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Abstract 6 

Introduction 7 

We investigated the interplay between infections and APOE4 on brain glucose hypometabolism, an early 8 

preclinical feature of Alzheimer’s Disease (AD) pathology. 9 

Methods 10 

Multivariate linear regression analysis was performed on 1,509 participants of the Alzheimer’s Disease 11 

Neuroimaging Initiative (ADNI). The outcomes were the rank-normalized hypometabolic convergence 12 

index (HCI) and statistical regions of interest (SROI) for AD and mild cognitive impairment (MCI). Further, 13 

the HCI and its change in the presence and absence of APOE4 were evaluated. 14 

Results 15 

 Infections were associated with greater hypometabolism [0.15, 95% CI: 0.03, 0.27, p=0.01], with a more 16 

pronounced effect among APOE4 carriers, indicating an interaction effect. A higher HCI (0.44, p=0.01) was 17 

observed in APOE4 carriers with multiple infections, compared to (0.11, p=0.08) for those with a single 18 

infection, revealing a dose-response relationship. The corresponding estimates for the association of 19 

infections with SROI AD and SROI MCI were -0.01 (p=0.02) and -0.01 (p=0.04) respectively. 20 

Conclusion 21 
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Our findings suggest that infections and APOE4 jointly contribute to brain glucose hypometabolism and 22 

AD pathology, supporting a “multi-hit” mechanism in AD development. 23 

 24 
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1 Introduction 28 

Alzheimer's disease (AD) is a slowly developing neurodegenerative disorder that is clinically manifested 29 

as dementia.1 The current figure for the AD burden in older adults in the United States is 6.7 million, and 30 

it is poised to rise to 13.8 million by 2060.2 The preclinical stage of AD can last many years without obvious 31 

signs of dementia.3 It is crucial to better understand this preclinical stage in order to develop successful 32 

AD prevention.4 Common preclinical features of AD include toxic protein depositions, neuronal apoptosis 33 

and reduction in hippocampal volume (brain shrinkage), and brain glucose hypometabolism.5,6 The brain 34 

glucose hypometabolism is observed long before the occurrence of overt symptoms in AD and is partly 35 

due to mitochondrial dysfunction.7  Measuring glucose utilization in the brain using positron emission 36 

tomography (PET) and 18F-fluorodeoxyglucose (FDG) allows for convenient examination of 37 

hypometabolic patterns in the brain.8 Brain scans based on FDG PET can effectively detect around 90% of 38 

AD-specific metabolic patterns, such as those in the parieto-temporal, frontal, and posterior cingulate 39 

regions.9 40 

A large genetic component drives AD (60-80%), and the entire spectrum of the disease can develop over  41 

15-25 years.10  Genetic variations in the APOE gene could single-handedly account for a large part of the 42 

risk related to AD in old age.11 On the other hand, addressing modifiable risk factors could reduce or delay 43 

up to 40% of dementia risk.12 Therefore, by focusing on the modifiable risk factors, a substantial part of 44 
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the AD burden could be alleviated at the population level.13 Prevention of certain infections can reduce 45 

the risk of chronic diseases, including neurological deficits.14–16 Accumulating evidence suggests that 46 

infections could be a significant risk factor for AD that may also facilitate the development of AD pathology 47 

at the preclinical stage, though the exact mechanism is unclear and might involve a direct detrimental 48 

impact of infection-related factors as well as indirect effects of compromised immunity.17–20  49 

The connection between infections and AD and related pathology may also be influenced by genetic 50 

factors.18,21,22 There are also indications that infections can contribute to brain hypometabolism, one of 51 

the earliest features of AD pathology; however, research on this topic is scarce.23 Here we explore how 52 

infectious diseases may influence brain glucose metabolism in presence and absence of APOE4, the 53 

strongest genetic risk factor for AD, in participants of the Alzheimer’s Disease Neuroimaging Initiative 54 

(ADNI).   55 

 56 

2 Data and Methods 57 

2.1 Study Population 58 

ADNI is a multi-center observational study that began in 2004 under the supervision of Michael W. 59 

