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I. INTRODUCTION

Within the flavivirus family, viruses that cause natural infections of
the central nervous system (CNS) principally include members of the
Japanese encephalitis virus (JEV) serogroup and the tick-borne en-
cephalitis virus (TBEV) serocomplex. Neuroinvasion follows infection
of host organisms in the periphery by bites of chronically infected mos-
quito and tick vectors. Syndromes that result from CNS infection in
humans range from mild aseptic meningitis to acute encephalitis of
variable morbidity and mortality and are often complicated by neuro-
logic sequelae among survivors. The pathogenesis of these diseases
involves complex interactions of viruses, which differ in neuroviru-
lence potential, and a number of host factors, which govern susceptibil-
ity to infection and the capacity to mount effective antiviral immune
responses both in the periphery and within the CNS. Animal models
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have been instrumental for providing insight into how virus-specific
and host factors influence the course of disease. Rodent models have
been used in classic experiments on pathogenesis and continue to be
relied upon for studies of viral neurovirulence determinants and
immune system requirements for a successful antiviral response, par-
ticularly because of readily available knockout strains. Nonhuman
primates have also been useful for some studies of peripheral immune
responses to encephalitic viruses and for quantitating the disease
burden caused by replication of virus in the CNS (monkey neuroviru-
lence testing) and have also been applied as models for immunization
and challenge. This review summarizes progress in the field of
flavivirus neuropathogenesis since previous reviews on this topic
(Monath, 1986; Monath and Heinz, 1996). Mosquito-borne and tick-
borne viruses are considered together, although it is important to note
that there are differences in the pathogenesis of these two groups of
viruses.
II. HOST FACTORS

It is generally acknowledged that the ratio of apparent to inapparent
infections with flaviviruses is quite low (on the order of 1:100 to 1:300),
implying that a number of host factors are involved in protection
against CNS disease. The most well known of these are age, genetic
factors, and preexisting flavivirus immunity. The effect of age has
been recognized in both clinical and experimental studies of flavivirus
encephalitis (Eldadah et al., 1967a; Grossberg and Scherer, 1966;
Luby et al., 1967; O’Leary et al., 1942; Powell and Kappus, 1978;
Weiner et al., 1970), in some cases accompanied by effects of gender
(Andersen and Hanson, 1974). In terms of human infections, clinical
disease with JEV is primarily a pediatric entity, suggesting that cer-
tain features of the developing nervous system predispose to pathogen-
esis of encephalitis. Experimental evidence in support of this is based
on the known propensity of arboviruses to infect and spread more rap-
idly through nervous tissue of young rodents; however, resistance to
fatal infection occurs abruptly soon after the weanling stage. This re-
sistance occurs in conjunction with neural ontogeny and is associated
with restricted replication of virus in neurons as a function of their
degree of differentiation, with low levels of virus being observed in
mature neurons in some models (Hase et al., 1993; Ogata et al.,
1991). However, this phenomenon is very dependent on the intrinsic
level of viral neurovirulence, being most apparent with strains of lower
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virulence (Eldadah et al., 1967a; Ogata et al., 1991; Oliver et al., 1997),
and is also affected by the dose and route of inoculation (Eldadah et al.,
1967a; Fitzgeorge and Bradish, 1980). Changes in the expression of
cellular receptors and/or intracellular factors required for efficient rep-
lication have been invoked as explanations for the age-related resis-
tance. In support of these hypotheses, it is known that the replication
block can be overcome by the neuroadaptation of flaviviruses, which
results in genetic changes in the envelope region, as well as in non-
structural regions of the genome (Chambers and Nickells, 2001;
McMinn, 1997; Schlesinger et al., 1996).

Studies with the mouse model of Sindbis virus encephalitis suggest
that the differential expression of neural genes in young versus older
mice is the determinant of age-related resistance. Candidate genes in-
volved in this process include apoptotic regulators, interferon-respon-
sive genes, and other classes that are regulated developmentally
(Labrada et al., 2002; see Section IX). These factors are presumed to
operate by activating innate antiviral effector systems in neurons
and promoting survival of these cells after viral infection.

Despite these experimental data, age-dependent resistance to en-
cephalitic viruses in areas endemic for human disease is influenced
by the effects of immunization and recurrent inapparent infections
with homologous and heterologous viruses, such that the cumulative
immune responses in adults may confer protection or ameliorate the
severity of disease (Kurane, 2002; Solomon and Vaughn, 2002). How-
ever, susceptibility of young children (below the age of 9 months) to
yellow fever virus (YFV) 17D vaccine-associated encephalitis is well
documented (Freestone, 1994), and resistance to this adverse event
in older individuals is clearly not based on immunity from recurrent
subclinical infections. This supports the phenomenon of age-related
susceptibility to encephalitis. A predisposition of elderly individuals
to develop encephalitis from West Nile Virus (WNV) and St. Louis
encephalitis (SLE) virus has also been observed. In this case, lack of
previous cross-reactive immunity may be an important factor, but co-
morbid illnesses may contribute to the risk of complications, and the
decline in immune function with advanced age is also likely to play a
role (Grubeck-Loebenstein and Wick, 2002). In support of this, im-
munocompromised individuals encountering flavivirus infections
appear to be less able to mount effective immune responses, as in
reports of HIV-infected subjects with complicated CNS disease (Neogi
et al., 1998; Okhuysen et al., 1993; Szilak and Minamoto, 2000; Wasay
et al., 2000) and in transplant recipients sustaining WNV infection
(Iwamoto et al., 2003). YFV 17D vaccine appears to be tolerated in
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HIV infection, provided immunosupression is not severe, although this
isuue deserves further investigation (Kengsakul et al., 2002; Receveur
et al., 2000).

Coexistent infection with other infectious agents has been suggested
as a modifying factor for flavivirus encephalitis. The association be-
tween cysticercosis and JEV infection was investigated in a controlled
study that did not provide evidence for predisposition to viral enceph-
alitis (Azad et al., 2003). Association of TBEV encephalitis with borre-
lia infection has been described (Korenberg et al., 2001), but probably
reflects coexistence of these pathogens in the tick vector. Autopsy stud-
ies have suggested that herpes simplex infection may predispose to
JEV encephalitis by altering the integrity of the blood–brain barrier
(Hayashi and Arita, 1977). Experimentally, infection of mice with
Toxocara canis or Trichinella spiralis predisposes to JEV encephalitis
as a result of T-cell immunosuppression (Cypess et al., 1973; Gupta
and Pavri, 1987; Lubiniecki et al., 1974; Pavri et al., 1975), suggesting
the possibility of increased disease severity in endemic areas where
parasitic pathogens and encephalitic viruses coexist.

The susceptibility of mice to flavivirus encephalitis is controlled ge-
netically and is associated with host factors that map to chromosome 5
at the oligoadenylate synthetase (OAS) gene cluster (Mashimo et al.,
2002; Perelygin et al., 2002; Sangster et al., 1994). Although OAS is
involved in the activation of RNase L, the mechanism of resistance
associated with the gene is not known and could conceivably relate to
other potential functions of OAS proteins in cellular responses to viral
injury (Samuel, 2002). The importance of the OAS gene in human
susceptibility to these viruses requires investigation, as differences
exist between murine and human gene clusters. Evidence shows that
20, 50-OAS is activated in response to peripheral flavivirus infection
in humans (Bonnevie-Nielsen et al., 1989, 1995), but studies to corre-
late this with the effectiveness of the antiviral responses are not yet
available.

The effect of different class I HLA-A and B alleles on the immune re-
sponse to flavivirus infection has been investigated for dengue viruses,
where associations have been found with increased and decreased sus-
ceptibility to dengue hemorrhagic fever (Loke et al., 2001; Stephens
et al., 2002), suggesting a relationship between the extent of T-cell ac-
tivation and severe disease. It is unclear whether similar results will
be found for encephalitic viruses, as these associations occurred in
the context of secondary infections and presumably affect the strength
of the memory rather than the primary T-cell response.



FLAVIVIRUS ENCEPHALITIS 277
Interactions between flavivirus untranslated regions (UTRs) and
intracellular proteins indicate another potential level of host-mediated
control over virus infection (Brinton, 2000). Multiple proteins have been
reported to bind to the 30 UTR of the positive strand of various flavi-
viruses, including EF-1� and Mov34, which bind to the positive strand
30 UTR of WNV and JEV, respectively (Blackwell and Brinton, 1995,
1997; Ta and Vrati, 2000), and as many as eight cellular proteins in
the case of dengue (De Nova-Ocampo et al., 2002). Several proteins have
also been reported to bind to the 30 UTR of the negative strand of dengue
virus (Yocupicio-Monroy et al., 2003) and four proteins in the case of
West Nile virus (Li et al., 2002). These proteins have been suggested
to participate in flavivirus replication by influencing viral transcription
and/or translation in conjunction with host intracellular membranes.
There is some evidence that interactions of the viral RNAwith such pro-
teins are in fact important for virus replication (Li et al., 2002). It is not
known whether compartmentalization of their interactions in different
cell types is a determinant of tissue tropism in infected hosts.
III. ARTHROPOD FACTORS AFFECTING PATHOGENESIS

It has become evident from studies on arthropod vectors that certain
components of their saliva influence pathogenesis in vertebrate hosts.
For mosquitoes, flaviviruses are deposited principally in the extravas-
cular tissue during probing, as virus that is injected intravascularly is
reingested rapidly during the blood meal (Burke and Monath, 2001;
Turell and Spielman, 1992; Turell et al., 1995). Instead of a rapid dis-
semination of virus via the bloodstream, flaviviruses may then under-
go some replication locally in subcutaneous tissues accompanied by
spread to regional lymph nodes through lymphatic channels. Dendritic
cells in the skin are likely to serve as a vehicle for the transport of virus
to lymphoid tissues.

Components of the insect saliva modulate the earliest steps in flavi-
virus infection by altering the local host immune response. Feeding
by Aedes aegypti or Culex pipiens mosquitoes or administration of
sialokinin-I, a mosquito salivary protein, downregulates interferon-�
(IFN-�) production and upregulates the TH2 cytokines interleukin
(IL)-4 and IL-10 (Zeidner et al., 1999). Salivary gland extracts from Der-
macentor and Ixodes ticks decrease natural killer activity (Kubes et al.,
1994, 2002), suppress the antiviral actions of interferons in cell culture
(Hajnicka et al., 2000), and enhance the transmission of TBEV in
rodents (Labuda et al., 1993). Overall, these findings suggest that insect
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factors facilitate flavivirus transmission by interfering with aspects of
both innate and adaptive responses. Whether these effects are required
to establish systemic infection and neuroinvasion is not known.
IV. EXTRANEURAL INFECTION

Flavivirus neuropathogenesis involves both neuroinvasiveness
(capacity to enter the CNS) and neurovirulence (replication within
the CNS) (Monath, 1986), both of which can be manipulated experi-
mentally. In rodent models, neurovirulence is an inherent property of
most of these viruses, and the quantity of virus needed to cause infec-
tion in the CNS is usually quite small. In classic studies of arbovirus
pathogenesis (Albrecht, 1968; Huang and Wong, 1963), distinctions
were made among neuropathogenic phenotypes on the basis of replica-
tion efficiency and pathogenic potential in the peripheral tissues versus
the CNS, with various phenotypes being distinguished (high periph-
eral susceptibility, low neurotropism; low neuroinvasiveness, high
neurotropism; and high neuroinvasiveness, high neurotropism). These
phenotypes were related to different clinical outcomes, which ranged
from inapparent infection to acute encephalitis of varying severity,
and are influenced in the rodent model by host age and species (Kozuch
et al., 1981). These concepts have held up over time and have been sup-
plemented by additional data concerning viral determinants of viru-
lence and host innate and adaptive immune mechansisms. A main
principle that applies is the relationship between peripheral virus
burden and the propensity to cause neuroinvasion. Viruses with a
low capacity to replicate in the periphery generally can be classified
as low in neuroinvasive potential, regardless of their intrinsic level of
neurovirulence. A relationship between systemic virus burden and
viremia is also apparent (Albrecht, 1968), with the potential of the
virus to generate viremia being a correlate of neuroinvasion as it ap-
plies to most naturally acquired encephalitic infections. Aerosol-
acquired infections are probably an exception, but some of these may
also cause systemic infection with viremia after gaining access to the
lower respiratory tract. Mucosal infection of the alimentary tract has
also been implicated both experimentally and in naturally acquired
cases of TBEV encephalitis (Gresikova et al., 1975; Odeola and Oduye,
1977). Furthermore, data from a number of studies indicate that such
factors as the time of onset, magnitude, and duration of the viremia, as
well as the integrity of the host innate immune system, also influence
the risk of entry into the CNS, prior to the onset of the virus-specific
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immune response (see Section VIII). Type I interferons and macro-
phages in particular have been identified as important factors in
limiting infection and clearing systemic virus. Thus this process is
largely a balance between the replicative efficiency of the virus and
the effectiveness of early host defenses in clearing viremia.
V. CELLULAR RECEPTORS FOR FLAVIVIRUSES

