ∈ E(G) and (h, h′) ∈ E(H). This is denoted by(
(g, h), (g′, h′)

)
∈ E(G× H).

In general, the following identities hold:∣∣V(G× H)
∣∣ = ∣∣V(G)

∣∣ ∣∣V(H)
∣∣, (18)∣∣E(G× H)

∣∣ = 2
∣∣E(G)

∣∣ ∣∣E(H)
∣∣. (19)

By the definition of a complete d-regular graph Kd, the graph K2 is specialized to two
vertices that are connected by an edge. Let us label the two vertices in K2 by 0 and 1. For a
graph G, the tensor product G× K2 is a bipartite graph, called the bipartite double cover of
G, where the set of vertices in G× K2 is given by

V(G× K2) =
{
(v, i) : v ∈ V(G), i ∈ {0, 1}

}
, (20)

and its set of edges is given by

E(G× K2) =
{(

(u, 0), (v, 1)
)

: (u, v) ∈ E(G)
}

. (21)

Every edge e = (u, v) ∈ E(G) is mapped into the two edges
(
(u, 0), (v, 1)

)
∈ E(G× K2)

and
(
(v, 0), (u, 1)

)
∈ E(G × K2) (since the graph G is undirected). This implies that the

numbers of vertices and edges in G× K2 are doubled in comparison to their respective
numbers in G; moreover, every edge in G, which connects a pair of vertices of specified
degrees, is mapped onto two edges in G× K2, where each of these two edges connects a
pair of vertices of the same specified degrees.

2.4. Upper Bounds on the Number of Independent Sets

The present subsection introduces the relevant results to this paper. The next theorem
provides a tight upper bound on the number of independent sets in bipartite regular graphs,
and its derivation in [11] makes clever use of Shearer’s lemma (Proposition 1).

Theorem 1 (Kahn 2001, [11]). If G is a bipartite d-regular graph with n vertices, then∣∣I(G)
∣∣ ≤ (2d+1 − 1

) n
2d . (22)

Furthermore, if n is an even multiple of d, then the upper bound in the right side of (22) is tight,
and it is obtained by a disjoint union of n

2d complete d-regular bipartite graphs (Kd,d).
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Kahn’s result was later extended by Zhao [23] for a general d-regular graph via a
brilliant combinatorial reduction to the setting of d-regular bipartite graphs, which proved
Conjecture 4.1 in [11].

Theorem 2 (Zhao 2010, [23]). The upper bound on the number of independent sets in (22)
continues to hold for all d-regular graphs with n vertices.

Recently, Sah et al. [25] proved Kahn’s conjecture (Conjecture 4.2 in [11], which was
made eighteen years earlier) for an upper bound on the number of independent sets in a
general undirected graph with no isolated vertices. The proof in [25] is combinatorial, and
it extends the result in Theorem 2 as follows.

Theorem 3 (Sah et al. 2019, [25]). Let G be an undirected graph without isolated vertices or
multiple edges connecting any pair of vertices. Let dv denote the degree of a vertex v ∈ V(G). Then,∣∣I(G)

∣∣ ≤ ∏
(u,v)∈E(G)

(2du + 2dv − 1)
1

du dv (23)

with an equality if G is a disjoint union of complete bipartite graphs.

Let Kdu ,dv be a complete bipartite graph where the degrees of its left and right vertices
are equal to du and dv, respectively. Then, the number of independent sets in such a
complete bipartite graph is equal to∣∣I(Kdu ,dv)

∣∣ = 2du + 2dv − 1 (24)

since every subset of the left vertices, as well as every subset of the right vertices, forms
an independent set of Kdu ,dv ; on the other hand, any subset which contains both left
and right vertices is not an independent set (since the bipartite graph Kdu ,dv is complete).
Note that the substraction by 1 in the right side of (24) is because, in the counting of the
number of subsets of left vertices (2dv ) or right vertices (2du ), the empty set is counted twice.
Hence, (23) can be rewritten in an equivalent form as

∣∣I(G)
∣∣ ≤ ∏

(u,v)∈E(G)

∣∣I(Kdu ,dv)
∣∣ 1

du dv . (25)

Since E(Kdu ,dv) = du dv, it follows that the bound in (23) (or (25)) is achieved by the
complete bipartite graph Kdu ,dv . More generally, the bound is achieved by a disjoint finite
union of such complete bipartite graphs, since the number of independent sets in a disjoint
union of graphs is equal to the product of the number of independent sets in each of these
component graphs.