Weiner. The study recruited individuals within the 55-90 years age range, and enrollment in this cohort 60 

occurs in different phases, with previous participants continuing to be in the study and new participants 61 

being recruited. To compare and gain knowledge about dementia, this database maintains and updates 62 

demographic, phenotypic, biomarker, and genetic data gathered from participants with normal cognition, 63 

AD, and other forms of cognitive impairment. The availability of such a wide variety of biomarkers 64 

provides sufficient information to learn about the evolution and pathology driving AD.24 65 

More details regarding the study design and objectives can be accessed here 66 

(https://adni.loni.usc.edu/study-design/). Broadly, ADNI seeks to integrate information from biomarkers, 67 
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cognitive measures, and brain scans to improve AD diagnosis and treatment.25  Brain scans were primarily 68 

collected to learn about the structural and metabolic functions of the brain, serving as a standard for 69 

differentiating the pathological changes seen in AD from those in normal aging.26  70 

2.2 Predictors: Infections and APOE4 71 

Prior infections were determined by combining the information from medical history, baseline symptoms, 72 

initial health assessment, and adverse effects datasets. The details of the selected subset of infections 73 

included in the final dataset are illustrated in Supplementary Figure 1. Medical history information was 74 

collected during screening visit using a questionnaire. Non-harmonious disease names were uniformly 75 

labeled for analytical purposes. Duplicated participant information having the same infection and 76 

diagnosis date, as well as any infections lacking a diagnosis date, were subsequently excluded. Covariates 77 

such as age, sex, education, race, marriage status, and APOE4 information were retrieved from the 78 

ADNIMERGE file.  79 

The APOE4 carrier status was identified from DNA extracted by Cogenics from a 3 mL aliquot of EDTA 80 

blood extracted from participants during their screening visit.27 Anti-diabetic medications were 81 

extracted (list provided in the Supplementary File 2) using the Anatomical Therapeutic Chemical 82 

(ATC) classification system coding (https://www.who.int/tools/atc-ddd-toolkit/atc-classification). 83 

Information regarding smoking and alcohol usage was obtained from the medical history file. Finally, we 84 

retained infections that only preceded the HCI measurements.  85 

2.3 Outcomes: Brain glucose hypometabolism, AD and MCI  86 

Multiple PET scanners were used to capture brain images based on a standard protocol.28 Measures were 87 

taken to correct for the related discrepancies.29 The details regarding the PET scan and related protocols 88 

can be viewed elsewhere (https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/).  The 89 
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generated raw PET data are centrally stored at the Laboratory of Neuroimaging (LONI) at the USC Mark 90 

and Mary Stevens Neuroimaging and Informatics Institute of the University of California.30  91 

We retrieved the processed study outcomes from the BAIPETNMRCFDG dataset 92 

(https://adni.bitbucket.io/reference/baipetnmrc.html). The main outcome of interest was the 93 

hypometabolic convergence index (HCI), developed to reflect the AD-specific hypometabolism across 94 

regions of the brain by computing voxel-wise z-scores from FDG-PET brain images. Higher HCI values 95 

correspond to lower levels of metabolism in the brain.31  96 

Additionally, we examined the associations for infections with statistical regions of interest (SROI) 97 

corresponding to AD and Mild Cognitive Impairment (MCI). SROI associations might provide additional 98 

insights into the cerebral metabolic rate for glucose (CMRgl) decline in these brain regions, helping to 99 

understand the disease-specific pathology they represent.32 The Statistical Parametric Mapping (SPM) 100 

software was used to generate the HCI and SROI scores.32,33 The work of Landau et al. provides further 101 

details on the generation and development of regions of interest in the ADNI cohort.34 A decline in FDG-102 

PET Region of Interest (ROI) values suggests pathological brain damage and may contribute to the 103 

progression of dementia.33  104 

2.4 Statistical Analysis  105 

R version 4.3.2 was used for the data linking and statistical analysis.35  We analyzed the dataset with full 106 

covariate and outcome information, without performing any imputations. The ggplot2 package was used 107 

to create variable distribution plots.36 The leptokurtic HCI readings were normalized during the RNomni 108 

package.37 Multivariate linear regression models were conducted for all specified outcomes separately. 109 