The cellular receptors that mediate attachment and entry of flavi-
viruses have been only partially characterized, and to date there has
been no definitive identification of the molecules required for these
processes in either peripheral or CNS tissues. Although several groups
have used biochemical approaches to identify candidate protein recep-
tors (Kopecky et al., 1999; Martinez-Barragan and del Angel, 2001;
Ramos-Castaneda et al., 1997) on mammalian cells, their physiologic
relevance remains unclear, as there is heterogeneity in the proteins
that bind flaviviruses in different cell types. Most recently, CD209 or
DC-SIGN (the dendritic cell-specific intercellular adhesion molecule
3–grabbing nonintegrin) has been proposed as a cell surface ligand
for dengue virus (Navarro-Sanchez et al., 2003; Tassaneetritep et al.,
2003). Additional studies are required to evaluate the in vivo signifi-
cance of DC-SIGN as an attachment or entry ligand and whether this
is a common determinant of tropism for other flaviviruses. One possi-
bility to reconcile these observations is that multiple independent cel-
lular receptor molecules are utilized either during the spread of
flaviviruses within the host or during entry into the CNS. A number
of early studies have described binding of flaviviruses to mouse brain
substances (reviewed in Albrecht, 1968), suggesting that this tissue
is enriched for a unique receptor activity, which may enhance tropism
for this organ, particularly in developing brain (Kimura-Kuroda et al.,
1992). In this regard, it has been shown that mouse and monkey brain
membrane-receptor preparations preferentially bind neurovirulent
strains of flaviviruses, but not attenuated variants (Ni and Barrett,
1998; Ni et al., 2000). Receptor variability in vivo may be a general
mechanism for promoting wide tissue tropisms of arthropod-borne
viruses, which require cycling in both arthropod and vertebrate hosts.
Some data suggest that different cell surface proteins may be utilized
for the entry of insect versus vertebrate cells (Martinez-Barragan and
del Angel, 2001; Munoz et al., 1998). Tissue tropism in mosquitos has
also been observed to correlate with expression of a specific receptor
molecule (Yazi-Mendoza et al., 2002).
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Heparan sulfate has been proposed as a flavivirus receptor based on
studies showing the dependence of dengue virus infectivity on binding
of the E protein to heparan sulfate on target cells (Chen et al., 1997;
Hilgard and Stockert, 2000). Subsequent reports have demonstrated
that infectivity of TBEV, yellow fever virus (YFV), JEV, and Murray
Valley encephalitis (MVE) viruses is affected by cell surface inter-
actions with glycosaminoglycans that are proposed to mediate initial
low-affinity binding to the cell surface (Germi et al., 2002; Lee and
Lobigs, 2000; Mandl et al., 2001; Su et al., 2001), but the role of heparin
as an authentic receptor for virulent flaviviruses remains uncertain.
For instance, the serial passage of JEV and MVE viruses in cell culture
results in selection for viruses that exhibit increased binding to hep-
arin but decreased virulence in vivo (Lee and Lobigs, 2002). Similar ob-
servations have been made with alphaviruses (Bernard et al., 2000;
Klimstra et al., 1998), where heparin binding was associated with cell
culture adaptation of primary virus isolates and attenuation of viral
virulence. Thus enhanced binding to glycosaminoglycans is a marker
for attenuation of JEV and MVE viruses in the mouse model and cor-
relates with rapid clearance of the glycosaminoglycan-binding vari-
ants from the circulation compared to more pathogenic strains (Lee
and Lobigs, 2002). The mechanism responsible for this process has
not been defined. The relationship of this observation to classic studies
on neuroinvasion is also unclear, as virulent strains were originally
characterized by their ability to undergo rapid uptake from the circula-
tion, presumably as a result of highly efficient binding and entry to
target cells (Albrecht, 1968). Wild-type and glycosaminoglycan-binding
variants may differ, however, with respect to their entry into cells that
are permissive for replication or are involved in virus clearance (Lee
and Lobigs, 2002).

Antibody-dependent enhancement (ADE) of infection has been
reported for some encephalitic flaviviruses. ADE is believed to occur
through Fc�R I (CD64) and Fc�R II (CD32), although a second type
of ADE that requires complement has also been described (Cardosa
et al., 1983, 1986). In tissue culture, ADE occurs with several flavi-
viruses in cells of myeloid lineage (Brandriss and Schlesinger, 1984;
Brandt et al., 1982; Cardosa et al., 1983, 1986; Diamond et al., 2000b;
Halstead and O’Rourke, 1977; Halstead et al., 1980, 1984; Schlesinger
and Brandriss, 1983). Most of these data are relevant to the pathogen-
esis of dengue infection, and the significance for encephalitic viruses is
less certain. However, there is some experimental evidence that ADE
may be involved (Hawkes, 1964), and this notion is consistent with
the concepts described for dengue viruses based on the wide antibody
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cross-reactivity among flaviviruses with respect to the E protein. Neu-
tralizing homologous or cross-reactive antiflavivirus antibodies can en-
hance neurovirulence and mortality associated with YFV and JEV
infection (Gould and Buckley, 1989; Gould et al., 1987; Lobigs et al.,
2003b). However, in some cases, the pathogenesis was associated with
complement-mediated cytolysis and not with enhancement of infection
in vivo (Gould et al., 1987). The strongest data in support of ADE in
dengue infections are epidemiological in nature. In this regard, there
is not abundant evidence to support a phenomenon of enhancement
of JEV or other encephalitic viruses by preexisting cross-reactive anti-
bodies in natural infections. There is evidence of cross-protection in ex-
perimental models, particularly among JEV serogroup members, and
for amelioration of JEV encephalitis by prior immunity to related vir-
uses, including dengue (Kurane, 2002; Solomon and Vaughn, 2002).
Experimentally, the protective effect is presumably antibody mediated
and is most apparent following infection with live virus or transfer of
serum from animals infected with virus (Broom et al., 2000; Tesh
et al., 2002). Antibody reponses elicited by inactivated virus do not ex-
hibit much cross-protection in animals and may lead to enhanced in-
fections (Broom et al., 2000; Lobigs et al., 2003b). Consistent with
these observations, recipients of inactivated JEV vaccine or live-
attenuated dengue vaccine did not generate neutralizing activity in
sera against WNV (Kanesa-Thasan et al., 2002). Severe forms of TBEV
encephalitis have been observed after passive immunization with hy-
perimmune globulin (Waldvogel et al., 1996), but it is not clear if this
represents an enhancement phenomenon as opposed to either failure
of antibody to penetrate the CNS or suppression of peripheral or
CNS immune responses by high-titer immunoglobulin. The entire
issue is somewhat limited by the fact that the encephalitic viruses
may not necessarily target cells with abundance of Fc receptors, such
as monocyte–macrophages, which are generally considered more im-
portant for the pathogenesis of dengue viruses.
VI. CELLULAR TROPISM OF ENCEPHALITIC FLAVIVIRUSES

In cell culture, flaviviruses readily infect a variety of cell types,
including epithelial, endothelial, and fibroblasts (Avirutnan et al.,
1998; Bielefeldt-Ohmann, 1998; Diamond et al., 2000b; Kurane
et al., 1992), but the relationship of these findings to in vivo replication
is uncertain. After peripheral inoculation, flaviviruses probably do not
replicate extensively in the skin, but are spread from local lymph
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nodes by immature dendritic or Langerhans cells, which are permis-
sive for infection (Byrne et al., 2001; Johnston et al., 1996, 2000;
Libraty et al., 2001; McMinn et al., 1996; Wu et al., 2000). Within
1 day of infection, epidermal Langerhans cells that express viral anti-
gens migrate from the skin to the draining lymph node (Byrne et al.,
2001; Wu et al., 2000) while expressing maturation markers such as
B7-1, B7-2, class II MHC molecules, CD11b, and CD83 (Ho et al.,
2001). These cells produce tumor necrosis factor (TNF)-� and IFN-�
(Ho et al., 2001; Libraty et al., 2001) and become more resistant to fla-
vivirus infection (Wu et al., 2000). Thus infected dendritic cells prob-
ably serve to promote antigen presentation in the lymph node and
also participate in the spread of infection to lymphoid compartments.
The consequences of DC infection, whether apoptosis (as for alpha-
viruses) or persistent infection, as in the case of Kunjin virus replicons
(Varnavski and Khromykh, 1999), and their effects on subsequent
shaping of the immune response remain important areas for further
investigation. For instance, data from other viral models indicate that
there is a quantitative requirement for activated dendritic cells in
order to induce T-cell responses (Ludewig et al., 1998). Survival versus
death of these cells as a result of virus infection may have an important
impact on this requirement. After replication in lymphoid tissue, en-
cephalitic viruses are believed to exit via efferent lymphatics (Malkova
and Frankova, 1959) and gain access to the circulation, whereby
systemic infection is established.

Although a tropism of encephalitic viruses for lymphoid tissues has
been observed, the identities of the cell types in other compartments
that support replication to the levels needed to generate a viremia suf-
ficient to cause neuroinvasion have not been determined definitively.
Replication in various peripheral tissues occurs, but vascular endothe-
lial cells have not necessarily been implicated as important sites of rep-
lication (Albrecht, 1968 and references therein). However, it should be
noted that dengue, JEV, and probably other flaviviruses can enter and,
in some cases, establish infection in endothelial cells (Dropulic and
Masters, 1990; Liou and Hsu, 1998) and modulate their activation
state and cytokine production (Anderson et al., 1997; Avirutnan et al.,
1998; Bosch et al., 2002; Huang et al., 2000). In vitro studies with endo-
thelial cells are complicated by the fact that variable responses can be
observed depending on the cell types and assay systems; however,
given the potential role of these cells in immune activation, further
studies on the effects of flavivirus infection on cytokine and chemokine
production by these cells are needed.
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In the CNS, neurons are the primary targets for encephalitic
flaviviruses (Eldadah et al., 1967b; Hase et al., 1987; Iwasaki et al.,
1986; Kimura-Kuroda et al., 1992; Wang et al., 1997, 1998; Weiner
et al., 1970; Xiao et al., 2001). Although viral replication and antigen
production have also been observed in cultured oligodendrocytes
(Jordan et al., 2000) and astrocytes (Chen et al., 2000; Liu et al.,
1988; Suri and Banerjee, 1995), the significance of these reports is dif-
ficult to judge, as there is scant evidence for infection of glial cells
in vivo. Neurotropism and neurovirulence are governed to a large
extent by determinants in the viral E protein, as indicated by an abun-
dance of genetic data indicating that mutations in this protein modu-
late these phenotypes (McMinn, 1997; Ni and Barrett, 1998; Ni et al.,
2000), presumably through their effects on receptor targeting and
postreceptor events involved in virus entry. In the absence of an ex-
perimental system to manipulate the virus receptor on neurons, one
cannot conclude whether high neurotropism of these viruses is depend-
ent solely on the binding of the E protein. Comparison of sequence data
from virulent and attenuated strains of encephalitic viruses also sug-
gests that the nonstructural region and 30 UTRs contain determinants
that influence pathogenesis. It is important in these types of studies to
differentiate effects of genetic mutations on overall replication fitness
of the virus versus specific effects in terms of interactions of viral pro-
teins and RNA structures with host factors that affect pathogenesis
uniquely. Thus the molecular basis for neurotropism is not under-
stood adequately, and further studies using genetic clones of well-
characterized viruses in animal models should help address this issue.
Furthermore, the use of primate models to investigate the issue is
needed greatly, as the observations in rodent models may not have
direct correlates to human infections.
VII. IMMUNE RESPONSES TO FLAVIVIRUSES AND THEIR ROLE IN PATHOGENESIS