For the extension of the validity of Theorem 1 to Theorem 2, obtained by relaxing the
requirement that the graph is bipartite, the following inequality was introduced by Zhao
for every finite graph G (Lemma 2.1 in [23]):∣∣I(G)

∣∣2 ≤ ∣∣I(G× K2)
∣∣, (26)

which relates the number of independent sets in a graph to the number of independent
sets in the bipartite double cover of this graph.

The transition from Theorem 1 to Theorem 2, as introduced in [23], is a one-line proof.
Let G be a d-regular graph with n vertices, then G× K2 is d-regular bipartite graph with 2n
vertices. Hence, (22) and (26) give∣∣I(G)

∣∣2 ≤ ∣∣I(G× K2)
∣∣

≤ (2d+1 − 1)
2n
2d , (27)
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and taking the square root of the leftmost and rightmost sides of (27) implies that (22)
continues to hold even when the regular graph G is not necessarily bipartite.

3. Scientific Merit and Contributions of the Present Work

After introducing Shearer’s lemma (Proposition 1) and Theorems 1–3, we address the
scientific merit and contributions of the present work in more detail (in comparison to the
introduction in Section 1).

Theorem 3 was recently proved in [25] (see also [26]) for general graphs, without
relying on information theory. The motivation of our work is rooted in the following
sentences from p. 174 in [25]:

Kahn’s proof [11] of the bipartite case of Theorem 1 made clever use of Shearer’s entropy
inequality [2]. It remains unclear how to apply Shearer’s inequality in a lossless way
in the irregular case, despite previous attempts to do so, e.g., Section 3 in [13] and
Section 5.C in [14].

The present paper gives an information-theoretic proof of Theorem 3 in a setting where
the bipartite graph is regular on one side (i.e., the vertices on the other side of the bipartite
graph can be irregular, and have arbitrary degrees). Its contributions are as follows:

• Section 4 provides a (non-trivial) extension of the proof of (22), from regular bipartite
graphs [11] to general bipartite graphs. This leads to an upper bound on the number
of independent sets, which is in general looser than the bound in (23) (or its equivalent
form in (25)). However, for the family of bipartite graphs that are regular on one side
of the graph, our bound in (72) coincides with the bound in (23).
The main deviation from Kahn’s information-theoretic proof in [11] is that here we
allow the bipartite graph to be irregular. This generalization is not trivial in the sense
that it requires a more careful analysis and a slightly more complicated version of
Shearer’s Lemma (see Remark 1). It should be noted, however, that the suggested
proof follows the same recipe of Kahn’s proof in [11], with some further complications
that arise from the non-regularity of the bipartite graphs;

• A variant of the proof of Zhao’s inequality (26) (see Section 2 in [23]) is provided in
Section 5.

It is interesting to note that the observation that (23) can be extended from (undirected)
bipartite graphs to general graphs, by utilizing (26), was made in Lemma 3 in [24]. However,
a computer-assisted proof of (23) was restricted there to graphs whose maximal degrees
are at most 5 (see Theorem 2 in [24]).

4. An Information-Theoretic Proof of Theorem 3 for a Family of Bipartite Graphs

The core of the proof of Theorem 3 is proving (23) for an undirected bipartite graph.
We provide an extension of the entropy-based proof by Kahn [11] from bipartite d-regular
graphs to general bipartite graphs, and then we prove (23) for the family of bipartite graphs
that are regular on one side. As is explained in Section 3, the proof in the present section
follows the same recipe of Kahn’s proof in [11], with some complications that arise from the
non-regularity of the bipartite graphs. The following proof deviates from the proof in [11]
at its starting point, by a proper adaptation of the proof technique to the general setting
of irregular bipartite graphs, followed by a slightly more complicated usage of Shearer’s
lemma and a more involved analysis.