Age, education, and allele dosages of APOE ε4   were analyzed as continuous variables. Infections, AD, and 110 

diabetes medications were coded as a binary variable (yes or no). Marriage, smoking, and alcohol use 111 

were coded as Ever or Never. We explored models with a full set and a reduced set of covariates. The 112 
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parsimonious model (best explanatory model) was determined using the Akaike Information Criterion 113 

(AIC) in the MuMin package.38 A two-sided p-value less than 0.05 was considered to support our 114 

hypothesis.  115 

A Random Forest-based model was used to rank the significant variables according to their contributions 116 

to the best model.39 The effect modification for infections with HCI by APOE4 carrier status was assessed 117 

by visualizing with the rockchalk package.40 Marginal mean estimates were calculated to show the 118 

interaction effects for the infections across categories of APOE4 and sex.  119 

2.5 Ethics Approval 120 

The Institutional Review Board of Duke University Health System issued approval for this study (Protocol 121 

IDs Pro00109279 and Pro00105389). All participants provided written informed consent. ADNI studies 122 

follow Good Clinical Practices guidelines, the Declaration of Helsinki, and United States regulations (U.S. 123 

21 CFR Part 50 and Part 56). 124 

3 Results 125 

3.1 Participant Characteristics 126 

The final sample included information on 1,509 participants after data linking (Supplementary Figure 2). 127 

As shown in Table 1, the average age among participants was 73.3 years, with an average education 128 

duration of 16.0 years (IQR 14.0-18.0). Over 96% of respondents reported being ever married, and 55.8% 129 

were males. There was a relatively lower representation of non-white individuals, totaling 116 (7.6%) in 130 

the sample. Percentage of individuals with a history of smoking and alcohol use was 27.1% and 3.3%, 131 

respectively. Of these, 215 individuals accounting for 14.2% of the total sample size, reported having 132 

infections. The median interval between biomarker assessment and infections was 8.4 (IQR: 3.5 - 28.3). 133 

Median HCI was 12.59, and the IQR was 8.4 - 19.3.  134 
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Figure 1 shows the distributions of the original HCI and rank-normalized HCI and also a scatterplot of their 135 

relationship. For AD and MCI participants, the mean SROI values were 1.15 and 1.03, respectively. About 136 

3% of participants with diabetes were on medication, and 18.3% had an AD diagnosis. Peptic ulcer disease 137 

(PUD) (n=152), urinary tract infection (UTI) (n=146), and pneumonia (n=102) were the most frequent 138 

among the selected infections. Supplementary Figure 3 shows the difference in the distribution of HCI 139 

values for individuals with infections, AD, and APOE4. The median HCI value among individuals with 140 

infections was 13.64, while it was lower (12.48) for those without infections. It was also seen that the HCI 141 

had a modest positive correlation with APOE4 (Supplementary Figure 4). 142 

 143 

Table 1. Demographic and clinical characteristics of the study population 144 

Variable Mean/Median /Frequency SD/IQR Range 

Age (Years) # 73.3 7.2 55.0-91.4 

Male (%) 843 (55.8%)   

Education (Years) #                                16.0 14.0-18.0 4.0-20.0 

Marriage Status    

Ever                                             1455 (96.4%)   

Never                                            54 (3.5%)   

Race    

White                                               1393 (92.3%)   

 Other                                                116 (7.6%)   

Smoking (Ever) 409 (27.1%)   

Alcohol (Ever) 50 (3.3%)   

Infections (Yes) 215 (14.2%)   
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Time duration (Years) #@  8.4 3.5-28.3 0.03-86.7 

HCI # 12.59                         8.4-19.3 2.3-55.2 

SROI AD 1.15 0.08 0.8-1.38 

SROI MCI 1.03 0.10 0.7-1.35 

APOE4$    

0 813 (53.8%)   

1 544 (36.0%)   

2 152 (10.0%)   

Diabetes (Yes) 43 (2.8%)   

AD  277 (18.3%)   

Note. Data are presented as mean ± standard deviation (SD) or percentage (%) for continuous and categorical 

variables, respectively; #Variables with skewed distributions are presented as median and IQR. $ Frequencies 

in the analyzed sample. @Time from Infection to HCI measurements. 

