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Diquat (DQ) is an effective herbicide and is widely used in agriculture. Due to persistent

and frequent applications, it can enter into aquatic ecosystem and induce toxic effects

to exposed aquatic animals. The residues of DQ via food chain accumulate in different

tissues of exposed animals including humans and cause adverse toxic effects. Therefore,

it is crucial and important to understand themechanisms of toxic effects of DQ in exposed

animals. We used ducks as test specimens to know the effects of acute DQ poisoning

on mechanisms of apoptosis and autophagy in liver tissues. Results on comparison

of various indexes of visceral organs including histopathological changes, apoptosis,

autophagy-related genes, and protein expression indicated the adverse effects of DQ

on the liver. The results of our experimental trial showed that DQ induces non-significant

toxic effects on pro-apoptotic factors like BAX, BAK1, TNF-α, caspase series, and

p53. The results revealed that anti-apoptotic gene Parkin was significantly upregulated,

while an upward trend was also observed for Bcl2, suggesting that involvement of the

anti-apoptotic factors in ducklings plays an important role in DQ poisoning. Results

showed that DQ significantly increased the protein expression level of the autophagy

factor Beclin 1 in the liver. Results on key autophagy factors like LC3A, LC3B, and p62

showed an upward trend at gene level, while the protein expression level of both LC3B

and p62 reduced that might be associated with process of translation affected by the

pro-apoptotic components such as apoptotic protease that inhibits the occurrence of

autophagy while initiating cell apoptosis. The above results indicate that DQ can induce

cell autophagy and apoptosis and the exposed organism may resist the toxic effects of

DQ by increasing anti-apoptotic factors.

Keywords: diquat, liver, apoptosis, autophagy, ducks

INTRODUCTION

Diquat (1,10-ethylene-2,20-bipyridinium, DQ) is a widely used non-selective herbicide that belongs
to bipyridine (Figure 1) (1, 2). The toxicity of DQ is less different than that of other herbicides like
paraquat (PQ) due to its rapid degradation in the environment. Although DQ is less toxic than
other herbicides, there are still numerous adverse effects that are related to DQ. A previous report
has indicated that accidental exposure to this herbicide during applications induces different toxic
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FIGURE 1 | The molecular structure of DQ.

effects (3). In addition, a previous study has shown that long-
term exposure to DQ can increase the risk of Parkinson’s disease
in animals including public health (4). DQ can easily enter into
aquatic ecosystem via direct discharge from production industry,
agricultural sector, and runoff (5) and causes serious threats
to fish (6), freshwater snails (7), ducks (8), and other aquatic
animals. Peking ducks are mainly raised in rural areas of China,
which are meat-based species. We choose the Peking ducks as
our experiment animals because these animals have the closest
connection with humans.

The liver is the target organ of DQ toxicity. The mechanism of
liver injury induced by DQ is complex, but it is mainly related
to reactive oxygen species (ROS). DQ can induce increased
oxidative stress to produce a large number of superoxides and
can alter different liver functional activities such as metabolism,
detoxification, and immune response resulting in the production
of a large number of ROS in the liver (9). The liver toxicity
leads to hepatocyte degeneration, inflammation, mitochondrial
dysfunction, and even apoptosis (10, 11). Oxidative stress can
reduce glutathione (GSH) in the liver and can enhance the
production of ROS to promote the activation of pro-apoptotic
factors such as p53 and Bax leading to apoptosis (12). In the liver,
the mitochondria are also affected by overproduction of ROS
ultimately leading to oxidative stress. Studies have indicated that
DQ can decrease the activities of mitochondrial complex I, II, III,
and V in the liver and decrease the abundance of mitochondrial
biosynthesis its related genes (SIRT1, PGC1ATP, and TfAM).
Furthermore, oxidative stress can affect the activities of different
antioxidant enzymes and interfere with the antioxidant defense
mechanisms (13) in the liver and blood. It is reported that
infants or piglets with underdeveloped antioxidant systems are
more vulnerable to oxidative damage and liver diseases (14). The
mechanisms of toxicity of DQ are still under debate. However,
DQ induces its toxic effects in the liver through a variety of
liver injuries.