First consider a general bipartite graph G with a number of vertices |V(G)| = n,
where none of its vertices is isolated. Label them by the elements of [1 : n]. Let L andR be
the vertices of the two types in V(G) (called, respectively, the left and right vertices in G),
so V(G) = L∪R is a disjoint union. Let DL and DR be, respectively, the sets of all possible
degrees of vertices in L andR. For all d ∈ DL, let Ld be the set of vertices in L with degree
d, and let Rd be the set of vertices in R that are adjacent to vertices in Ld (note that the
vertices in Rd are not necessarily those vertices in R with degree d, so the definitions of
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Ld andRd differ, i.e., they are not similar up to the replacement of left vertices of degree d
with right vertices of the same degree). Then,

L =
⋃

d∈DL

Ld, R =
⋃

d∈DL

Rd, (28)

where the first equality in (28) is (by definition) a union of pairwise disjoint sets.
Let S ∈ I(G) be an independent set in G, which is selected uniformly at random from

I(G), and let Xn , (X1, . . . , Xn) be given by

Xi , 1{i ∈ S}, i ∈ [1 : n], (29)

so the binary random vector Xn indicates which of the n vertices in V(G) belongs to the
randomly selected independent set S . Since S is equiprobable in I(G), we have

H(Xn) = log
∣∣I(G)

∣∣. (30)

Let XL = (Xi)i∈L and XR = (Xi)i∈R be used as a shorthand. Then,

H(Xn) = H(XL, XR) (31)

= H(XL) + H(XR|XL) (32)

≤ ∑
d∈DL

H(XLd) + H(XR|XL) (33)

≤ ∑
d∈DL

H(XLd) + ∑
d∈DL

H(XRd |XL) (34)

= ∑
d∈DL

{
H(XLd) + H(XRd |XL)

}
, (35)

where inequalities (33) and (34) hold by the subadditivity of the entropy, and due to (28).
It should be noted that although the first summand in the right side of (35) is an entropy of
XLd , the conditioning on XL (rather than just on XLd ) in the second term leads to a stronger
upper bound on H(Xn) (since Ld ⊆ L, and conditioning reduces the entropy). This is
essential for the continuation of the proof (see (37)).

We next upper bound the two summands in the right side of (35), starting with the
conditional entropy. By invoking the subadditivity property of the entropy, for every
d ∈ DL,

H(XRd |XL) ≤ ∑
r∈Rd

H(Xr|XL). (36)

For every r ∈ Rd, letN (r) be the set of all the vertices that are adjacent to the vertex r. Since
the graph G is bipartite, we haveN (r) ⊆ L (but, in general,N (r) 6⊆ Ld), and consequently

H(Xr|XL) ≤ H(Xr|XN (r)). (37)

Combining (36) and (37) gives

H(XRd |XL) ≤ ∑
r∈Rd

H(Xr|XN (r)). (38)

For r ∈ Rd, let

Qr , 1{S ∩N (r) = ∅} (39)
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be the indicator function of the event where none of the vertices that are adjacent (in G) to
the vertex r are included in the (randomly selected) independent set S . Then,

H(Xr|XN (r)) ≤ H(Xr|Qr), (40)

since the random vector XN (r) indicates which of the indices i ∈ N (r) are included
in S , whereas the binary random variable Qr only indicates if there is such an index.
Consequently, (38) and (40) imply that

H(XRd |XL) ≤ ∑
r∈Rd

H(Xr|Qr). (41)

For the binary random variable Qr, let

qr , P[Qr = 1]. (42)

By (39), Qr = 0 if and only if S ∩ N (r) 6= ∅, which implies that r 6∈ S , since there is a
vertex in N (r) that belongs to the independent set S . Therefore, if Qr = 0, then Xr = 0
(see (29)), so

H(Xr|Qr = 0) = 0. (43)

If Qr = 1, then Xr ∈ {0, 1} and it is also equiprobable (the latter holds since given Qr = 1,
the independent set S is uniformly distributed over all the independent sets in I(G) that
do not include any neighbor of the vertex r, so the vertex r can be either removed from
or added to such an independent set, while still giving an independent set that does not
include any neighbor of r). Hence,

H(Xr|Qr = 1) = 1. (44)

Hence, from (42) to (44),

H(Xr|Qr) = qr H(Xr|Qr = 1) + (1− qr) H(Xr|Qr = 0)

= qr, (45)

and the combination of (41) and (45) yields

H(XRd |XL) ≤ ∑
r∈Rd

qr. (46)