 145 

 146 
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 147 

Figure 1. Distribution of HCI and normalized HCI with scatterplot showing their relationship 148 

3.2 Association of Infections and Other Predictors with the HCI 149 

Supplementary Table 1 shows the regression estimates for all the predictors in the multivariate linear 150 

regression full model for HCI outcome. Marriage status, education, smoking, alcohol, and diabetes 151 

medication use were not significant predictors of HCI. Table 2 presents the results of the reduced model, 152 

which best describes the model variance. AD status predicted the strongest reduction in brain metabolism 153 

[β = 1.04, 95% CI 0.92-1.15, p<0.001], followed by age [β = 0.01, 95% CI 0.01-0.02, p<0.001] and APOE4 154 

carrier status [β = 0.32, 0.25-0.38, p<0.001]. Higher variable relevance is indicated by higher values of 155 

%INCMSE and INCNodepurity (Supplementary Table 2). The regression coefficient for infections was 0.15 156 

[95% CI 0.02- 0.27, p=0.01]. Males and white people were at higher risk of having elevated HCI values. 157 

Smoking history was the only non-significant predictor retained in the reduced model. The adjusted R-158 

squared from the reduced model was 26.9%. Males had higher median HCI values.  159 
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In the sex-stratified analysis evaluating the effects of infections versus non-infections, males generally 160 

demonstrated relatively higher HCI values (Supplementary Table 3). The difference in normalized marginal 161 

means between all groups was statistically significant (p<0.001). The combined effects of infections and 162 

APOE4 carrier status on HCI levels are shown in Figure 2. This was significantly greater than the effects of 163 

either variable alone. Supplementary Table 4 clarifies these results. Specifically, for individuals without 164 

infections and APOE4 carrier status, the estimated marginal mean was 0.03 (p=0.53). However, this 165 

increased significantly to 0.18 (p<0.001) for APOE4 non-carriers in the presence of infections. Notably, 166 

among APOE4 carriers, the estimated marginal mean was substantially higher at 0.62, and this value rose 167 

to 0.77 with infections (p<0.001), confirming an interaction between the two factors.  168 

This interaction was further demonstrated in the additional analysis (Supplementary Table 5 and Figure 169 

3), indicating that carriers who experienced multiple infections exhibited greater hypometabolism. Among 170 

individuals with more than one prior infection (n=23), the estimate was significantly higher at 0.44 171 

(p=0.01) compared to those with a single infection, which was 0.11 (p=0.08), revealing a dose-response 172 

relationship. 173 

 174 

Table 2. Regression estimates for predictors in the reduced multivariate linear regression model for HCI 175 

outcome 176 

Variables Estimates 95% CI P 

AD (Yes)   1.04 0.92, 1.15 <0.001*** 

APOE4 0.32 0.25, 0.38 <0.001*** 

Age 0.01 0.01, 0.02 <0.001*** 
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Infections (Yes) 0.15 0.02, 0.27 0.01* 

Race (White) 0.25 0.09, 0.42 0.002** 

Sex (Male) 0.17 0.09, 0.26 <0.001*** 

Smoking (Yes) 0.08 -0.01, 0.18 0.085 

                      Note. *p<0.05; **p<0.01; ***p<0.001. 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

                                 Figure 2. Joint effect of APOE4 and history of infections on HCI 185 

 186 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313582doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 
 

 187 

     Figure 3. Brain hypometabolism by APOE4 carrier status and frequency of infections  188 

 189 

3.3 Association of Infections and Other Predictors with the SROI AD 190 

Supplementary Table 6 provides regression estimates for all the factors investigated for SROI AD. 191 