Susceptibility to flavivirus encephalitis implies a failure at some
stage of the immune response that theoretically may be defined in
either qualitative or quantitative terms. There is substantial clinical
and experimental evidence for a correlation between protection against
encephalitic disease and the presence of virus-specific antibodies, but
the molecular and cellular basis for the development of this response
has not been defined thoroughly. In studies that have shown protection
by antibodies, the roles of other immune system components in
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the process have not often been assessed. Furthermore, there is
increasing evidence that flaviviruses have evolved mechanisms to ma-
nipulate the effector functions of both innate and adaptive immune
responses. The magnitude and importance of these responses probably
vary from one experimental model to another and account for differ-
ences observed in studies that have examined the immune system in
the context of a either a primary or a memory response.
A. Innate Immunity

1. Interferons

In vitro and in vivo studies have demonstrated that interferon-
dependent responses are relevant to protection against flavivirus
infections. Dendritic cells in the skin may be the first cells to produce
type I interferons (IFN-� or -�) in response to flavivirus infection and
initiate this antiviral response (Libraty et al., 2001). These interferons
inhibit flavivirus infection by preventing translation and replication
of infectious viral RNA at least partially through an RNase L-, Mx1-,
and Protein Kinase R (PKR)-independent mechanism (Anderson and
Rahal, 2002; Diamond and Harris, 2001; Diamond et al., 2000a). These
studies have been supported by experiments in immunodeficient and
therapeutic mouse models of disease. Pretreatment of mice with IFN-
� or its inducers prevents or ameliorates flavivirus infections (Brooks
and Phillpotts, 1999; Charlier et al., 2002; Harrington et al., 1977;
Leyssen et al., 2003b; Lucas et al., 2003), and mice that are deficient
in type I IFNs or their receptor have increased susceptibility to flavi-
viruses (Johnson and Roehrig, 1999; Lobigs et al., 2003a). The role of
type II IFN (IFN-�) in protection versus immunopathogenesis of flavi-
virus encephalitis is less clear, as this cytokine has a multitude of
effects on the host response to these viruses. In part, this includes in-
duction of proinflammatory and antiviral molecules, including nitric
oxide (Lin et al., 1997), and enhancement of the phagocytic activity of
monocytes/macrophages through increased Fc receptor expression
(Rothman and Ennis, 1999). Data from various models support the im-
portance of IFN-� production in the context of a TH1 virus-specific
immune response for the control of infection with encephalitic viruses
(Johnson and Roehrig, 1999; Liu and Chambers, 2001; Lobigs et al.,
2003a). Distinctions should be made, however, concerning the effects
of IFN-� in the periphery and in the context of the CNS immune
response (see Section X).
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Flaviviruses appear to be capable of attenuating some of the IFN-
dependent antiviral effector mechanisms. Treatment of cells or
animals with IFN-� as few as 4 h after infection with dengue or SLE
viruses resulted in almost a complete loss of antiviral activity (Brooks
and Phillpotts, 1999; Diamond et al., 2000a). Similarly, IFN-� treat-
ment of patients with documented JEV encephalitis had no significant
effect on outcome (Solomon et al., 2003), despite anecdotal reports of its
benefit (Harinasuta et al., 1985). The mechanisms by which the anti-
viral effect is avoided remain uncharacterized, but data suggest that
it may act at a very early step in infection. Future studies should also
help determine if the role of type I IFNs in these infections lies only in
innate intracellular effector defenses or whether there are effects on
the quality and magnitude of the subsequent cell-mediated immune
response through their immunoregulatory effects.

2. Macrophages

Activation of macrophages and modulation of their effector functions
are integral parts of flavivirus pathogenesis (Rothman and Ennis,
1999; Spain-Santana et al., 2001). In addition to their role in nonspe-
cific defense, macrophages are targets of infection by some flaviviruses
and have the potential to contribute to pathogenesis through antibody-
dependent enhancement of infection mediated by Fc and complement
receptors (Cardosa et al., 1986; Gollins and Porterfield, 1984; Hawkes,
1964; Peiris et al., 1981). The preponderance of data supports the pro-
tective role of macrophages in control of infection by means of cytokine
production and antigen presentation to B and T cells (Kulkarni et al.,
1991a; Marianneau et al., 1999). Classic studies have shown that abro-
gation of phagocytic activity of macrophages results in higher viremia,
neuroinvasion, and more severe encephalitis (Ben-Nathan et al., 1996a;
Khozinsky et al., 1985; Monath, 1971; Zisman et al., 1971). Some of the
protective effect provided appears to be mediated by the stimulation
of inducible nitric oxide synthetase (NOS-2) to produce nitric oxide
(NO) and other reactive oxygen intermediates such as peroxynitrites
(Saxena et al., 2000). Pretreatment of macrophages with agents that
induce NO synthesis have been shown to inhibit JEV infection in vitro
(Lin et al., 1997). Moreover, treatment of mice with a NOS-2 inhibitor
increased mortality after JEV infection (Lin et al., 1997). However,
other studies suggest that the inflammatory actions of NO and other
reactive oxygen intermediates may, in some cases, contribute to flavi-
virus pathogenesis. The in vivo administration of a competitive inhibi-
tor of NOS-2 improved survival in mice infected with TBEV (Kreil and
Eibl, 1995, 1996). Activation of macrophages in response to flavivirus
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infection promotes not only production of NO, but also release of
TNF-�, IL-1�, IL-8, and other mediators of acute inflammation that
may contribute to tissue damage where macrophages accumulate
(Atrasheuskaya et al., 2003; Bosch et al., 2002; Raghupathy et al.,
1998; Rothman and Ennis, 1999). These various studies indicate that
the behavior of macrophages is fundamental to the pathogenesis of fla-
vivirus disease, but the contribution to virus clearance versus deleteri-
ous effects driven by IFN-� and other proinflammatory stimuli
depends on regulation of their activity, and the properties of this
innate defense may therefore vary from one context to another.

3. Natural Killer Cells

Natural killer (NK) lymphocytes lyse infected cells by releasing cyto-
toxic granules that contain perforin and granzymes or by binding to
apoptosis-inducing receptors on target cells (Orange et al., 2002). NK
cell activation is finely regulated through a balance of activating
(Ly49D, Ly49H, and NKG2D) and inhibitory receptors [killer cell im-
munoglobulin-like receptors (KIR), immunoglobulin-like inhibitory re-
ceptors (ILT), and CD94-NKG2A] (Smith, et al., 2001). A decrease in
expression of class I MHC molecules on a cell may prompt NK cell ac-
tivation by attenuating the inhibitory signals. Thus NK cell target
recognition occurs after ligation of activating receptors and repression
of inhibitory receptors on the cell surface. NK responses have been
analyzed in various experimental models of flavivirus infection, but
as noted (Hill et al., 1993), the characterization of the responding cells
has been limited. Studies of NK cell activity during WNV infection
have revealed blunted cytolytic activity against virus-infected cells, as-
sociated with upregulation of MHC antigen and ICAM-1 expression on
the target cells by interferon-independent mechanisms (Müllbacher
et al, 1989). However, NK cell-dependent lysis of dengue virus-infected
target cells by both natural killer and antibody-dependent cell-
mediated cytotoxicity has been observed (Kurane et al., 1984). Infec-
tion of mice with Langat, WNV, and TBEV transiently activated and
then suppressed NK cell activity (Vargin and Semenov, 1986). Despite
these conflicting observations, the bulk of evidence currently suggests
that flaviviruses have evolved a mechanism to evade NK cell responses
through an augmentation of cell surface class I MHC expression (King
and Kesson, 1988; King et al., 1989; Liu et al., 1988, 1989b), driven by a
TAP-dependent process (Momburg et al., 2001; Müllbacher and Lobigs,
1995; Lobigs et al., 1999) and NF-�B-dependent transcriptional acti-
vation of MHC class I genes (Kesson and King, 2001). Thus, flavi-
viruses may overcome susceptibility to NK cell-mediated lysis at the
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expense of increased class I MHC expression and later recognition by
virus-specific cytotoxic lymphocytes (CTLs). Consistent with this hy-
pothesis, splenocytes from WNV-immunized mice had poor NK cell
lytic activity (Momburg et al., 2001), and mice that are genetically de-
ficient in NK cells demonstrate no increased morbidity or mortality
compared to wild-type controls in response to WNV infection (M. Engle,
W. Yokoyama, and M. Diamond, unpublished results). Some residual
NK cell function may still be important during flavivirus pathogenesis,
as suggested by studies with perforin and Fas knockout mice, which
are partially protected from encephalitic disease, through events that
operate at the level of neuroinvasion. This may involve the cytotoxic
activities of NK cells and/or CTLs (Lincon Luna et al., 2002). In
addition, the lack of a substantial effect of IFN-� in the therapy of fla-
vivirus encephalitis is also consistent with inhibition of the NK re-
sponse, as type I interferons are normally potent activators of these
cells.

4. Natural Antibody

Natural antibodies are primarily of the IgM class, although activity
of IgG has also been described. They are secreted constitutively by
CD5þ B-1 cells without specific stimulation, have widely variable bind-
ing avidities, and represent an initial nonspecific defense against
pathogens (Baumgarth et al., 2000; Casali and Notkins, 1989; Ochsen-
bein et al., 1999a) through direct neutralization of some bacteria and
viruses in the circulation (Gobet et al., 1988; Ochsenbein et al.,
1999a), enhancement of phagocytosis (Navin et al., 1989), and comple-
ment activation (Baumgarth et al., 2000). Although the role of natural
antibody in flavivirus infection remains unexplored, mice that genetic-
ally lack secreted IgM, (sIgM �/�), but in which cell surface IgM and
IgG responses are intact have increased mortality in certain viral in-
fections, involving a defect in the antiviral IgG responses (Baumgarth
et al., 2000; Boes et al., 1998). Such mice are also very susceptible to in-
fection with WNV (Fig. 1; M. Engle and M. Diamond, unpublished
data). This observation, along with other data, suggests an important
role for natural antibody and complement during the early antiviral
defense against flaviviruses, although a virus-specific IgM response
is likely to be more important (see Section VII,A,5).