Apoptosis is a process of cell death regulated by different
genes, while autophagy is a self-protective process of degradation
of its own components through the lysosomal system. Herbicides
such as DQ and PQ can induce abnormal mechanisms of
apoptosis and autophagy. A previous study has shown that
different toxins can induce oxidative stress in mice and produce
a large amount of ROS to promote DNA damage, upregulation of
genes regulating cell cycle (CDKN1A, CDKN2C, and CDKN2D),
and pro-apoptotic genes (caspase-3 and Bax) eventually leading
to promote apoptosis (15). Nitrite interferes with the expression
of anti-apoptosis gene Bcl2 and leads to apoptosis (16) by

enhancing the expression of caspase-3 and Bax genes in tissues.
It has been recorded that aloe emodin can activate abnormal
signals of apoptosis in the liver of zebrafish, promote the
expression of p65, upregulate the proteases caspase-3 and Bax
in p53 pathways while can downregulate Bcl2 in p53 pathway,
and upregulate the expression of TNF-α and JNK in NF-κB
that can induce inflammation and apoptosis (17). Different
insecticides like fipronil can also promote the production of
peroxisome that damages the DNA and mitochondria, causes
the overexpression of Bax, and aggravates hepatocyte apoptosis
(18). Furthermore, studies have reported that various drugs can
cause hepatocyte apoptosis. The most commonly used anti-
tuberculosis drug activates inflammatory corpuscles NLRP3 to
upregulate the expression of p53, Bax, and Cleaved-Cas3, inhibit
the expression of Bcl2, induce inflammation and apoptosis,
and damage hepatocytes in rats (19). High concentrations of
acetaminophen can reduce GSH resulting in increased oxidative
stress and severe mitochondrial dysfunction, promoting the
expression of key apoptotic factors, and promoting apoptosis (20,
21). A previous study has shown that increased concentrations of
manganese (Mn) can induce neurotoxicity, increase the levels of
glutathione peroxidase (GSH-Px), superoxide dismutase (SOD),
and malondialdehyde (MDA), and promote the expression of
p53, Bax, Bak, fas, and caspase-3 to induce apoptosis (22). A
previous study has reported that cadmium affects the expression
of IP3R1 receptor through Ca2+ channels, induces DNA damage,
and promotes the abnormal process of autophagy or apoptosis
(23). Arsenic (As) and its methylation metabolites not only
affect regulatory enzymes such as 2 (ERK2), p38, or c-jun
to induce neuronal and neuroblastoma cell apoptosis through
MAPK signaling pathways but also induce apoptosis through
AMP-dependent protein kinase (AMPK)/mTOR signal pathways
(24). The morphology of the mitochondria is also important in
apoptosis (25, 26). The related proteins Drp1, Mfn1, and Mfn2,
mitochondrial a-KGDH, that affect cell division and fusion are
all related to the mitochondria (27). The mitochondria play a
central role in the integration and circulation of intracellular
death signals, such as oxidative stress and DNA damage (28, 29).

The mitochondria can cause cell injury or apoptosis
by producing ROS, pro-inflammatory signals, or through
mitochondrial membrane permeability. A little electron may
escape from the mitochondrial electron transport chain resulting
in the production of superoxide. The increased oxidant load also
promotes the extra ROS produced by mitochondrial complex
I to further enhance cell oxidative stress and promote cell
death (30). In addition, ROS produced by the mitochondria
can activate NLRP3, adaptation proteins ASC, and caspase-
1 to form inflammatory bodies, and the accumulation of
damaged mitochondria aggravates inflammation and leads to
cell damage. The change of mitochondrial permeability is also
an important cause of cell death, which leads to the dissipation
of mitochondrial transmembrane potential and the cessation of
oxonase. Furthermore, it leads to rapid necrosis of apoptotic
(31). When apoptosis is induced by mitochondrial damage,
the decrease of ATP produced by the mitochondria through
respiratory chain or the increase of ROS will lead to the increase
of autophagy (32). Moreover, the induction of autophagy affects
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the circuit in which the mitochondria transmit lethal signals,
protecting cells from other deadly stimuli (33). However, the
relationship between autophagy and apoptosis affected by the
mitochondria is complex. These two pathways are activated at the
same time and can be regulated by the same factors such as Bcl-
2 family proteins, cystatin (caspase), ATG proteins, and p53. On
the other hand, autophagy and apoptosis are antagonistic to each
other, and autophagy of damaged mitochondrial cells can reduce
apoptotic signal transmission and protect normal cells.