We next upper bound H(XLd), which is the first summand in the right side of (35),
and here Shearer’s lemma (see Proposition 1) comes into the picture. Since, by definition,
Rd is the set of the vertices that are connected to the subset Ld of the degree-d vertices
in L, and N (r) is the set of vertices in L that are connected to a vertex r ∈ Rd in the
bipartite graph G, then it follows that every vertex in Ld belongs to at least d of the subsets
{N (r)}r∈Rd . Hence, by Shearer’s lemma (in light of Remark 1, this also holds regardless of
the fact that, for r ∈ Rd, the set N (r) is not necessarily a subset of Ld),

H(XLd) ≤
1
d ∑

r∈Rd

H(XN (r)). (47)

The binary random variable Qr is a deterministic function of the random vector XN (r) since,
from (29) and (39), Qr = 1 if and only if all the entries of XN (r) are equal to 0. Consequently,
for all r ∈ Rd,
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H(XN (r)) = H(XN (r), Qr) (48)

= H(Qr) + H(XN (r)|Qr) (49)

= Hb(qr) + H(XN (r)|Qr), (50)

where the equality in (50) follows from (2) and (42). Next, from (42),

H(XN (r)|Qr) = qr H(XN (r)|Qr = 1) + (1− qr)H(XN (r)|Qr = 0). (51)

If Qr = 1, then XN (r) is a vector of zeros, so

H(XN (r)|Qr = 1) = 0. (52)

Otherwise, if Qr = 0, then Xi = 1 for at least one element i ∈ N (r); since | N (r)| = dr is
the degree of the vertex r (by assumption, there are no multiple edges connecting any pair
of vertices), it follows that the vector XN (r) ∈ {0, 1}dr cannot be the zero vector, so

H(XN (r)|Qr = 0) ≤ log(2dr − 1). (53)

Combining (48)–(53) gives

H(XN (r)) ≤ Hb(qr) + (1− qr) log(2dr − 1), (54)

and, from (47) and (54), the following upper bound on the first summand in the right side
of (35) holds:

H(XLd) ≤
1
d ∑

r∈Rd

{
Hb(qr) + (1− qr) log(2dr − 1)

}
. (55)

Consequently, combining (31)–(35), (46) and (55) implies that

H(Xn) ≤ ∑
d∈DL

{
H(XLd) + H(XRd |XL)

}
(56)

≤ ∑
d∈DL

{
∑

r∈Rd

qr +
1
d ∑

r∈Rd

{
Hb(qr) + (1− qr) log(2dr − 1)

}}
(57)

= ∑
d∈DL

{
1
d ∑

r∈Rd

{
Hb(qr) + (1− qr) log(2dr − 1) + qr log(2d)

}}
(58)

= ∑
d∈DL

{
1
d ∑

r∈Rd

{
Hb(qr) + qr log

(
2d

2dr − 1

)
+ log(2dr − 1)

}}
. (59)

Since qr ∈ [0, 1] for r ∈ Rd, we next maximize an auxiliary function fr : [0, 1] → R,
defined as

fr(x) , Hb(x) + x log
(

2d

2dr − 1

)
, x ∈ [0, 1], (60)

in order to obtain an upper bound on the right side of (59) which is independent of {qr}.
By (2), setting the first derivative of the concave function fr(·) to zero gives the equation

log
(

1− x
x

)
+ log

(
2d

2dr − 1

)
= 0, (61)
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whose solution is given by

x =
2d

2d + 2dr − 1
. (62)

Consequently, it follows from (56)–(60) and (62) that

H(Xn) ≤ ∑
d∈DL

{
1
d ∑

r∈Rd

{
fr(qr) + log(2dr − 1)

}}
(63)

≤ ∑
d∈DL

{
1
d ∑

r∈Rd

{
fr

(
2d

2d + 2dr − 1

)
+ log(2dr − 1)

}}
(64)

and the calculation of the term in the inner sum in the right side of (64) gives

fr

(
2d

2d + 2dr − 1

)
+ log(2dr − 1)

= Hb

(
2d

2d + 2dr − 1

)
+

(
2d

2d + 2dr − 1

)
log
(

2d

2dr − 1

)
+ log(2dr − 1) (65)

= −
(

2d

2d + 2dr − 1

)
log
(

2d

2d + 2dr − 1

)
−
(

2dr − 1
2d + 2dr − 1

)
log
(

2dr − 1
2d + 2dr − 1

)