5. Complement

The complement system is an important innate defense for limiting
infection by fungal, bacterial, and viral pathogens. Complement in-
hibits viruses by several mechanisms (Volanakis, 2002), including lysis
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FIG 1. Soluble IgM-deficient mice are highly sensitive to peripheral infection with
WNV. Mice were infected by subcutaneous inoculation of the footpad with 100 plaque-
forming units of WNV NY 99 and monitored for mortality from CNS disease.
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of enveloped viral particles and virus-infected cells by the C5–C9 mem-
brane attack complex; recruitment and activation of monocytes and
granulocytes by C3a and C5a; clearance of virus from circulation after
opsonization by proteolytic fragments of C3, C3b, and C3bi, followed by
uptake into cells that express complement receptor; and C3-facilitated
uptake of antigen and presentation by macrophages and dendritic cells
(Ochsenbein and Zinkernagel, 2000) during priming of T and B
lymphocytes (Da Costa et al., 1999; Kopf et al., 2002; Ochsenbein
et al., 1999b). Preliminary studies indicate that complement plays an
essential role in limiting WNV infection. Mice that are genetically defi-
cient in C3 uniformly succumb to infection even at low inoculating doses
(Fig. 2; E. Mehlhop, M. Engle, and M. Diamond, unpublished data).
Additional studies must be performed to determine which individual
mechanisms are most critical for this complement-mediated control. A
deficiency of C3 could exacerbate WNV infection because of depressed
C5–C9 lytic or C3 opsonic activity that results in a failure to clear virus
from the circulation. Alternatively, C3 may play important roles in
linking the innate and adaptive immune responses (Barrington et al.,
2001; Carroll, 1998; Ochsenbein and Zinkernagel, 2000) against WNV.
C3 is required for normal IgG production and T-cell priming against in-
fluenza and herpes viruses (Da Costa et al., 1999; Fischer et al., 1996;
Kopf et al., 2002; Ochsenbein et al., 1999), and a deficiency in C3 de-
creases opsonization and viral antigen presentation, leading to deficits
in the adaptive B-and T-cell responses (Ochsenbein and Zinkernagel,
2000). Although the lytic and proinflammatory activity of complement



FIG 2. C3-deficient mice are highly sensitive to peripheral infection with WNV. Mice
were infected as described in Fig. 1 and monitored for mortality from CNS disease.
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may contribute to the defense against WNV, preliminary data indicate
that a deficiency in either C3 compromises the antiviral B-cell immune
response, as mice that lack C3 have markedly depressed titers of WNV-
specific IgG (E. Mehlhop, M. Engle, and M. Diamond, unpublished
data).
B. Adaptive Immunity

The roles of both humoral and cellular immunity during the patho-
genesis of flavivirus disease have been studied in various models
involving active and passive immunization in normal and immunodefi-
cient animals, and understanding of the immunologic basis for protec-
tion against acute encephalitis is beginning to advance. B cells, CD4þ

cells, and CD8þ T cells have all been implicated in contributing to
protection, although as stated earlier, their relative importance seems
to vary depending on the context of the experimental model under
investigation.

1. B Cells and Antibody

Antibody responses to the E and NS1 proteins involve many epi-
topes, and both neutralizing and nonneutralizing antibodies (including
those against NS1) can prevent fatal encephalitis, as demonstrated
in many passive transfer and active immunization experiments in ex-
perimental animal models (Brandriss et al., 1986; Diamond et al.,
2003; Gould et al., 1987; Henchal et al., 1988; Kimura-Kuroda and
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Yasui, 1988; Putnak and Schlesinger, 1990; Schlesinger et al., 1985,
1987; Zhang et al., 1989). A protective effect can occur even after estab-
lishment of infection in the CNS. Mechanisms of antibody-mediated
protection during flavivirus infection include direct neutralization of
receptor binding (Crill and Roehrig, 2001), blocking of virus uncoating
(Gollins and Porterfield, 1984), and Fc receptor-dependent virus clear-
ance via the reticuloendothelial system. Most neutralizing antibodies
recognize the structural E protein, and antibody epitopes appear to
be broadly distributed over its surface (Heinz, 1986; Roehrig et al.,
1989); however, these do not all represent potent sites for neutraliza-
tion. A subset of neutralization epitopes is found on the prM protein
(Colombage et al., 1998; Falconar, 1999; Pincus et al., 1992). The
presence of nonneutralizing, yet protective antibodies against NS1 is
also well documented (Cane and Gould, 1988; Després et al., 1991;
Falgout et al., 1990; Henchal et al., 1988; Putnak and Schlesinger,
1990; Schlesinger et al., 1986, 1987). Antibodies to NS1 are proposed
to mediate the lysis of virus-infected cells, which express this protein
on their surface, by complement-mediated lysis and/or antibody-
dependent cellular cytotoxicity (Hill et al., 1993; Kurane et al., 1984;
Schlesinger et al., 1990). These humoral responses are believed to be
important components of the protective immune response to flavivirus
infection, but antibodies to NS1 are not often measured in experimental
models of infection or immunization and challenge.

Although the neutralizing antibody responses are considered corre-
lates of protection (Markoff, 2000), this process is probably also a func-
tion of additional innate and adaptive immune effector systems whose
roles in the control of infection are less easily demonstrated. In this
regard, challenge in the context of passively administered virus-
specific antibodies is not necessarily associated with sterilizing im-
munity, indicating that antiviral defenses other than antibodies are
involved in protection (Kreil et al., 1998a, 1998b). Definitive experi-
ments to determine the extent of immune activation in this setting
are likely to expand our understanding of the correlates of protection
and the immunological basis for a successful antiviral response.

Mice that lack B cells are very vulnerable to flavivirus infections and
encephalitis (Diamond et al., 2003; Liu and Chambers, 2001), purport-
edly as a consequence of lacking antibodies. However, these models
must be explored further to determine whether T-cell responses are
otherwise fully activated and effective, as it is possible that B cells
could influence CD4þ and CD8þ T-cell responses through antigen pre-
sentation or other immunoregulatory events, as has been observed in
other neurotropic viral infections (Bergmann et al., 2001).
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Factors that drive B-cell activation and maturation during flavivirus
infections are not well understood. Multiple T helper epitopes have
been identified in the E protein of JEV and MVE viruses, some of
which are dominant, broadly reactive among JE serogroup viruses,
and prime for the neutralizing antibody (Kutubuddin et al., 1991;
Mathews et al., 1991, 1992; Roehrig et al., 1992). Immunization with
plasmid DNA encoding the E region is more effective than viral E anti-
gen itself, presumably due to the induction of T-cell responses to the E
protein (Chen et al., 1999). Immunization of HIV-infected individuals
with inactivated flavivirus vaccines has suggested that CD4þ T cells
may not be critical for the induction of protective antibodies (Panasiuk
et al., 2003). However, others have observed that antibody responses
to inactivated or live viral vaccines are weak in these subjects
(Rojanasuphot et al., 1998; Sibailly et al., 1997). Immunization of
CD4 knockout or class II knockout mice with YFV markedly dimin-
ished or abrogated the neutralizing antibody response, respectively
(Chambers and Liang, unpublished data), suggesting that there is de-
pendence on functional CD4þ T cells to generate long-lasting B-cell
memory against flaviviruses. Differences in immunization schedules
and numbers of residual CD4þ lineage T cells in these various reports
may explain the discrepancies. Studies on the role of dendritic cells in
early B-cell activation and the nature of the toll-like receptor signals
induced in response to viral antigens on these cells may provide new
insights into the determinants that establish and drive the memory
response to flavivirus antigens.

An IgM response to flaviviruses is a feature of most clinical and ex-
perimental infections (Martin et al., 2002) and has been reported to be
a correlate of protection during clinical JEVencephalitis in some studies
(Burke et al., 1985a, 1985b; Ravi et al., 1993). Flavivirus infections typ-
ically elicit IgM responses that can often persist for prolonged periods
(Edelman et al., 1976; Monath, 1971; Roehrig et al., 2003). However, ex-
perimentally, the initial IgM response to encephalitic viruses may pos-
sess variable neutralization activity and protective capacity (Diamond
et al., 2003; Hofmann et al., 1978; Ishii et al., 1968); in some studies,
the complement-fixing activity was limited compared to that provided
by the ensuing IgG response (Ishii et al., 1968; Lee and Scherer, 1961).
This contrasts with what has been observed with YF 17D vaccination
(Monath, 1971) and may reflect differences in early B-cell activation
among these infections or differences between humans and mice with
respect to the process. However, the role of a vigorous IgM response
may be in providing temporary neutralizing activity, while more
importantly activating complement-dependent pathways involved in
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programming virus-specific B- and T-cell responses. Studies with the
WNV model (see later) suggest a critical early function of both IgM
and complement in the control of extraneural infection. The neutraliz-
ing activity of sera rises in conjunction with the appearance of IgG,
and this response includes a variety of biological activities, including
hemagglutination inhibition, complement fixation, and virus neutral-
ization. The memory or ‘‘antigenic sin’’ response elicited by cross-
reactive antigens involves all of these responses, but is weakest for the
neutralization response (Innis, 1997), suggesting that there is some
hierarchical pattern of B-cell epitopes or some selectivity in recognizing
the most cross-reactive antigens. This phenomenon is probably evolu-
tionarily adaptive for recurrent infections with heterologous flavi-
viruses, but is capitalized upon by dengue viruses during the
pathogenesis of dengue hemorrhagic fever and shock syndrome. In
any case, the anamnestic antibody response has been demonstrated to
be critical to a defense against encephalitic viruses in the context of im-
munization and challenge models, which are surrogates for the efficacy
of vaccines (Konishi et al., 1999; Lee and Sherer, 1961; Pan et al., 2001).
It nevertheless remains unclear at the present time the extent to which
antibody responses alone contribute to the control of acute infections.

2. T Cells

T-cell responses to flavivirus proteins have been best studied for
members of the DEN and JEV serogroups. Both CD4þ and CD8þ T
lymphocyte responses involve broad flavivirus cross-reactivity, al-
though this varies significantly among different MHC haplotypes (Hill
et al., 1992; Kulkarni et al., 1992; Kurane et al., 1991; Uren et al., 1987;
reviewed in Hill et al., 1993). Multiple epitopes for T-cell responses have
been identified on both structural and nonstructural proteins; however,
genetic factors restrict the number of targets and fine specificities differ
considerably. Determinants for class I responses are more frequent
within the viral nonstructural region, particularly the NS3 protein,
which contains dominant epitopes in both humans and mice. In con-
trast, viral structural protein antigens elicit class II responses more
consistently. The role of virus-specific CD4þ Tcells in flavivirus enceph-
alitis is not well understood, although experimental models indicate a
requirement for such cells in protection against acute disease (see
Section X). Some of the cytotoxic T-cell response to dengue and JE
viruses is contained in the CD4þ compartment and is probably medi-
ated by Fas/FasL interactions (Aihara et al., 2000; Gagnon et al., 1999),
which has implications for possible immunopathogenic responses both
in the periphery and in the CNS.
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Flavivirus-specific CD8þ T cells have multiple effector functions, in-
cluding cytotoxic activity and production of IFN-� (Douglas et al., 1994;
Kesson et al., 1987; Kulkarni et al., 1991b; Kurane et al., 1989, 1991,
1995; Liu et al., 1989a; Murali-Krishna et al., 1996; Takada et al.,
2000), suggesting that polarization of the immune response toward a
TH1 phenotype is involved in control of these viruses. Although the im-
portance of type I interferons in protection against these viruses would
suggest its involvement in promoting this T-cell response, as has been
described for other viruses (Cousens et al., 1999), the role of IL-12 in
driving this process has received only limited study (Chen et al.,
2001; Phillpotts et al., 2003), and its importance may vary from one
context to another (Dalod et al., 2002). Cellular immunity clearly con-
tributes to the control of virus infection in experimental animal
models, but this varies depending on the context examined and with
respect to the virulence of the challenge virus. T-cell-deficient mice fail
to generate protective immunity after a sublethal challenge with YFV
strains (Bradish et al., 1980). Moreover, animals that are treated with
drugs that impair T-cell function develop a rapidly progressive flavi-
virus encephalitis (Camenga et al., 1974; Cole and Nathanson, 1968;
Nathanson and Cole, 1970). The adoptive transfer of immune spleen
cells can protect against encephalitis, but the lymphocyte subpopula-
tions that mediate this protection have not been very well character-
ized in classic studies (Bradish et al., 1980; Camenga et al., 1974;
Jacoby et al., 1980).

More recent studies have, to some degree, clarified the role of CD8þ

T cells in these infections. Quantitation of the CD8þ T-cell response to
YFV in experimental mice (van der Most et al., 2002) reveals activation
by immunodominant epitopes and is supported by the observation that
CD8þ knockout mice exhibit a defect in the clearance of infectious YFV
from the CNS (Liu and Chambers, 2001; T. J. Chambers, unpublished
data) and also have increased mortality after WNV infection
(B. Shrestha and M. Diamond, manuscript in preparation). Human re-
cipients of YFV 17D vaccine exhibit an increase in CD8þ T cells as well,
and epitopes have been mapped to multiple proteins (Co et al., 2002).
While data from most of these models would indicate that CTL re-
sponses are primarily protective in vivo, their potential for immuno-
pathogenic effects requires further investigation. Some studies with
MVE virus (Licon Luna et al., 2002) and dengue virus (Rothman and
Ennis, 1999) suggest that the cytotoxicity of CTL may contribute to
the disease pathogenesis. Studies with knockout mice continue to pro-
vide novel information on the role of T cells in flavivirus pathogenesis
and immunity. However, an important limitation of these experiments
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is that the effect of gene knockout on immunologic development and
function is not known. Better attempts to assess the entire range of
properties of the immune response in these types of experimental
models are needed, as gene knockouts could have multiple effects
beyond simply loss of the targeted function.