The pathways through which DQ induces toxic effects are not
clear. Therefore, it is interesting to speculate that DQmay induce
harmful effects via induction of oxidative stress and increased
level of apoptosis factors by regulating apoptosis and autophagy-
related signal pathways like NF-κB, MAPK, and mTOR (34).
Autophagy is beneficial to inhibit DQ-induced apoptosis and
alleviate the effects of DQ poisoning (35). Therefore, the purpose
of this study was to explore the relationship between liver
injury and apoptosis and autophagy genes and proteins in ducks
induced by acute DQ poisoning.

MATERIALS AND METHODS

Animals and Treatment
All the experiments were approved by the Animal Ethics
Committee of South China Agricultural University (License
Number: 2017A087) and were conducted following the ethical
code of conduct for animal care and use. After 7 days of
acclimatization, a total of 60 1-day-old Peking ducks were
randomly divided into two groups including the control and
treatment groups (feeding 100 mg/kg DQ on the first day). The
ducks in the treatment group were exposed to DQ for 11 days.
After weighing at day 11, ducks were anesthetized by injecting
chloral hydrate through the intraperitoneal route. Blood was
collected from the jugular vein for biochemical profile. The heart,
liver, kidney, thymus, spleen, and bursa of fabric of the ducks
were removed, weighed separately, and photographed, and the
coefficient of each organ was calculated.

Histopathological Examination
Liver tissue of 1 × 1 cm was cut and fixed in 4%
paraformaldehyde solution. After that, all the tissues were
processed and then embedded in paraffin for 24 h. Approximately
0.4µm thick liver slices were obtained with the help of KEDEE
KD2258 manual rotary microtome and were then stained with
hematoxylin and eosin (H&E). Briefly, the paraffin slices were
dewaxed in xylene solution for 20min and then sequentially
soaked in benzene alcohol, anhydrous ethanol I, anhydrous
ethanol II, 95% alcohol I, 95% alcohol II, and 80% alcohol
solution each for 10min to remove xylene. After that, the slices
were soaked in hematoxylin for 8min, rinsed with water for
15min, then shaken in the differentiation solution for ∼2 s,
rinsed with water for 20min again, and dyed again with eosin
for 8min. The dehydration and transparency procedures used in
paraffin sections preparation were repeated. The residual liquid
on the slice was removed, and neutral resin was dropped on slice,
then sealed, and baked for more than 6 h. Finally, all the prepared
sections were observed under light microscope (Y-TV55; NiKon,
Japan) and photographed.

RT-qPCR Analysis
The primer and sequences used for real-time PCR (RT-PCR) are
shown in Table 1. Total RNA was lysed from 100mg of the liver
using RNA isolate reagents (Vazyme, China). Total RNA was
separated with chloroform and precipitated with isopropanol.
Ethanol was used to wash the residual isopropanol. Total
RNA concentration was measured by Microvolume UV–Vis
spectrophotometer (NanodropTM One; Thermo Fisher Scientific,
Madison, WI, USA). Approximately 5 µg total RNA was reverse-
transcribed into cDNA using HiScript III RT SuperMix for qPCR
(Vazyme, China). The mixture contained 1 µl cDNA primer, and
ChamQ University SYBR qPCR Master Mix (Vazyme, China)
was used to perform RT-qPCR on the real-time PCR detection
system (QuantStudioTM 5; Thermo Fisher Scientific, Waltham,
MA, USA). The 2−11(Ct) method was used to calculate the
relative gene expression level, and GAPDH was used as the
internal reference gene. The results are expressed as normalize
mRNA levels by reference gene.

TABLE 1 | Primer sequences used for real-time PCR.