+

(
2d

2d + 2dr − 1

)
log
(

2d

2dr − 1

)
+ log(2dr − 1) (66)

= −
(

2d

2d + 2dr − 1

) [
log
(

2d

2d + 2dr − 1

)
− log

(
2d

2dr − 1

)]

−
(

2dr − 1
2d + 2dr − 1

)
log
(

2dr − 1
2d + 2dr − 1

)
+ log(2dr − 1) (67)

= −
(

2d

2d + 2dr − 1

)
log
(

2dr − 1
2d + 2dr − 1

)
−
(

2dr − 1
2d + 2dr − 1

)
log
(

2dr − 1
2d + 2dr − 1

)
+ log(2dr − 1) (68)

= − log
(

2dr − 1
2d + 2dr − 1

)
+ log(2dr − 1) (69)

= log
(
2d + 2dr − 1

)
, (70)

where (65) and (66) hold, respectively, by (60) and (2). Substituting the equality in (70) into
the upper bound on the entropy in the right side of (64), together with (30), gives

log
∣∣I(G)

∣∣ ≤ ∑
d∈DL

{
1
d ∑

r∈Rd

log
(
2d + 2dr − 1

)}
, (71)

which, by exponentiation of both sides of (71), gives

∣∣I(G)
∣∣ ≤ ∏

d∈DL

∏
r∈Rd

(
2d + 2dr − 1

) 1
d . (72)
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The upper bound in the right-hand side of (72) is, in general, looser than the bound in
Theorem 3. Indeed, to clarify this point, let Γd,d′ denote the fraction of vertices inRd with a
degree d′ ∈ DR. Then,

∏
d∈DL

∏
r∈Rd

(2d + 2dr − 1)
1
d = ∏

d∈DL

∏
d′∈DR

(2d + 2d′ − 1)
|Rd | Γd,d′

d (73)

= ∏
d∈DL

∏
d′∈DR

{
(2d + 2d′ − 1)

1
d d′
}d′ |Rd | Γd,d′

(74)

≥ ∏
(u,v)∈E(G)

(
2du + 2dv − 1

) 1
du dv , (75)

where (73) holds since, for all d ∈ DL, the number of vertices in Rd with degree d′ ∈ DR
is equal to |Rd| Γd,d′ ; finally, (75) holds since the number of edges e = (u, v) ∈ E(G) that
connect the left vertices of degree d and right vertices of degree d′ is less than or equal
to d′ |Rd| Γd,d′ (since d′ edges emanate from each such right vertex, but these edges are
not necessarily connected to left vertices of degree d). In light of this explanation, there is
however an interesting case where the upper bound in the right side of (72) and the bound
in Theorem 3 coincide.

Let G be a bipartite graph that is d-regular on one side (i.e, one type of its vertices
have a fixed degree d, and the other type of vertices may be irregular with arbitrary
degrees). Without any loss of generality, one can assume that the left vertices are d-regular
(as, otherwise, the graph can be flipped without affecting its independent sets, and also the
bound in Theorem 3 is symmetric in the degrees du and dv). In this setting, Ld = L and
Rd = R (recall that, by assumption, there are no isolated vertices). Consequently, the right
side of (72) is specialized to

∣∣I(G)
∣∣ ≤ ∏

r∈R

(
2d + 2dr − 1

) 1
d . (76)

Since there are exactly dr edges connecting each vertex r ∈ R with vertices in L, and
(by the latter assumption) all of the left vertices in L are of a fixed degree d, it follows that in
this setting, the right side of (76) can be rewritten in the form

∏
r∈R

(
2d + 2dr − 1

) 1
d = ∏

r∈R

((
2d + 2dr − 1

) 1
d dr

)dr

(77)

= ∏
(u,v)∈E(G)

(
2du + 2dv − 1

) 1
du dv , (78)

which, indeed, shows that the right side of (72) and the bound in Theorem 3 coincide for
bipartite graphs that are regular on one side of the graph (without restricting the other side).

5. A Variant of the Proof of Zhao’s Inequality

This section suggests a variant of the proof of Zhao’s Inequality in (26) (see Lemma 2.1
in [23]). Although it is somewhat different from the one in [23], this forms in essence a
reformulation of Zhao’s proof, which is provided here for completeness.