Human studies on immune responses to JEV or JEV structural
protein antigens encoded in recombinant vaccinia virus revealed
proliferation and induction of cytolytic activity in the CD8þ T-cell com-
partment (Konishi et al., 1995, 1998a), similar to what has been ob-
served in mice (Konishi et al., 1997, 1998b). The significance of these
responses is uncertain, as another study found no correlation between
T-cell proliferation and either the antibody response or the clinical out-
come (Desai et al., 1995a). Inactivated JEV vaccine induced CD4þ,
class II-restricted T cells with cytolytic activity (Aihara et al., 2000),
suggesting that it is not capable of inducing high levels of CD8þ CTLs;
in mice, this vaccine elicts a TH2 immune response (Ramakrishna et al.,
2003). As noted earlier, in the context of clinical infections with
flaviviruses, the integrity of cellular immune function appears to
be important (Iwamoto et al., 2003; Neogi et al., 1998; Okhuysen
et al., 1993; Szilak and Minamoto, 2000). However, better understand-
ing of the effector properties of T cells and their role in protection in
humans and in experimental animals is needed.
VIII. NEUROINVASION

Neuroinvasiveness is a critical step in the pathogenesis of flavivirus
encephalitis and is affected by both viral and host factors. In terms of
viral factors, characterization of various virulent and attenuated
strains of JEV, TBEV, YFV, and WNV has revealed that viral determi-
nants of neuroinvasiveness map principally the E protein (reviewed in
McMinn, 1997). The mechanisms associated with these genetic deter-
minants have not been completely determined, but are believed to
relate to increased viral infectivity toward important target cells
through enhanced binding and penetration. Entry into the CNS has
been proposed to involve a number of potential processes, none of
which has been definitively demonstrated in vivo. The proposed path-
ways include (1) transport across the cerebrovascular endothelium, or
infection of these and other cells constituting the blood–brain barrier
(Dropulic and Masters, 1990; Liou and Hsu, 1998); (2) access to the
CNS after loss of blood–brain barrier integrity (Kobiler et al., 1989;
Lustig et al., 1992); and (3) entry through the olfactory epithelium
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(McMinn et al., 1996; Monath et al., 1983). There are regions of the
CNS where lack of a blood–brain barrier may constitute sites of vulner-
ability to infection in the presence of viremia (i.e., the choroid plexus
and the circumventricular organs). Some of these may be supported
by nonspecific defenses that are sufficient to withstand a low level of
viremia, as the choroid is a site of IFN-� expression and OAS induction
(Asada-Kubota et al., 1997; Khan et al., 1989). Entry of virus into the
CNS by passage across the small cerebrovascular vessels is consistent
with the accumulation of perivascular infiltrates of inflammatory cells,
which is a hallmark of flavivirus encephalitis (Johnson et al., 1985).
However, access through the olfactory bulb is believed to occur either
after infection by the aerosol route or intranasally (Hambleton et al.,
1983; Myint et al., 1999; Nir et al., 1965; Raengsakulrach et al., 1999)
or in the context of hematogenous dissemination of virus (McMinn,
1996; Monath, 1986; Monath et al., 1983). The olfactory bulb is espe-
cially vulnerable to infection because of the exposure of its nerve
terminals within the olfactory mucosa, and this route is exploited by
other neurotropic viruses (Fazakerley, 2002).

Disruption of the blood–brain barrier facilitates the entry of nonin-
vasive flaviviruses into the CNS (Lustig et al., 1992), suggesting that
neuroinvasion may be influenced by host factors that alter the permea-
bility of this barrier as a result of systemic infection (Chaturvedi et al.,
1991; Kaiser and Holzmann, 2000; Mathur and Chaturvedi, 1992), in-
cluding IFN-�, TNF-�, and possibly effector functions of CTLs and
NK cells (Lincon Luna et al., 2002). Neuroinvasion is also influenced
by physical stress and other agents, including inhalational anesthetics
(Ben-Nathan et al., 1989, 1992, 1996b, 2000). Immunosuppression by
corticosterone and other endogenous immunomodulators is an impor-
tant factor, as involution of lymphoid tissue has been observed and
probably facilitates the generation of viremia by attenuated viral
strains. Perturbation of the blood–brain barrier may also be involved
in this process (Ben-Nathan et al., 2000). Early viremia and sustained
viremia are correlated with neuroinvasion in animal models, consis-
tent with the belief that replication to high titers in peripheral tissues
is an important property of invasive strains, at least in immunologi-
cally normal hosts (Albrecht, 1968; Huang and Wong, 1963; Monath,
1986). However, the timing of peak viremia is probably critical, as
levels sufficient to cause neuroinvasion are dissipated concurrent
with the appearance of adaptive immune responses in the periphery
(Diamond et al., 2003; Halevy et al., 1994). This is also evident from
studies of immunodeficient mice lacking T- and B-cell responses, which
exhibit neuroinvasion in the presence of viremia (Chambers and
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Nickells, 2001; Charlier et al., 2002; Diamond et al., 2003; Johnson and
Roehrig, 1999; Halevy et al., 1994; Lin et al., 1998). At present it
appears that the mechanisms responsible for entry into the CNS may
vary, depending on a specific virus and the level of host immunocompe-
tence. Continued research with the use of knockout strains harboring
single and multiple defects in these redundant immune system
defenses will improve the understanding of how this process occurs.

The mechanisms of flavivirus spread within the CNS are not estab-
lished. Studies with alphaviruses in the mouse model suggest that this
occurs in a circuit-specific manner among olfactory neurons that are
undergoing developmental synaptogenesis (Oliver and Fazakerley,
1998). Spread of MVE virus in immature mice exhibited a pattern con-
sistent with these observations, but occurred throughout the CNS
(McMinn et al., 1996). An unusual accumulation of WNV particles in
myelin lamellae was observed in spinal cord cultures (Shahar et al.,
1990), suggesting the possibility of virus transport by mechanisms
not only involving the axoplasm.
IX. NEUROPATHOLOGY

Flaviviruses, particularly members of the JEV and TBEV sero-
groups, cause viral encephalitis in many vertebrate species, a dead-
end transmission pathway believed to reflect an evolutionarily
conserved capacity of these viruses to grow in the CNS of arthropods
and vertebrates (Monath, 1986). In contrast to the noncytopathic
nature of infection in arthropods, a spectrum of acute and chronic
CNS pathologic changes occur in vertebrates and have been docu-
mented extensively (Chu et al., 1999; Dominguez and Baruch, 1963;
Hase et al., 1993; Levenbook et al., 1987; Manuelidis, 1956; Nathanson
et al., 1966; Pogodina et al., 1983; Reyes et al., 1981; Vince and Grevic,
1969; Zlotnik et al., 1971, 1976). Virus can be demonstrated within
neurons throughout the brain and spinal cord, but infection of other
cell types has been less well characterized. In humans, neuroinvasive
flaviviruses cause an acute, often fatal encephalomyelitis (Monath,
1986) associated with characteristic inflammatory changes and often
targeted to specific regions (Johnson et al., 1985; Miyake, 1964; Suzuki
and Phillips, 1966; Zimmerman, 1946). The pathological changes have
been characterized in many experimental animal models, as well as in
fatal human cases. These viruses can evoke inflammatory infiltrates
extending from the meningeal layers into the brain substance, with
features typical of other viral encephalitides, including leptomeningitis,
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perivascular lymphocytic accumulation, parenchymal infiltrates, and
microglial nodules associated with neuronophagia in regions of viral
infection (Figs. 3, 4, and 5). The neuropathology can, in some cases, in-
clude the destruction of vascular structures with focal hemorrhage,
suggesting a vasculitis. Loss of regional blood flow, as well as disrup-
tion of the blood–brain barrier, has been described in clinical cases of
TBEV (Gunther et al., 1998; Kaiser, 2002; Kaiser and Holzmann,
2000). The nature and degree of the inflammatory disease depend on
many factors, including the virulence of the virus, the route of infec-
tion, and the age and immunocompetence of the host. Varying levels
of CNS inflammation without frank evidence of neuronal damage have
been described in some models, including human autopsy cases, sug-
gesting that viral infection can induce lethal pathophysiology prior to
or in the absence of recruitment of the peripheral immune response
(reviewed in Monath, 1986). Although cytopathic effects have been ob-
served primarily in virus-infected neurons, other noninfected cells can
also exhibit pathologic changes, presumably through bystander injury
(see later). A number of studies have documented the distribution of
the neuropathology and the clinical manifestations that characterize
flavivirus infection of the CNS. For instance, infection in cortical
FIG 3. Yellow fever virus meningoencephalitis in the rhesus monkey showing
leptomeningeal accumulation of acute inflammatory cells. Courtesy of the United States
Army Medical Research Institute of Infectious Diseases (USAMRIID).



FIG 4. Yellow fever encephalitis in the rhesus monkey showing focus of perivascular
infiltrate with mononuclear cells in the cerebral cortex. Courtesy of USAMRIID.

FIG 5. Yellow fever encephalitis in the rhesus monkey showing microglial nodule with
neuronophagia of a cortical neuron stained for viral antigen. Courtesy of USAMRIID.
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regions typically gives rise to depressed consciouness and seizures, but
the involvement of subcortical regions, including the midbrain and
brainstem, as well as thalamic and basal ganglial involvement, can
give rise to a variety of movement disorders (Asher, 1975; Kalita and
Misra, 2000; Misra and Kalita, 1997a; Murgod et al., 2001; Ogata
et al., 2000; Pradhan et al., 1999). WNV encephalitis in the United
States and JEV encephalitis have both been characterized by a polio-
myelitis-like syndrome, suggesting infection of lower motor neurons
in association with flaccid paralysis (Glass et al., 2002; Leis et al.,
2002; Misra and Kalita, 1997b; Solomon et al., 1998). Lower motor
neuron disease is also typical of TBEV infection. Factors governing
the differences in neuronal susceptibility to flaviviruses are not
known, but may be similar to those that operate in the case of other
neurotropic arboviruses, such as Sindbis, where the neuronal response
to viral injury may be variable (Griffin and Hardwick, 1999). Neuronal
death associated with flavivirus infection has classically been ascribed
to degenerative necrosis. Pathologic changes that accompany this pro-
cess include vacuolization and proliferation of intracellular mem-
branes, which produces a characteristic ultrastructural appearance
(Fig. 6; Murphy et al., 1968). Whether there is a greater propensity
to cause necrosis versus apoptosis requires further study.
FIG 6. Electron micrograph of a mouse CNS neuron infected with SLE virus showing
characteristic cytoplasmic pathology but integrity of the nuclear (N) envelope. Arrow
indicates virions within inner and outer nuclear membranes. From Murphy et al. (1968),
with permission.
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Several flaviviruses have been shown to induce apoptosis, both
in vitro (Isaeva et al., 1998; Liao et al., 1998; Parquet et al., 2001;
Prikhod’ko et al., 2002) and in vivo, in the rodent CNS (Andrews
et al., 1999; Després et al., 1998; Duarte dos Santos et al., 2000; Isaeva
et al., 1998; Xiao et al., 2001; Fig. 7). In this regard, reports describing
primarily degenerative pathology at the light or electronmicroscopic
FIG 7. WNV infection in the Syrian golden hamster. (A) Viral antigen-positive
neurons in the cerebral cortex. (B) TUNEL-positive apoptotic neurons in the cortex.
Courtesy of Dr. Shu-Yan Xiao. From Xiao et al., 2001.
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level, typically involving cytoplasmic changes such as chromatolysis,
swelling, and dissolution of Nissl substance, also mentioned nuclear
pathology, including pyknosis, disruption of the nuclear envelope, and
alterations in chromatin (Dominguez and Baruch, 1963; Manuelidis,
1956; Mathews et al., 2000). These findings are of interest given
reports that neuronotropic viruses such as Sindbis virus may not
induce typical apoptotic morphology in neurons (Griffin and Hardwick,
1999; Havert et al., 2000; Kerr et al., 2002; Sammin et al., 1999) and
that cell death may occur through both apoptotic and necrotic mechan-
isms (Havert et al., 2000; Nargi-Aizenman and Griffin, 2001; Sammin
et al., 1999), depending on the integrity of the apoptotic pathways of a
given population of neurons, their profile of apoptotic modulators, and
the presence of excitotoxic stimuli. The most detailed in vivo character-
ization of neuronal apoptosis by flaviviruses has been reported for
dengue. Neuroadapted dengue virus induces apoptosis in infected
neurons as well as in noninfected cells (Després et al., 1998), suggest-
ing that indirect mechanisms of cellular injury occur in areas of
heavy virus burden. It is important to note that these findings were
demonstrated in very young mice, whose neurons are highly suscep-
tible to apoptotic stimuli, and may not reflect the response of more
mature cells in older mice. However, studies with WNV in the adult
hamster model provide evidence that highly neurovirulent strains
are potent inducers of apoptosis (Xiao et al., 2001; Fig. 7). A relation-
ship between viral virulence and the extent of apoptosis has not been
clearly established for flaviviruses; however, the general capacity of
neuroadapted strains to produce high virus burdens in association
with cytopathology suggests that the situation is likely to resemble
that of alphaviruses and other neuronotropic viruses (Lewis et al.,
1996; Oberhaus et al., 1997; Theerasurakarn and Ubul, 1998). Al-
though the molecular details of this process are not fully known, the
expression of some flavivirus proteins appears to directly induce apop-
totic cell death of neurons, including the WNV capsid protein (Yang
et al., 2002), the Langat virus NS3 protein, which causes apoptosis
through the activation of caspases 3, 8, and 9 (Prikhod’ko et al.,
2002), and the E proteins of neuroadapted dengue-2 virus (Duarte
dos Santos et al., 2000) and JEV, which appear to stimulate an ER
unfolded protein response (Su et al., 2002) and a component of oxida-
tive stress (Raung et al., 2001). However, there are many other poten-
tial mechanisms for provoking apoptosis by neuronotropic RNA
viruses, including signaling through interferon-�-dependent path-
ways, phospholipase A2 activation, activation of NF-�B and p53-
regulated genes (Fazakerley, 2001), and activation of apoptosis during
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viral entry (Jan et al., 2000). Some of these processes may also be
involved in the pathogenesis of encephalitic flaviviruses.