Marriage, race, smoking, and alcohol history were not significant predictors of AD-specific 192 

hypometabolism. In the reduced model shown in Table 3, AD was associated with increased region-193 

specific hypometabolism (regression coefficient: -0.08, p<0.001). The use of diabetes medications was 194 

associated with decreased brain metabolism (-0.03, p=0.02). Similar to previous regression, an increase in 195 

APOE4 alleles was a strong risk factor for hypometabolism (-0.02, p<0.001). Male gender showed greater 196 

hypometabolism (-0.01, p<0.01). Although education was linked to a better metabolic pattern, this 197 

relationship was not profound. Age-specific decreases were not as notable as those observed in HCI (-198 
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0.003, p<0.001). While statistically significant, the effect estimate for previous infections was lower for 199 

AD (-0.01, p=0.02). These variables collectively predicted 26.8% of the variance in SROI AD. 200 

Table 3. Regression estimates for predictors in the reduced multivariate linear regression model for SROI 201 

AD outcome 202 

Variables Estimates 95% CI P 

AD (Yes)   -0.08 -0.09, -0.07 <0.001*** 

APOE4 -0.02 -0.03, -0.02 <0.001*** 

Age -0.003 -0.003, -0.002 <0.001*** 

Diabetes Medication -0.03 -0.05, -0.004 0.02* 

Education 0.001 0.00, 0.002 0.04* 

Infections (Yes) -0.01 -0.02, -0.001 0.02* 

Sex (Male) -0.01 -0.02, -0.003 0.00** 

Smoking (Yes) -0.01 -0.02, 0.001 0.11 

                      Note. *p<0.05; **p<0.01; ***p<0.001. 203 

 204 

3.4 Association of Infections and Other Predictors with the SROI MCI 205 

The results of the SROI MCI regression (full model) is presented in the Supplementary Table 7. Generally, 206 

the estimates were closer to the SROI AD than HCI. Among the variables that best explained the model 207 

(Table 4), AD, APOE4, and diabetes medications had the largest effect estimates.  208 

Sex and use of diabetic medications had a marginally greater impact on the MCI region than on the AD 209 

region. However, race and education were not identified as significant predictors. Infections were 210 
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associated with a -0.01 reduction in regional metabolism (p=0.04). The percentage of variation explained 211 

by the model for the SROI MCI was also the highest (28.8%) of the three investigated outcomes.  212 

Table 4. Regression estimates for predictors in the reduced multivariate linear regression model for SROI 213 

MCI outcome 214 

Variables Estimates 95% CI P 

AD (Yes)   -0.09 -0.10, -0.08 <0.001*** 

APOE4 -0.02 -0.03, -0.02 <0.001*** 

Age -0.004 -0.01, -0.003 <0.001*** 

Diabetes Medication (Yes) -0.04 -0.06, -0.01 0.01** 

Infections (Yes) -0.01 -0.03, -0.0005 0.04* 

Sex (Male) -0.02 -0.03, -0.01 <0.001*** 

Smoking (Yes) -0.01 -0.02, 0.003 0.15 

                    Note. *p<0.05; **p<0.01; ***p<0.001. 215 

 216 

4 Discussion 217 

Results of our study suggest that infections and APOE4 can jointly significantly affect brain glucose 218 

metabolism, specifically promote hypometabolism, as measured by the increased values of HCI. A history 219 

of infections in this ADNI sample corresponds to a greater hypometabolism, specifically a 0.15 unit 220 

increase in rank normalized HCI. However, this estimate rises to 0.44 in the presence of multiple 221 

infections. Model inclusion of established confounders such as age, sex, race, and education did not 222 

diminish these findings. We also adjusted for AD status, which was more prevalent in the group with no 223 
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infections and associated with reduced brain metabolism. Adjusting for AD status and APOE4 was 224 

necessary to reveal the genuine association of previous infections. Additionally, previous infections were 225 

significantly associated with regional brain metabolism specific to AD and MCI in our data.  226 