Gene 5′-primer (F) bp 3′-primer (R) bp

COL2A1 GAGCGGAGACTACTGGATCG 20 TTCTTGTCTTTGGCCTTGCT 20

BAK1 CCGCTACCAACAGGAGAGAG 20 GCGTCGTACCGCTTGTTAAT 20

BAX CTTCTGCTTCCAGACCAAGG 20 TCAGCGTGTTCTTCCTGTTG 20

Bcl2 GAGTTCTCCCGTCGCTACC 19 CGGTTCAGGTACTCGGTCAT 20

Caspase-3 CGGGTACGGATGTAGATGCT 20 GGGGCCATCTGTACCATAGA 20

Caspase-9 GAACTGGATCCGATGTGGAC 20 TTCCGTCCGTTCCATAAATC 20

P53 ACAGCAGACTCCTGGGAAGA 20 GGGGTATTCGCTCAGTTTCA 20

LC3A GCTGGACAAGACCAAGTTCC 20 ACCCTCCCTGGACAGAAAGT 20

LC3B TTCGAGAGCAGCATCCTACC 20 CCTTCTCGCTCTCGTACACC 20

P62 GGACCCACTTGTCTTCCAAA 20 AGCCTCTCGCAGTCCTGTAG 20

Parkin TGATGGGCTTTGTGAAATGA 20 TTCAGCGTGACACAGAGGAC 20

GAPDH GGTAGTGAAGGCTGCTGCTGATG 23 GGAGGAATGGCTGTCACCGTTG 22
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Western Blot Analyses
The antibodies used for Western blot are shown in Table 2.
Approximately 80mg of the liver was lysed in RIPA lysis
buffer (Meilunbio, China) and 1mM protease inhibitor
(PMSF) (Meilunbio, China) at 4◦C, and the concentration
was determined using the BCA protein concentration
determination kit (Beyotime, China). After that, samples
were diluted with 5× SDS-PAGE loading buffer and boiled
for 8min. An equal amount of protein sample (10 µg) was
added and electrophoresed on a 12.5% SDS-polyacrylamide
denaturing gel and then transferred to polyvinylidene
fluoride membranes. After blocking with Tris buffered saline
Tween (TBST) containing 5% skimmed milk powder for 1 h,
primary antibodies were incubated with membranes for 16 h.
After washing with TBST for three times, the membranes
were blocked with secondary antibody for 1 h. Finally, an

TABLE 2 | Antibodies used for Western blot.

Name Company Cat. no. Concentration

Beclin 1 Rabbit pAb ABclonal A17028 1:1,000

LC3B Rabbit pAb ABclonal A11282 1:1,000

SQSTM1/p62 Rabbit pAb ABclonal A11483 1:1,000

GAPDH Rabbit pAb ABclonal AC001 1:9,000

Goat anti-Rabbit IgG (H&L) Zenbio 511203 1:5,000

electrochemiluminescent liquid (ECL) (Meilunbio, China) was
prepared to measure the signal imprinting. ImageJ software
was used to calculate the gray value of each band and perform
normalization processing.

Statistical Analysis
Statistical analysis was performed on all data using GraphPad
Prism 8.0 (GraphPad Inc., La Jolla, CA, USA) and SPSS
for Windows (version 22; SPSS Inc., Chicago, IL, USA). The
independent sample t-test was used to analyze the differences of
the data between each group. Data were expressed as the mean±

standard deviation (SD). The data between different groups were
analyzed by one-way analysis of variance (ANOVA) (n = 2, each
repeated three times). Significance level was considered as p <

0.05, p < 0.01, and p < 0.001.

RESULTS

The Influence of DQ on Organ Index and
Serum Biochemistry
The indexes of the heart, liver, kidney, and spleen were
significantly higher in treated ducks (Figure 2) than in the
control group (p < 0.05). The results showed no significant
difference in the index of the cloacal bursa and thymus (p> 0.05)
as compared with ducks of the control group.

The results of serum biochemical examination are shown
in Table 3. The results showed that DQ reduces the serum

FIGURE 2 | The organ index of the heart, liver, spleen, kidney, cloacal bursa, and thymus. Error bars indicate standard error of the mean (n = 4). “ns” and “*” indicate

the level of significance. (“ns” means no significant difference, *p < 0.05, **p < 0.01 compared with the control conditions).

Frontiers in Veterinary Science | www.frontiersin.org 4 August 2021 | Volume 8 | Article 727766

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Chen et al. Diquat; Liver; Apoptosis; Autophagy; Ducks

TABLE 3 | Serum biochemical index.