The role of apoptotic regulators bcl-2, bax, bcl-X, and related gene
products in modulating neuronal death has been only partially charac-
terized for flaviviruses. Forced expression of bcl-2-related genes pro-
motes the survival of neuronal cell lines infected with JEV and
dengue virus and facilitates viral persistence, primarily by restricting
virus-induced cytopathic effects and not viral replication (Liao et al.,
1997, 1998). These outcomes vary in neuronal versus nonneuronal cell
lines, and differential effects of bcl-2 and bcl-X appear to operate. Such
findings suggest that the effects of apoptosis modulators on flavi-
viruses are similar to those observed with alphaviruses, where it is
known that the expression of these proteins can vary in their effects
from one cell type to another. Conclusions about the role of these pro-
teins in different in vivo models therefore require careful evaluation
(Griffin and Hardwick, 1999; Levine, 2002). Furthermore, because
neuronotropic viruses can induce both necrosis and apoptosis, neu-
ronal death may require assessment by several criteria. Neuronal
injury as a result of bystander effects may also be a factor during
flavivirus neuropathogenesis given that microglial activation and elab-
oration of inflammatory mediators, including IL-1� and TNF-�, occur
in the CNS during these infections (Andrews et al., 1999; Liu and
Chambers, 2001; Ravi et al., 1997) and may accompany the production
of nitric oxide and peroxynitrite, which can cause neurotoxicity.
Other potential mechanisms include excitatory cell death due to the
activation of NMDA receptors, which has been implicated in the patho-
genesis of Sindbis virus and HIV (Nargi-Aizenman and Griffin, 2001).
Thus, although it is likely that the neurovirulence phenotype of flavi-
viruses is linked to the extent of neuronal cell death caused during the
encephalitis, there appear to be multiple independent mechanisms by
which neuronotropic viruses cause cell death. This process can be
affected by the region of the brain affected, the degree of neuronal ma-
turity, the factors that regulate cell death signaling receptors and their
pathways, and levels of apoptosis modulators and other innate
responses of virus-infected neurons (Fazakerly, 2001; Griffin and
Hardwick, 1999; Levine, 2002; Liang et al., 1998). In some cases,
changes in the expression of neurotrophins may also be involved in
the CNS response to viral injury (Zocher et al., 2000); however, the
relevance of this phenomenon to other types of viral encephalitis has
yet to be widely investigated. The process is also subject to additional
influence by the properties of the immune response recruited into the
CNS, including CD4þ and CD8þ T cells, which may be involved in
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cytotoxicity toward virus-infected and, in the case of CD4þ cells, per-
haps even noninfected cells (Després et al., 1998; Gagnon et al.,
1999), through Fas-dependent mechanisms under certain circum-
stances (Medana et al., 2000). The effects of nonspecific inflammation,
such as release of toxic substances from neutrophils (Andrews et al.,
1999), may also contribute to cellular injury.
X. THE CENTRAL NERVOUS SYSTEM IMMUNE RESPONSE

Flavivirus infections induce a CNS inflammatory response of vari-
able intensity. Data from most experimental models suggest that this
inflammation is a requirement for protection from lethal infection with
neurovirulent strains. The characteristics of the inflammation in ex-
perimental models have been shown to be affected by numerous
factors, which include the endogenous CNS response, as well as the ad-
equacy of the peripheral immune response and its timely recruitment
into the CNS. In some cases of encephalitis, relatively scant inflamma-
tory disease has been noted. This has also been observed experimen-
tally as, for example, with TBEV under conditions where viral
neuroinvasion and CNS involvement progress rapidly (Vince and
Grevic, 1969). Immunosuppression also dramatically reduces the in-
tensity of the CNS inflammation (Hirsch and Murphy, 1967; Leyssen
et al., 2003a). However, acute inflammation may become severe in
response to a heavy antigen load and has been implicated in
immunopathologic reactions in the CNS (reviewed in Monath, 1986).
A. Innate Responses

Viral infections of the CNS commonly result in the induction of
innate responses, which include activation and proliferation of mi-
croglia and activation of astrocytes and cerebrovascular endothelium,
with ensuing production of chemokines and proinflammatory cyto-
kines (Benveniste, 1997). A consequence of this activation is the condi-
tioning of cells in the CNS parenchyma and the blood–brain barrier to
accommodate and modulate the influx of activated lymphocytes from
the periphery by the upregulation of adhesion molecules and class
I and II antigens. Activation of innate responses within the CNS
during flavivirus encephalitis has been suggested by several human
and experimental animal model studies in which the expression of
chemokine and cytokine genes or their proteins has been analyzed.
The production of IL-8 and macrophage inhibitory factor (MIF) has
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been detected in cerebrospinal fluid (CSF) or brain tissue during early
stages of encephalitis with JEV and MVE viruses (Andrews et al.,
1999; Singh et al., 2000; Suzuki et al., 2000), with levels of IL-8 correl-
ating directly with the number of neutrophils in the CSF. TNF-� and
IL-1� are also elicited in response to flavivirus infection of the CNS
(Liu and Chambers, 2001; Ravi et al., 1997; Suzuki et al., 2000), pre-
sumably representing intrinsic responses of microglia and astrocytes
to the acute injury (Benveniste, 1997). Thus the early stage of the en-
cephalitis involves the endogenous expression of mediators that
results in the recruitment of nonspecific acute inflammatory cells with
the potential for the production of neurotoxic substances, such as re-
active oxygen intermediates, and probably facilitates further stimuli
that intensify the inflammation. For instance, IL-1� and TNF-� can
also mediate the release of IL-8 from astrocytes (Aloisi et al., 1992).
The induction of the nonspecific acute inflammation may be a deleteri-
ous process because levels of IL-8 are predictive of fatal disease (Suzuki
et al., 2000) and treatment of infected mice with inhibitors of NOS-2 in
the acute stage of encephalitis lessened mortality in association with re-
duced inflammation (Andrews et al., 1999). Because viral infections of
the CNS induce the expression of chemokines, which have been impli-
cated in inflammatory cell recruitment, (Liu and Lane, 2001; Liu et al.,
2000, 2001), the intense level of inflammation observed in flavivirus en-
cephalitis may be driven by the induction of one or more chemokines
and their receptors. The expression of monocyte and T-cell chemokines
has not been reported in these infections; however, studies with other
models suggest that MCP-1, IP-10, RANTES, and other chemokines
are involved in the trafficking of leukocytes into areas of virus infection
in the CNS. In conjunction with the effects of TNF-� and IFN-�, both of
which can lead to loss of integrity of the blood–brain barrier, this collec-
tion of stimuli may be sufficient to drive the commitment phase of the
inflammatory response, during which the unrestricted entry of T
lymphocytes then proceeds (Hickey, 1999).

The intrinsic defensive response of the CNS to viral injury also in-
cludes the induction of other classes of genes likely to influence the anti-
viral activity of this compartment through direct effects and by shaping
the virus-specific immune response to viral injury (Johnston et al.,
2001; Labrada et al., 2002). These include IFN- � and IFN-regulated
genes such as ISG12 (Labrada et al., 2002). IFN-� itself does not seem
to be strongly upregulated in acute encephalitis. However, IFN-� has
been reported in the CSF and brain tissue of human cases of encepha-
litis with JEV serogroup viruses and, in such cases, appeared to repre-
sent a marker of severe infection with a fatal outcome (Burke and
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Morill, 1987; Leport et al., 1984; Luby et al., 1969). The role of type I
interferons in the CNS response to injury is complex, and differences
in the activities of IRFs and IGSFs toward target response elements in
neurons and glia can affect the range of genes involved in the response,
including MHC antigens, the OAS1b protein, and antiapoptotic factors
(Baron-Delage et al., 2000; Hirsch et al., 1986; Lucas et al., 2003; Massa
et al., 1999; Njenga et al., 1997). Studies of viral infection in IFN-� and
IFN-�-regulated gene knockout mice should help clarify the role of this
defense system in directly controlling the viral infection of neurons
versus effects on promoting the activity of the immune response re-
cruited from the periphery. The importance of IL-12 in the innate CNS
response to flavivirus encephalitis has not been investigated exten-
sively; however, the outcome of CNS disease appears to vary among dif-
ferent viruses when this cytokine is used as an experimental therapy
(Phillpotts et al., 2003). Because of the importance of IL-12 in antiviral
defense against other CNS viral infections, through its ability to stimu-
late NOS (Reiss et al., 2002), more studies are needed to determine if it is
implicated in protection against flaviviruses.
B. Virus-Specific Responses