Our findings agree with previous research suggesting that infections may negatively impact brain 227 

metabolism .16,41–43 Infectious diseases, including those addressed in this study, have been previously 228 

linked to AD in other data.22,44–46  Our recent paper that used Health and Retirement Study (HRS) data 229 

reported associations between AD and various infectious (viral, bacterial, fungal), suggesting that 230 

compromised immunity may play a role in AD etiology.20 The connection between infections and brain 231 

hypometabolism may also involve pathological immune responses. Some research provides indirect 232 

support to this idea by linking brain hypometabolism to microglia activation.47–49  233 

Determining the onset time of infection is a major challenge in AD research. Furthermore, the causal 234 

inferences are obscured by the fact that individuals with AD often grapple with a variety of infections due 235 

to declining immunity, leading to elevated antimicrobial markers.16  Pathogens have a high affinity to the 236 

central nervous system and brain tissues and could  affect cognition.50 Given that brain hypometabolism 237 

is an early sign of AD, our findings suggest that infections could potentially trigger this process.51 However, 238 

the progression of hypometabolism  may also depend upon the combination of other risk factors.52  239 

Infections can affect the brain through multiple pathways, both directly and indirectly, particularly when 240 

the blood-brain barrier is breached.53,54 Infections propagated through the respiratory route can also 241 

reach the brain relatively easily.50,55 However, upon reaching the brain, different infectious agents employ 242 

their preferred mechanisms, such as latent activation and the initiation of inflammation, as seen in the 243 

case of the  Herpes virus.56  Pathogen invasion into the brain leads to chronic inflammation, which can 244 

compromise the blood-brain barrier.42 There are distinct differences in inflammatory pathways noted 245 

across specific pathogens.19,57 Age-related changes could exacerbate these pathological processes even 246 

further.58 Strom and colleagues have also demonstrated that brain hypometabolism correlates with tau 247 
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pathology and neurodegeneration in crucial dementia-specific regions within the ADNI dataset.59 These 248 

mechanisms could potentially explain a significant portion of the biological processes leading up to 249 

hypometabolism. 250 

Studies on the relationship between APOE4 and brain metabolism have produced contrasting findings.59–251 

63 In their recently published work, Fortea and colleagues found that simply being homozygous for APOE4 252 

is sufficient, in most cases, to guarantee an AD diagnosis.64 In our analysis, the increase in APOE4 allele 253 

was associated with all three outcomes and showed compounding effects with infections and their 254 

burden. Even in patients with a single APOE4 variant, which is usually not considered a significant increase 255 

in risk compared to homozygous carriers, the presence of infections increases the risk of hypometabolism 256 

to nearly the same level as in homozygous APOE4 carriers. One possibility is that the observed effect is 257 

due to accelerated neuroinflammation arising from the presence of both risk factors.65 Risk factors for AD 258 

tend to cluster in individuals with APOE risk alleles, including a reduction in brain metabolism.66 Amyloid-259 

beta and Tau deposition are higher in APOE4 carriers.67 APOE4 can also accelerate brain degeneration 260 

through non-overlapping pathways independent of amyloid deposition and Tau pathology.68–70 APOE4 261 

alleles both promote and resist infections, depending on the type of infection.71 Researchers suggest that 262 

APOE4 polymorphisms result in increased lipid production72 and blood-brain barrier loss73, which could 263 

facilitate a conducive environment for pathogens.74 Supporting evidence from the Northern Manhattan 264 

Study showed that the effect-modifying relationship between APOE4 and infectious burden was 265 

correlated with decreased cognition.75 The influence of APOE4 on AD remains incompletely understood, 266 

although it is known to engage in intricate interactions with other risk factors for AD, such as age.76,77 267 

However, in stark contrast to these findings, a study reported that the effects of APOE4 on cognition are 268 

AD-specific. It singles out the cause of cognitive decline as the interaction between APOE4 and amyloid 269 

beta in the hippocampus.78  270 
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Our study revealed that diabetes medication was the third-biggest risk factor for AD and MCI-specific 271 

brain metabolism, but not for the HCI measure. Previous studies indeed demonstrated that diabetes 272 

increases the risk for MCI and AD.79,80  Individuals with diabetes and AD often share common biological 273 

pathways.81 Most prominent among these are low-grade chronic inflammation and insulin resistance.82  274 