Parameter Units Control (n = 3) Diquat (n = 3) p

Ca Mmol 1.88 ± 0.20 1.35 ± 0.09 <0.05

P mmol 2.49 ± 0.92 1.70 ± 0.21 ns

TG mmol 1.00 ± 0.32 0.37 ± 0.13 <0.05

TC mmol 7.81 ± 2.79 4.74 ± 0.44 ns

TP g/L 22.03 ± 3.84 18.27 ± 0.87 ns

T-Bil µmol/L 50.57 ± 11.27 27.57 ± 6.14 <0.05

γ-GT U/L 4.47 ± 1.05 2.97 ± 0.67 ns

ALP U/L 1,459 ± 223.70 891.90 ± 191.20 <0.05

ALT U/L 64.27 ± 2.30 77.30 ± 16.52 ns

AST U/L 54.20 ± 1.02 35.07 ± 2.83 <0.001

ALB g/L 7.97 ± 0.90 6.20 ± 0.36 <0.05

GLU mmol 7.21 ± 2.43 8.18 ± 1.50 ns

γ-GT/ALT 0.070 ± 0.018 0.038 ± 0.001 <0.05

“ns” indicates the level of significance, and it means no significant difference.

levels of calcium (Ca), phosphorus (P), triglyceride (TG), total
protein (TP), total cholesterol (TC), albumin (ALB), γ-glutamyl
transpeptidase (γ-GT), alkaline phosphatase (ALP), aspartate
aminotransferase (AST), and total bilirubin (T-Bil) as compared
with the control group. Among them, Ca, TG, ALB, ALP, and
T-Bil are significantly reduced (p < 0.05), and AST is extremely
significantly reduced (p < 0.01).

The Effect of DQ on Liver Histopathology
In general, there were no obvious pathological changes in the
liver of treated and untreated control groups (Figure 3). The
basic liver structure of the control group and the DQ treatment
group was normal and clear. No inflammatory response was
observed in the portal area and liver parenchyma. Histologically,
the liver cells of the control group were slightly enlarged, and the
accumulation of eosinophilic glycogen material was observed in
the cytoplasm. In the DQ treatment group, a large number of
vacuoles (shown by black arrows) were observed in the liver cells,
which were diffusely distributed. In liver sections of DQ, treated
duck’s fatty infiltration was obvious indicating that the drug may
cause liver fat metabolism disorders.

The Effect of DQ on Cell Apoptosis
Compared with the control group, the expression of apoptosis-
related genes is recorded as indicated in Figure 4. The expression
level of caspase-3 decreased significantly, and the expression of
Bax increased significantly. In addition, there was no significant
difference in the expression of Bak1, Bcl2, p53, and Caspase9
genes. In these genes, only Caspase9 showed an upward trend,
and the others showed a downward trend.

The Effect of DQ on Autophagy
The changes of autophagy-related genes and proteins in the
ducks treated with DQ are shown in Figure 5. As compared
with the control group, there was no significant difference in the
expression of LC3A, LC3B, and p62 genes, in which LC3A and
LC3B increased non-significantly, and E3 ubiquitin ligase gene

FIGURE 3 | The effect of diquat on the liver. (A) The liver of the control group.

(B) The liver of the DQ treated group. (C) Control group (HE, 20×). (D) DQ

treated group (HE, 40×). (E) Control group (HE, 40×). (F) DQ treated group

(HE, 40×).

Parkin increased significantly. The protein expression like LC3B
decreased significantly, while Beclin 1 increased significantly.

DISCUSSION

Different histopathological changes in liver sections of treated
ducks were observed in our experimental study. Previously,
various pathological lesions such as widening of the alveolar
septum with inflammatory cells, narrowing and atrophy of
the alveolar sac and proliferation of collagen fiber in the
lungs, and swelling and necrosis of renal tubular epithelial
cells and telangiectasia in the kidneys have been reported (36).
Inflammation of cardiomyocytes accompanied by inflammatory
cell infiltration in the heart and focal inflammatory cell
infiltration in the brain tissue have also been reported (37). In
DQ exposed patients, the values of serum creatine and urea
nitrogen were significantly increased suggesting severe renal
function abnormalities (38). Mild bilateral patchy consolidation
at the hilar in the lungs has been observed (39). The lungs
mainly involve the alveolar epithelium, which may initially
cause acute alveolitis and then pulmonary fibrosis (34). The
inflammatory spots around the pleura gradually expand into
plaques over time and developed into pulmonary fibrosis (40).
Studies have found that the injection of DQ in pigs can increase
the expression of mitochondria-related proteins including Pink1,
Parkin, and LC3B in the intestine. It is suggested that DQ
can induce mitochondrial autophagy (41). Previously, it has
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FIGURE 4 | The expression of apoptotic genes in the liver. DQ affects the mRNA expression levels of apoptosis-related genes in liver, including BAK1, BAX, Bcl2,