Let G be a finite graph, and let
∣∣V(G)

∣∣ = n. Label the vertices in the left and right
sides of the bipartite graph G× K2 (i.e., the bipartite double cover of G) by {(i, 0)}n

i=1 and
{(i, 1)}n

i=1, respectively.
Choose, independently and uniformly at random, two independent sets S0,S1 ∈ I(G).

For i ∈ [1 : n], let Xi, Yi ∈ {0, 1} be random variables defined as Xi = 1 if and only if i ∈ S0,
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and Yi = 1 if and only if i ∈ S1. Then, by the statistical independence and equiprobable
selection of the two independent sets from I(G), we have

H(Xn, Yn) = H(Xn) + H(Yn) (79)

= 2 log
∣∣I(G)

∣∣, (80)

where (79) holds since the random vectors Xn and Yn are statistically independent (by con-
struction), and (80) holds since both Xn and Yn have an equiprobable distribution over a
set whose cardinality is

∣∣I(G)
∣∣.

Consider the following set of vertices in G× K2:

S ,
{
S0 × {0}

}⋃{
S1 × {1}

}
(81)

=
⋃

i∈S0, j∈S1

{
(i, 0), (j, 1)

}
. (82)

The set S is not necessarily an independent set in G×K2; indeed,
(
(i, 0), (j, 1)

)
∈ E(G×K2)

for all i ∈ S0 and j ∈ S1 for which (i, j) ∈ E(G) (see (21)). We next consider all (i, j) ∈ E(G),
such that Xi = Yj = 1. To that end, fix an ordering of all the 2n subsets of V(G), and let
T ∈ V(G) be the first subset in this particular ordering which includes exactly one endpoint
of each edge (i, j) ∈ E(G) for which Xi = Yj = 1. Consider the following replacements:

• If (i, 0) ∈ S and i ∈ T , then (i, 0) is replaced by (i, 1);
• Likewise, if (j, 1) ∈ S and j ∈ T , then (j, 1) is replaced by (j, 0).

Let S̃ be the set of new vertices after these possible replacements. Then, S̃ ∈ I(G×K2),
since all adjacent vertices in S are no longer connected in S̃ . Indeed, there is no way that
after (say) a vertex (i, 0) is replaced by (i, 1), there is another replacement of a vertex (j, 1)
by (j, 0), for some j such that (i, j) ∈ E(G); otherwise, that would mean that T contains
both i and j, which is impossible by construction.

Similarly to the way in which Xn, Yn ∈ {0, 1}n were defined, let X̃n, Ỹn ∈ {0, 1}n be
defined such that, for all i ∈ [1 : n], X̃i = 1 if and only if (i, 0) ∈ S̃ , and Ỹi = 1 if and only
if (i, 1) ∈ S̃ . The mapping from (Xn, Yn) to (X̃n, Ỹn) is injective. Indeed, it is shown to be
injective by finding all indices (i, j) ∈ E(G) such that X̃i = X̃j = 1 or Ỹi = Ỹj = 1, finding
the first subset T ∈ V(G) according to our previous fixed ordering of the 2n subsets of
V(G) that includes exactly one endpoint of each such edge (i, j) ∈ E(G), and performing
the reverse operation to return to Xn and Yn (e.g., if (i, j) ∈ E(G), X̃i = X̃j = 1 and i ∈ T
while j 6∈ T , then X̃i = 1 is transformed back to Yi = 1, and X̃j = 1 is transformed back to
Xj = 1). Consequently, we get

H(Xn, Yn) = H(X̃n, Ỹn) (83)

≤ log
∣∣I(G× K2)

∣∣, (84)

where (83) holds by the injectivity of the mapping from (Xn, Yn) to (X̃n, Ỹn), and (84) holds
since S̃ is an independent set in G × K2, which implies that (X̃n, Ỹn) can get (at most)∣∣I(G× K2)

∣∣ possible values (by definition, there is a one-to-one correspondence between
S̃ and (X̃n, Ỹn)). Combining (79), (80), (83) and (84) gives

2 log
∣∣I(G)

∣∣ ≤ log
∣∣I(G× K2)

∣∣, (85)

which gives (26) by exponentiation of both sides of (85).
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