Compared to information available on other neurotropic viruses,
there has been relatively little work done to characterize the properties
of virus-specific T cells recruited into the CNS in response to flavivirus
infection (Scheider-Schaulies et al., 1997). This response is subject to a
number of influences, including previous immunologic experience with
related viruses, the level of immunocompetence, immunogenetic host
factors, and the virulence of the infecting virus. Available information
comes from a limited number of human and animal model experi-
ments, which partially characterized lymphocytes or soluble markers
of activated T cells and cytokines in the CNS (Burke et al., 1985b;
Carson et al., 2003; Gunther et al., 1996; Iwasaki et al., 1993; Johnson
et al., 1985, 1986; Kuno et al., 1993; Sampson et al., 2000), and other
studies that have evaluated the requirements for these cells in the con-
trol of infection of this compartment in mouse models (Liu and Cham-
bers, 2001; Liu et al., 1989a; Murali-Krishna et al., 1996; van der Most
et al., 2000, 2003). T cells bearing both CD4þ and CD8þ surface mar-
kers have been visualized in perivascular infiltrates, in CSF, and in
brain parenchyma during human flavivirus encephalitis (Johnson
et al., 1985, 1986; Sampson et al., 2000). These cells include a larger
proportion of CD4þ to CD8þ T cells and moderate numbers of B cells
and macrophages. However, the composition of cells differed regionally
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in the CNS, with macrophages and T cells more abundant in brain par-
enchyma and B cells more common within perivascular infiltrates.
Factors governing the distribution of these cells and their effector func-
tions are not well understood. Data from other experimental models
suggest that CD4þ T cells are important in directing the recruitment
of lymphocytes (Hickey, 1999) and in maintaining the effector function
of CD8þ T cells within the brain parenchyma (Stohlman et al., 1998).
CD8þ T cells have clearly been isolated from the brains of flavivirus-
infected mice and, in some cases, demonstrated to have cytolytic activity
(Liu et al., 1989a); however, the contributions of such cells to both virus
clearance and cellular injury within this compartment have not been
defined. This remains a fundamental question, as the role of CD4 þ

and CD8þ T cells in different viral infections of the CNS and different
experimental paradigms can vary considerably (Schneider-Schaulies
et al., 1997). For instance, virus clearance from mouse brains acutely
infected with JEV has been reported by virus-specific CD8þ T cells
adoptively transferred into the CNS; however, CD4þ T cells were also
required (Murali-Krishna et al., 1996). The relationship of this adoptive
response to the natural immune response recruited from the periphery
remains unclear, as the route of transfer may not reflect the normal
pathway of lymphocyte trafficking. A requirement for CNS-associated
CD4þ and CD8þ Tcells was also observed in an immunization/challenge
model of dengue virus (van der Most et al., 2000). However, in the con-
text of a memory response to YFV in the mouse model, CD4þ Tcells and
B cells were required for the control of viral infection, whereas CD8þ T
cells were not required, although CD8-deficient mice exhibited a defect
in virus clearance (Liu and Chambers, 2001; T. J. Chambers, unpub-
lished data). Part of the effector activity of CD8þ T cells may be medi-
ated by the production of IFN-�, which has a range of effects on the
immunological properties of the CNS, including the upregulation of
class I and II antigens on glial cells and injured neurons, activation of
microglial, priming of astrocytes for cytokine production, and increas-
ing permeability of the blood–brain barrier, as well as antiviral activity
in the brain parenchyma (Benveniste, 1997; Kundig et al., 1993; Popko
et al., 1997). IFN-� knockout mice are defective in the clearance of YFV
from the CNS and exhibit decreased inflammatory cell recruitment to
this compartment (Liu and Chambers, 2001), indicating an important
role of this cytokine in flavivirus encephalitis. IFN-� may have a pri-
mary role in these processes because elimination of virus-infected
neurons by CTLs is very tightly constrained by the absence of constitu-
tive expression of MHC class I in these cells and the lack of susceptibil-
ity to perforin-mediated lysis (Medana et al., 2000; Neumann et al.,



FLAVIVIRUS ENCEPHALITIS 307
1995). Although killing can occur through Fas–FasL interactions
(Medana et al., 2000), induction of FasL expression by neurons can also
confer protection against CTL attack under certain conditions (Medana
et al., 2001) and even induce apoptosis in infiltrating lymphocytes
(Flugel et al., 2000). Virus-specific CD8þ Tcells have been shown to per-
sist in the brains of mice recovering from dengue encephalitis for pro-
longed periods and differentiate into effector–memory cells that lose
CTL activity while still producing IFN-� (van der Most et al., 2003).
Thus it appears that cellular immune-mediated mechanisms of neur-
onal cell death are subject to tight regulation in the presence of acute
viral injury.

The role of antibody responses in the control of flavivirus encephalitis
has been investigated in many classic studies, and it has been demon-
strated repeatedly that immune serum can arrest viral infection in the
CNS (Roehrig et al., 2001). Mechanisms responsible for this antibody-
mediated control of infection remain unclear; however, studies with
YFV encephalitis indicate that the Fc region and the IgG subclass are
critical for protection in the mouse model (Schlesinger et al., 1993,
1995). These data suggest that direct effector functions associated with
IgG, including interactions with cells bearing Fc receptors, such as
microglia and recruited macrophages, are involved in this process. It is
also conceivable that antibody–dependent cellular cytotoxicity directed
against cell surface NS1 or even complement-mediated lysis also con-
tributes to the protective effect. The antibody-mediated control of neur-
onal infection is a well-established mechanism for alphaviruses and
coronaviruses, in which case the role of antibody in preventing reactiva-
tion of viral infection has been demonstrated (Griffin et al., 1997; Levine
et al., 1991, 1992; Lin et al., 1999). In the case of Sindbis virus, there is
inhibition of viral release and eventual sequestering of viral RNA within
neurons without clearance. This process occurs preferentially at cortical
sites of infection and obligates the local retention of virus-specific B cells
(Tyor et al., 1992) in contrast to infection in the spinal cord where the
cytokine-mediated (IFN-�) elimination of viral RNA apparently pre-
dominates (Binder and Griffin, 2001). Antibody-mediated mechanisms
may also operate in flavivirus encephalitis, as reactivation or recrudes-
cence of CNS disease has been documented in some experimental
animal systems and in clinical cases (Section XII). Factors responsible
for the prolonged survival of B cells in the CNS are not known, particu-
larly whether these cells represent a resident population of memory cells
or require replenishment from peripheral sites (Tschen et al., 2002).

The beneficial role of antibody responses within the CNS is also sup-
ported by clinical studies of JEV and TBEV encephalitis (Burke et al.,
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1985a, 1985c; Gunther et al., 1997; Han et al., 1988; Hoffman et al.,
1978; Kaiser and Holzmann, 2000; Potula et al., 2003; Ravi et al.,
1993). High levels of IgM correlate with an improved outcome in some
cases, presumably reflecting the recruitment of virus-specific B cells
into the CNS, as was reported in JEV cases (Burke et al., 1985a;
Gunther et al., 1997), and the presence of IgG1 in particular is associ-
ated with the control of infection (Thakare et al., 1991), although IgM
can be elevated in severe cases with a fatal outcome (Desai et al.,
1994a). The functional activities provided by IgM in the CNS that
result in clinical benefit remain unclear, as experimentally, IgM may
have limited neutralization activity against encephalitic viruses at
least early in infection (Diamond et al., 2003; Hoffman et al., 1978;
Ishii et al., 1968). The contribution of complement-fixing activity could
be important, as discussed earlier, in view of the fact that complement
proteins may be upregulated in the CNS as a result of viral infection
(Johnston et al., 2001).

The inflammatory response to flavivirus infection of the CNS may, in
some cases, cause deleterious effects on neuronal function and sur-
vival. Immune complexes and autoantibodies to neurofilaments and
myelin basic protein in the CSF and serum have been reported in
severe JEV and TBEV infections (Desai et al., 1994a, 1994b; Fokina
et al., 1991; Thakare et al., 1988) and may reflect an immunopatho-
genic process rather than nonspecific reactions to viral injury, particu-
larly because of their association with poor outcome. Mechanisms
leading to resolution of the acute inflammation in CNS viral infections
remain undefined (Bradl and Flugel, 2002). At least three potential
factors could be involved, including the expression of IL-4, IL-10, and
TGF-�, which have been observed in the CNS of Sindbis virus-infected
mice (Wesselingh et al., 1994) and are known to have immunomodula-
tory activities that reduce CNS inflammation; induction of apoptosis of
infiltrating T cells; or possibly entry of NKT cells, which have been as-
sociated with the suppression of inflammatory responses. Further
studies are needed to determine whether these or other factors are re-
quired to downregulate potentially harmful immune responses in
cases where viral disease is eventually controlled.
XI. NEUROPATHOGENESIS: WEST NILE VIRUS AS A MODEL

Similar to JEV, infections with WNV can be characterized as pro-
tean, involving an extraordinary host range, and an abundance of
pathologic and virologic data has been obtained from experiments with
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WNV in birds (Kramer and Bernard, 2001; Steele et al., 2000), horses
(Bunning et al., 2002), and humans (Asnis et al., 2000; Hubalek and
Halouzka, 1999). WNV has emerged as dimorphic in its clinical dis-
ease, with the apparent shift from typical WN fever to disease of
greater severity, including more frequent cases of acute encephalitis
in conjunction with the emergence of New World lineage I strains
(Asnis et al., 2000; Cernescu et al., 1997). Studies with virulent strains
such as New York 1999 WNV have demonstrated the neuropathogenic
potential inherent in this virus. It is therefore important to note that
lineage differences (type I versus type II) and perhaps genetic vari-
ation within lineages may influence the development of CNS disease.

After peripheral inoculation in the mouse model, WNV is believed to
infect Langerhans dendritic cells (Johnston et al., 2000), which migrate
to draining lymph nodes, and within 12 to 24 h of infection, viral repli-
cation is observed in secondary lymphoid tissue (Diamond et al., 2003;
McMinn et al., 1996). Infectious virus is detected in serum within 24
to 48 h of infection (Diamond et al., 2003; Kramer and Bernard, 2001).
The course of the early infection is slightly different in wild-type (WT)
versus B-cell-deficient mice, as the peak of viremia occurs later in the
latter case (day 2 versus days 4 to 6; Fig. 8). Shortly afterward, in WT
mice, infectious virus is detected in visceral organs such as the spleen,
kidney, and heart but not the liver (Diamond et al., 2003; Kramer and
Bernard, 2001; Weiner et al., 1970), which may reflect restricted trop-
ism or a high level of reticuloendothelial clearance in this organ. The
levels of infectious virus in visceral tissues and serum peaked by day 4
after infection and thereafter diminished (Diamond et al., 2003; Kramer
and Bernard, 2001; Xiao et al., 2001), concurrent with a rise in the titer
of neutralizing antibodies (Fig. 9). In B-cell-deficient mice, replication
in peripheral lymphoid tissue and visceral organs follows kinetics simi-
lar to those of WT mice; however, virus is not cleared from these sites.
These data indicate the profound susceptibility of mice to WNV in the
absence of antibody-producing B cells.

Virus can first be detected in the CNS by 4 days after peripheral sub-
cutaneous infection in both WT and B-cell-deficient mice. Infectious
virus is detected simultaneously in multiple sites in the brain, as well
as in the inferior and superior spinal cord, suggesting a hematogenous
route of dissemination and/or rapid spread within the CNS (Diamond
et al., 2003). However, the route of peripheral inoculation influences
the rate of spread to the brain and spinal cord. Infection via an intra-
peritoneal or intravenous route results in the spread of infectious virus
to the brain within 2 days of infection (Kramer and Bernard, 2001),
with these animals succumbing to infection several days earlier than



FIG 8. Wild-type or B-cell-deficient (uMT) mice were inoculated with WNV in the
footpad, and the virus content in serum, peripheral tissues, and brain was measured
serially using plaque assay or quantitative polymerase chain reaction. From Diamond
et al. (2003), with permission.
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those infected by a subcutaneous route. These differences probably
reflect the fact that the interaction of virus with peripheral tissues
results in the engagement of nonspecific and virus-specific defenses
that have an impact on the course of disease. Models of infection
that bypass the physiologic route of inoculation must be considered
with this limitation in mind, as the balance of viral replication and
dissemination versus immune activation can be skewed greatly by in-
traperitoneal or intravenous injection. Regardless of the route of ad-
ministration, the course of disease after the onset of CNS infection
is rapid and leads to fatal encephalitis beginning by days 9 to 10
postinfection, associated with high burdens of brain-associated virus.