Caspase-3, Caspase-9, and P53. “ns” and “*” indicates the level of the Significance. (“ns” means no significant difference, *p < 0.05 compared to the control

conditions).

also been found that DQ can reduce the activity of SOD and
GSH-Px in the intestinal mucosa and increase the contents of
MDA (42, 43), suggesting that PQ causes oxidative stress in
the intestine. In vivo and in vitro studies have shown that the
oxidative stress caused by DQ can damage the integrity of the
intestinal epithelial barrier that is manifested by the destruction
of tight junctions (TJ) and reduction of epithelial cell viability
(44–47). Different studies have indicated manifestations of DQ
toxicity as decreased TER and increased FD4 flux (48), high
serum lipopolysaccharide levels, and diamine oxidase activity
in piglets (43). DQ reduces the activity of AHR in the spleen,
causing oxidative damage to the spleen. The decreased activity
of SOD and CAT suggests decreased antioxidant functions in the
spleen (49). Long-term exposure to DQ had toxic effects on the
reproductive system (50–52) that is manifested by reducing the
quality of germ cells affecting early embryo development (53).
Long-term ingestion of DQ in rats and dogs can induce cataracts
(54). Dose-dependent axonal degeneration has been observed in
dorsal root ganglion neurons (55). In addition, the production of
nitric oxide and superoxide anion free radicals was significantly
increased, and lipid peroxidation increased, suggesting that PQ
causes neurotoxicity (56).

The central vein around the liver cells showed vacuolar
degeneration with punctate necrosis due to exposure to DQ (36).
The activity of total antioxidant capacity, SOD, and GSH-Px

in the liver of piglets injected with DQ decreased suggesting
lower status of the liver’s antioxidant capacity. There were
significant differences in the expression of liver mRNA and
lncRNA. GNMT is highly expressed, and GCK is downregulated.
These results indicate that DQ can affect glucose metabolism
in the liver and reduce weight gain (57). It can also increase
the accumulation of glutathione peroxidase (GPX) activity and
MDA in the plasma and liver; increase the activity of AST,
alanine aminotransferase, and T-Bil concentrations; and increase
the relative liver weight, indicating that DQ causes liver damage
(10). DQ increases Ca efflux due to the weakened ATP-dependent
Ca chelation of liver microsomes (58). DQ-induced liver lipid
peroxidation is manifested as increase in 11-, 12-, and 15-
hydroxyeicosatetraenoic acid. DQ can also activate inflammatory
cells, leading to the synthesis and release of certain pro-
inflammatory cytokines like TNF-α, IL-1β, and IL-6 (59).

As a commonly used herbicide, DQ mainly destroys plant
cells to achieve the purpose of weeding by inducing redox
cycle, releasing ROS and nitric oxide and inhibiting the
effect of NADPH. However, it is the herbicidal principle that
causes serious damage to the nervous system, liver, kidney,
heart, and lungs of animals or humans, while the liver is
the main source of ROS, and it has become the target
of DQ (60). Liver injury has a prodigious impact on the
organism, which can directly lead to an increase in morbidity
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FIGURE 5 | The expression of autophagy genes and proteins in the liver. (A) Autophagy mRNA gene expression: LC3A, LC3B, and P62. (B) Western blot detects

protein expression bands: P62, Beclin 1, and LC3B. (C) The level of the protein expression: P62, Beclin 1, and LC3B. “ns” and * indicates the level of the significance.

(“ns” means no significant difference, *p < 0.05 compared to the control conditions).

and mortality of terrestrial and aquatic animals, especially
birds (61).

Many studies have been conducted on DQ-induced liver
injury, which mainly focus on oxidative stress, apoptosis, and
autophagy. Previous studies have shown that DQ induces liver
redox cycle to produce superoxide while inhibit the production
of antioxidant enzymes, so that antioxidant enzymes are not
enough to resist liver damage caused by oxidation. Secondly,
the endoplasmic reticulum and mitochondria can regulate
apoptosis and autophagy, while damaged mitochondria initiate
autophagy mechanism to inhibit the release of cytochrome c
(Cyt-c) and induce apoptosis. Damaged mitochondria can also
reduce the accumulation of ROS, which inhibit the division
of the mitochondria and prevent it from degradation by
autophagy (62).