Sex differences in mechanisms related to AD warrant in-depth study. Usually, females are susceptible to 275 

AD and early brain hypometabolism compared to males.83,84 On exposure to prior infections, women are 276 

also, particularly at higher risk for reduced hippocampal volume.19 Males overall had a higher HCI value 277 

than females in our sample. It is important to note that males with infections had a slightly higher mean 278 

age. But this alone cannot explain the gender difference. Importantly, there was no difference in the 279 

increase in marginal means due to infections for both sexes. An earlier study reported that brain 280 

hypometabolism increased in men after 70 years of age, while this was not seen in females in a normal 281 

brain.85 However, the applicability of this finding in the AD context needs confirmation. Some participant 282 

characteristics in ADNI may differ from the general population due to voluntary recruitment. Variations 283 

in the distribution of AD risk factors among genders might also contribute to this finding.86,87 284 

Given that AD is not curable, prevention stands as the most viable option at present. Vaccinations may 285 

potentially alleviate AD risk. Influenza vaccines, in particular, are among the candidates demonstrating 286 

this preventive potential.4,79 However, personal genetics could play a role in determining the efficacy and 287 

effectiveness of vaccinations. Recent research has revealed that individuals carrying a polymorphism in 288 

the NECTIN2 gene exhibit a decreased susceptibility to AD when compared to non-carriers, when receiving 289 

vaccinations for pneumonia and flu.22 290 

The availability of medical history information and longitudinally standardized FDG PET measurements 291 

were important strengths of our study.  We were also able to demonstrate the temporality of association, 292 

which was rarely described in earlier human studies.88 There were a couple of study limitations. Of these, 293 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2024. ; https://doi.org/10.1101/2024.09.13.24313582doi: medRxiv preprint 

https://doi.org/10.1101/2024.09.13.24313582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

18 
 

the most important is that the medical history is questionnaire-based, suggesting that recall bias may exist 294 

and lead to an incorrect exposure classification. Currently, the representation of high-risk groups, such as 295 

Afro-American and Hispanic individuals, is limited in the ADNI database, which has constrained the 296 

evaluation of the effect modification role of race in relation to infections and brain hypometabolism.89 In 297 

this work, we did not specifically explore the heterogeneity in infections and the brain metabolism 298 

relationship. However, previous AD studies indicate that there could be subgroups that may be 299 

differentially vulnerable.90–92 There may also be a cohort effect, wherein the frequency of infections 300 

observed within this group may not accurately fit the current disease landscape. We recommend 301 

validating the findings in large cohorts with robust information on prior infections. 302 

 303 

5 Conclusion 304 

This study found that infections and APOE4 jointly promote brain glucose hypometabolism in older ADNI 305 

participants. In individuals with history of infections who were also carriers of one APOE4 allele, the degree 306 

of brain glucose hypometabolism was nearly that seen in APOE4 homozygotes without prior infections.  307 

We conclude that prior infections may contribute to AD pathology in synergy with APOE4, thus playing a 308 

part in the “multi-hit” mechanism of AD development. 309 

 310 
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Abbreviations 320 

AD Alzheimer’s disease 

AIC Akaike Information Criterion 

APOE Apolipoprotein E 

Aβ Amyloid βeta 

FDG 18F-fluorodeoxyglucose 

GxE Gene-environment interaction 

GWAS Genome-wide association studies 

HSV Herpes Simplex Virus 

%INCMSE Percent Increase in Mean Squared error 

IQR Interquartile Range 

PET Positron Emission Tomography 

pTau Phosphorylated Tau 

SD Standard Deviation 

SNP Single Nucleotide Polymorphism 

SROI Statistical Region of Interest 

NECTIN2 Nectin Cell Adhesion Molecule 2 (gene)  

PUD Peptic Ulcer Disease 

UTI Urinary Tract Infection 
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