Neutralizing activity associated with the IgM class is detectable by
day 4 postinfection in the mouse model (Fig. 9), and this antibody re-
sponse can confer partial protection against virus challenge in naı̈ve
mice (Diamond et al., 2003). Neutralizing IgG is detectable by day 8
and reaches levels of activity that are 10-fold higher than that of IgM
by day 12 postinfection. The importance of secreted IgM in protection
against disease is indicated from these data, as well as data presented



FIG 9. Neutralizing IgM and IgG antibody responses in acute WNV encephalitis in
the mouse model. From Diamond et al. (2003), with permission.
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earlier (Fig. 1). The relative importance of the mechanisms involved,
including neutralizing activity per se or complement-assisted priming
of the B-cell response to facilitate IgG production, is currently under
investigation.
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XII. VIRUS PERSISTENCE

Persistent infection in vitro and in vivo has been described in a
number of experimental and clinical settings involving flaviviruses.
The phenomenon of persistent infection in cell cultures of vertebrate
and arthropod origin is well documented (Brinton, 1982; Chen et al.,
1996; Jarman et al., 1968; Igarashi, 1979; Katz and Goldblum, 1968;
Lancaster et al., 1998; Loginova et al., 1980; Poidinger et al., 1991;
Randolph and Hardy, 1988a, 1988b; Schmaljohn and Blair, 1977,
1979; Shah and Gadkari, 1987; Vlaycheva and Chambers, 2002; Zhang
et al., 1993), and the findings are analogous to many other models of
viral infections in vitro where this process can be observed. Flavivirus
persistence in vitro typically arises following a cytocidal infection, with
survival of a residual population of cells that harbor low levels of rep-
licating virus for long periods of time. The majority of cells in such cul-
tures usually express viral antigen, but only a minority actually are
productive of infectious virus. The cultures are generally resistant to
superinfection with homologous but not heterologous virus, although
in some cases, superinfection can drive virus production in quiescent
antigen-positive cells (Schmaljohn and Blair, 1979). The persistence
is not dependent on the expression of IFN-�, rather there is evidence
for the involvement of host cell antiapoptotic pathways (see later).
The infection is not necessarily deleterious for host cells, but in some
cases, reduced growth efficiency occurs. Viruses detected in persist-
ently infected cultures frequently undergo phenotypic alterations, in-
cluding a reduction in plaque size, temperature sensitivity (Randolph
and Hardy, 1988b; Shah and Gadkari, 1987), host-range restriction
(Randolph and Hardy, 1988b), and loss of neurovirulence for mice
(Igarashi, 1979). The genetic basis for the phenotypic change of viral
variants has, in some cases, been demonstrated (Vlaycheva and Cham-
bers, 2002). However, these infections are also associated with the
emergence of defective viral particles or defective RNAs (Brinton,
1982; Debnath et al., 1991; Lancaster et al., 1998) that form the basis
for superinfection resistance, and perhaps in part for the attenuation
of mouse neurovirulence in flavivirus–resistant strains of mice. Some
persistently infected cultures exhibit alterations in the composition of
viral proteins or produce truncated forms of NS1 (Chen et al., 1996),
which presumably are believed to reflect deletions in the viral genome
associated with the generation of defective interfering viruses. The
genome of defective MVE virus in Vero cells was shown to lack a large
segment encompassing the prM-E region and a portion of the NS1
region, which leads to the production of truncated NS1 (Blitvich et al.,
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1999; Lancaster et al., 1998). This finding is entirely consistent with
the fact that replicons such as those engineered for Kunjin virus are
designed to delete the corresponding region of the genome and are able
to establish persistent replication in cell culture without any typical
viral cytopathic effects (Varnavski and Khromykh, 1999). At least part
of the explanation for the loss of cytocidal activity therefore may result
from the deletion of structural proteins, which may provoke an ER
overload response and/or trigger apoptosis (Duarte dos Santos et al.,
2000; Prikhod’ko et al., 2001; Su et al., 2002). The production of infec-
tious virus from persistently infected cultures can be reduced by treat-
ment with a neutralizing antibody (Randolph and Hardy, 1988a), but it
is not clear whether this shifts the cells to preferentially harbor defect-
ive viral genomes or whether these are actually eliminated.

The expression of apoptotic modulators is an important factor influ-
encing the establishment and maintenance of persistent infection. In a
model of JEV infection, the persistence in some cell lines was facili-
tated by the expression of bcl-2 (Liao et al., 1997), indicating that the
mechanism is analogous to that of alphaviruses, where lytic infection
can be converted to persistence in the presence of antiapoptotic pro-
teins (Levine et al., 1993). However, the mechanisms that confer resis-
tance to JEV-induced apoptosis must differ in some way from those of
Sindbis and other viruses, as bcl-2 could fully protect N18 neuroblasto-
ma cells against Sindbis, but not JEV. It is likely that the difference
involves divergent pathways for activating the apoptotic process
(Jan et al., 2000; Su et al., 2002). It is also possible that some cell lines
represent variants that are defective in their apoptotic pathways,
allowing virus to adapt in the absence of apoptotic events. At present,
there is no evidence that flaviviruses encode proteins with antiapopto-
tic properties that might influence the process of the persistence.

The relevance of data on persistently infected cells in vitro to the issue
of persistent infection in animal models and in apparent human cases is
not straightforward. Although evidence for such clinical entities has
been reported, the situation is complicated by the fact that there may
be overlap between infections that have protracted convalescence and
those that have frank neurological sequelae because flavivirus enceph-
alitis is associated with neurologic complications that confer long-term
disability among those who survive acute infection (Baruah et al., 2002;
Finley and Riggs, 1980; Greve et al., 2002; Haglund and Gunther, 2003;
Huy et al., 1994; Kumar et al., 1993; Richter et al., 1961; Vaneeva, 1969).
In some cases, there is radiographic and pathologic evidence of per-
manent neurologic injury, including reduced cerebral blood flow,
areas of abnormal signal density, and cellular dropout and gliosis
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(Gunther et al., 1998; Ishii et al., 1977; Kumar et al., 1997; Shoji et al.,
1990). Second, the possibility that a recrudescent latent infection
really represents reinfection in a host with suboptimal immunity is a
difficult question to evaluate. Also, the criteria for defining persistence
are somewhat arbitrary. The presence of prolonged expression of IgM
has been invoked as a basis for concluding persistence, but only infre-
quently has the presence of infectious virus been documented in situ-
ations where the duration of CNS disease exceeds that which is
expected in acute uncomplicated flavivirus encephalitis (2 to 3 weeks).

Mechanisms of flavivirus persistence in vivo may theoretically also
involve the formation of DI particles, which reduce infectious viral
load, but like their in vitro counterparts, may not be sufficiently cyto-
pathic to cause neuronal cell death. Such defective viruses may be
capable of stimulating immune responses and thus be detected sero-
logically. Experimentally, there is certainly evidence that DI particles
can inhibit the production of infectious virus in the CNS (Atkinson
et al., 1986; Barrett and Dimmock, 1984; Smith, 1981). The failure to
detect infectious virus in both clinical and experimental situations
where prolonged evidence of viral activity in the CNS was suspected
is consistent with this hypothesis (Pogodina et al., 1983; Ravi et al.,
1993). In a study of viral RNA in the brains of mice with the Flv resis-
tance allele, a reduction in genome-length RNA rather than appear-
ance of DI RNAs was observed (Urosevic et al., 1997), even though
flavivirus–resistance in mice is associated with production of D1 virus
(Smith, 1981). Thus, data implicating the role of DI particles in in vitro
persistence may not correspond directly to an in vivo process.

Encephalitic flaviviruses that have been implicated in the occur-
rence of persistent infection of the CNS include members of the JEV
serogroup and TBEV serogroup (Iliyenko et al., 1974; Ogawa et al.,
1973; Pogodina et al., 1983; Slavin et al., 1943; Zlotnik et al., 1971),
with the latter having a particular propensity to cause chronic infec-
tions. In humans, there have been reports of various types of persistent
infection. These include (1) reactivation of latent disease, as in chil-
dren with JEV encephalitis who experienced recurrent infection
months after the primary infection and, in some cases, gave positive
virus isolations (Sharma et al., 1991); (2) chronic progressive disease
with cognitive and motor disturbances that resembled subacute scler-
osing panencephalitis, years after a primary infection with Russian
spring–summer encephalitis (RSSE) virus (Ogawa et al., 1973); (3) pro-
longed infection in primary cases of acute encephalitis, with elevation
of CSF IgM for as long as 10 months and, in some cases, with virus iso-
lated from spinal fluid (Ravi et al., 1993); and (4) evidence of prolonged
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circulation of virus-infected cells without clear-cut CNS disease
(Southam et al., 1958). Protracted cases of TBEV encephalitis, with
either cognitive dysfunction or spinal nerve paralysis, occur frequently
(Haglund and Gunther, 2003), although the relationship of these out-
comes to persistent viral infection is not known. These different types
of clinical infections have been mimicked by various experimental
models, and it has been documented that virus can be recovered after
a protracted phase of infection. For instance, strains of WNV with
differing neurovirulence properties were capable of causing prolonged
encephalitis of variable severity, ranging up to 5 months in duration in
monkeys (Pogodina et al., 1981, 1983). Eventually the viruses were
cleared or were rendered replication defective and detectable only by
the presence of viral antigen. Some viruses recovered from brains of
these animals had undergone attenuation of mouse neurovirulence, in-
dicating a selection for genetic variants and/or defective interfering
particles. Mechanisms preventing the efficient clearance of virus were
not determined, but did not involve defects in the production of neu-
tralizing antibodies. Immunosuppression, either by cytotoxic drugs or
even that associated with pregnancy, has been demonstrated to cause
prolonged flavivirus disease (Mathur et al., 1986; Zlotnik et al., 1971),
and reactivation of infection can be elicited during or after the primary
infection by immune depletion (Mathur et al., 1986). In some cases, as
in JEV infection of mice, viral latency was established in T lympho-
cytes, which could be subsequently activated by immunosuppression
to produce infectious virus (Mathur et al., 1989). These latter findings
are consistent with reports of recurrent JEV infection observed in chil-
dren, but the stimulus for reactivation in such cases is not known
(Sharma et al., 1991).

In the CNS, experimental persistent infections have been related to
immune response factors, as well as the ability of neurons to survive
viral infection by mechanisms involving apoptotic modulators. Im-
munological tolerance is also a potential factor that has been associated
with other viruses such as LCMV that establish persistent CNS infec-
tion, but this does not seem to play any obvious role in flavivirus persist-
ence. Failure to clear brain-associated virus may result from a limited
effectiveness of the innate CNS defenses and the peripheral immune re-
sponses that are activated in response to flavivirus infections. In add-
ition, elimination of viral RNA may require CD8þ T-cell functions [as
described for alphaviruses (Binder and Griffin, 2001)], which are se-
verely restricted due to a lack of class I expression on neurons. The gen-
erally resistant state of differentiated neurons toward apoptotic stimuli
is also likely to be an important factor (Griffin and Hardwick, 1999).
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Together, these processes may facilitate the persistence of viral RNA
and perhaps foster the evolution of DI particles and noncytopathic-
attenuated viral variants. The host immune response, together with
properties of the neuronal cellular environment, influences the likeli-
hood of virus perisistence and may both contribute to differences in
phenotypes of persisting viruses. For instance, WNV variants that
emerged from persistent infection in monkeys tended to acquire attenu-
ation phenotypes (Pogodina et al., 1983), whereas it has been observed
in persistent infection of mice with Sindbis virus that neurovirulent
mutants arise (Levine and Griffin, 1992, 1993). Selection pressures im-
posed by neutralizing antibodies that are produced intraparenchymally
by virus-specific B cells may facilitate the emergence of viral variants in
some cases, but tissue-specific adaptations are also involved. At pre-
sent, it is reasonable to believe that the phenomenon of flavivirus per-
sistence in the CNS is a function of many variables, which include the
heterogeneity of the neuronal response to injury, encompassing innate
interferon-regulated antiviral defenses (Johnston et al., 2001) and the
competence for and propensity towards apoptosis. Interaction of
virus–infected cells with virus-specific T cells possessing cytokine-
mediated effector functions that can eliminate viral RNA and B cells
that can provide antibodies capable of downregulating viral replication
influences this process in a region-specific manner. The balance among
these factors results in a spectrum of outcomes that may range from
either clearance to merely suppression of viral infection, with variable
consequences for long-term neurologic function.
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