In the specific effect of DQ on the liver, some scholars have
found that the content of glutathione disulfide (GSSG) can reflect
the liver injury induced by DQ, while previous studies have

shown that DQ leads to a sharp increase in the content of GSSG
in the liver (12, 63). DQ can also increase the level of serum
ALT and AST and decrease the level of anti-apoptosis factor Bcl2,
which indicates hepatocyte apoptosis and injury (64). When DQ
is put into the waters of fish fry, it was found that biosynthesis
of protein and RNA was increased, while ATK/mTOR signal,
SREBP pathway, and caspase pathway were activated. It was
considered that this change was closely related to the increase
of protein and mRNA, which further confirmed the occurrence
of oxidative stress and apoptosis in fish (65–67). It is also
found that intraperitoneal injection of DQ in piglets affects the
MAPK signal pathway that leads to acute oxidative stress and
increase lipids, antioxidant metabolites, and peroxide MDA in
the liver (68), so it indicates that DQ can destroy cell lipids and
induce cell death. Some scholars have found that DQ-induced
oxidative stress can promote the production of H2O2 in the
mitochondria, depolarize the mitochondria, and inactivate iron
and sulfur in the mitochondria containing aconitase and other
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proteins, resulting in mitochondrial damage (69–72). Previous
studies have found that mitochondrial damage and induced
mitochondrial release of apoptosis and oxidation-related proteins
can promote apoptosis. Oxidative stress induces the release of
Cyt-c from the mitochondria that is the key factor of apoptosis,
while the antioxidant enzyme Gpx4 can eliminate lipid peroxides
in themitochondria to inhibit the production of Cyt-c and reduce
apoptosis (73). DQ can also affect the caspase signal pathway
by inducing oxidative stress to produce ROS and enhance the
activities of caspase-3 and caspase-9 in the liver tissue (74–78).
It is found that there is a relationship between Bax/Bcl-2 and
caspase. With the increase of Bax/Bcl-2 ratio, caspases are also
gradually activated, which can promote apoptosis (79). It was
also found that the activity of mitochondrial complex I was
inhibited and ATP was consumed, which proved the destructive
effect of DQ on the mitochondria. In addition, it is found that
mitochondrial dysfunction and reduced apoptosis by inhibiting
NF-KB and p53 signal pathways are the main pathways for DQ
to induce inflammation and apoptosis. Secondly, some studies
have found that the release of Smac/Diablo, endonuclease G,
and other intermembrane space proteins after permeation of
mitochondrial outer membrane can promote cell apoptosis by
activating cystatin. A large amount of H2O2 is produced by
the mitochondria, which further induces the production of ROS
to aggravate the oxidative stress of cells that leads to further
apoptosis (80).

Our research results are somewhat consistent with the above
research results. In our study, we did not find that DQ had
significant effects on pro-apoptotic factors BAX, BAK1, TNF-
α, caspase series, and p53, but they showed an upward trend
all together. The anti-apoptotic genes Parkin and Bcl2 were
significantly upregulated, indicating that anti-apoptotic factors
in ducklings play an important role in the period of acute DQ
poisoning. It is well-known that the production of a large number
of ROS can destroy the function of the mitochondria. Some
studies have suggested that it may convert the apoptosis pathway
into necrosis, thus showing the increase of inhibitory apoptosis
factors. Previous studies have shown that Parkin gene not only
plays an anti-apoptotic role but also inhibits the pro-apoptotic
pathway of p53 (81, 82). In our study of autophagy factor, we
found that DQ significantly upregulated the protein expression

of autophagy factor Beclin 1 in the liver. The key autophagy
factors LC3A, LC3B, and p62 showed an upward trend at the
gene level, but the protein expression of LC3B and p62 decreased;
it may be due to the effect of pro-apoptotic components
such as apoptotic proteases during translation, which initiated
apoptosis and inhibited the occurrence of autophagy at the
same time (62). Most evidence shows that autophagy is the
protective mechanism of cell initiation. Autophagy can inhibit
apoptosis when autophagy is upregulated; similarly, apoptosis
can also reduce autophagy. Therefore, we believe that acute duck
poisoning has a significant effect on the liver. On the one hand, it
activates the apoptosis and anti-apoptosis system, which proves
that there is apoptosis in hepatocytes. On the other hand, the
autophagy protection system was activated, and it was found that
the autophagy and apoptosis system inhibited each other.
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