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Abstract: Worldwide, human respiratory syncytial virus (RSV) is the most common etiological
agent for acute lower respiratory tract infections (ALRI). RSV-ALRI is the major cause of hospital
admissions in young children, and it can cause in-hospital deaths in children younger than six
months old. Therefore, RSV remains one of the pathogens deemed most important for the generation
of a vaccine. On the other hand, the effectiveness of a vaccine depends on the development of
immunological memory against the pathogenic agent of interest. This memory is achieved by
long-lived memory T cells, based on the establishment of an effective immune response to viral
infections when subsequent exposures to the pathogen take place. Memory T cells can be classified
into three subsets according to their expression of lymphoid homing receptors: central memory cells
(TCM), effector memory cells (TEM) and resident memory T cells (TRM). The latter subset consists of
cells that are permanently found in non-lymphoid tissues and are capable of recognizing antigens and
mounting an effective immune response at those sites. TRM cells activate both innate and adaptive
immune responses, thus establishing a robust and rapid response characterized by the production of
large amounts of effector molecules. TRM cells can also recognize antigenically unrelated pathogens
and trigger an innate-like alarm with the recruitment of other immune cells. It is noteworthy that this
rapid and effective immune response induced by TRM cells make these cells an interesting aim in
the design of vaccination strategies in order to establish TRM cell populations to prevent respiratory
infectious diseases. Here, we discuss the biogenesis of TRM cells, their contribution to the resolution
of respiratory viral infections and the induction of TRM cells, which should be considered for the
rational design of new vaccines against RSV.

Keywords: human respiratory syncytial virus; human orthopneumovirus; respiratory infection;
resident memory T cells; vaccine development

1. Introduction

RSV is the most common responsible pathogen for acute lower respiratory tract infections
(ALRI) [1]. RSV causes respiratory distress mostly in young infants, immuno-compromised patients
and senior adults [2]. ALRI is the global leader in respiratory tract infections alongside RSV, which causes
45% of young children hospitalizations and in-hospital deaths in infants younger than six months
old [3]. Therefore, RSV remains one of the pathogens deemed most important for vaccine development.

RSV is an enveloped, cytoplasmic virus with a single-stranded, non-segmented, negative-sense
RNA genome. This virus belongs to the Pneumoviridae family, genus Orthopneumovirus, which includes
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three viral species: bovine orthopneumovirus, murine orthopneumovirus and human orthopneumovirus [4].
The RSV genome is approximately 15.2 kb in size and encodes ten genes in the following order:
3′-NS1-NS2-N-P-M-SH-G-F-M2-L-5′. The M2 gene is transcribed in 2 different ORFs, coding for
two proteins, M2-1 and M2-2. The genome is encapsidated by multiple copies of the nucleoprotein
(N), forming a helical nucleocapsid [5]. Phosphoprotein (P) copies interact with N and recruit the
L protein, an RNA-dependent RNA polymerase and the cofactor M2-1 to the viral nucleocapsid
complex. Interestingly, the N protein (a restricted cytosolic protein) can also be expressed on the
surface of RSV-infected dendritic cells (DCs). Particularly, the N protein interferes with the interaction
of the T cell receptor (TCR) with peptides presented on major histocompatibility complex molecules
(pMHC) and inhibits the immunological synapse assembly [6,7]. The RSV genome also encodes for two
non-structural proteins, NS-1 and NS-2, which display immunomodulatory properties by inhibiting
the induction of interferon-alpha/beta (IFNs α/β) in lung epithelial cells and macrophages [8].

The immune system has the capacity to “remember” pathogens, which is the reason why
upon pathogen reencounter, a faster and effective response takes place to establish an adaptive and
protective immunological response, which is known as immunological memory [9]. During primary
respiratory virus infections, antigen-specific CD8+ T cells play fundamental roles in the resolution
of infections generated by this type of intracellular pathogens. The adaptive immune response also
contributes by conferring protection against subsequent reinfections via immune T and B cell memory
development [10]. Thus, frequent reinfections caused by RSV suggest the absence of long-lasting
protective immune memory in the host [2,11]. Memory T cells have been classified based on their
trafficking patterns and the expression of lymphoid homing receptors CCR7 (chemokine receptor type
7) and CD62L (L-selectin); central memory T cells (TCM; CCR7high/CD62Lhigh) recirculate through the
blood and secondary lymphoid organs (SLO), while effector memory T cells (TEM; CCR7low/CD62Llow)
do not express homing molecules to lymphoid organs, but instead express migratory receptors with
the potential of transit through the blood, lymphoid and peripheral tissues (non-lymphoid tissues) [12].
Nonetheless, parabiosis studies have shown that some tissues, namely the gut and brain, are only
under immunosurveillance by effector T cells, but not memory T cells, because the circulation of
these cells through peripheral tissue is different for each T cell phenotype [13–16]. The method as to
how these tissues are protected was assessed in subsequent studies where a third subset of memory
T cells was identified. This subset corresponds to resident memory T cells (TRM; CCR7+/CD62L+)
that are permanently present in non-lymphoid tissues and can mediate innate and adaptive immune
responses against reinfections with pathogens [17–19]. TRM cells constitutively express high levels of the
sphingosine-1-phosphate receptor 1 (S1PR1) antagonist CD69 and hyaluronic acid (HA), which binds
CD44, collagen-binding CD49a and CD103 (integrin αE paired with integrin chain β7) [18]. Importantly,
the role of CD8+ TRM cells in tissues has been studied more than that of CD4+ TRM lymphocytes.
Nevertheless, both cell types participate in the development of the immune response near the locations
they occupy and secrete cytokines that promote the recruitment of other immune cells. Several
studies have provided evidence for the importance of TRM during protective immune response against
RSV [20–23]. Thus, this response constitutes a critical mechanism that confers immune protection to
the host from infections and may also be crucial for the proper function of vaccines, especially for the
case of RSV infection.

2. Immunological Synapse and Memory T cells

When initiating an immune response, professional antigen presenting cells (APCs), such as DCs,
play crucial roles in the intercommunication between innate and adaptive immunity, as well as the
modulation of this response [24]. DCs and macrophages are the major APCs in various mucosal
tissues, such as the intestine, lung, genital tract and mouth, where they sense and capture microbes
and particles that are potentially harmful to the host [25]. Once captured, antigens derived from
microbes are processed and presented to naïve T cells at the regional draining lymph nodes [26].
Activation of T cells requires the assembly of an immunological synapse that provides three types of
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signals: interaction between the TCR and a peptide-loaded MHC class I or class II molecule (pMHC),
co-stimulatory molecule signaling and specific cytokines (Figure 1a). If a cell does not receive a full set
of signals, it will neither divide nor become activated, but instead may become anergic. The activation
of T cells is triggered by TCR-transduced signals upon engagement with a cognate pMHC complex
displayed at the cell surface of an APC. Naïve T cells are activated after their encounter with antigens
through TCR signaling, inducing clonal expansion. This process is known as priming. Moreover,
T cells can differentiate into distinct classes of effector T cells. After pathogen elimination, the existing
T cell populations undergo an inflammation-mediated contraction phase, the survivors of which will
serve as the initial memory pool [27–29]. Furthermore, although the establishment of effective and
long-lasting protective immunity has been historically associated with antigen-specific antibody titers,
it may also depend on the generation of specific multifunctional effector memory T cells, which are
able to eradicate intracellular infections with the pathogen when accompanied by poor or non-effective
humoral responses, as seen for hepatitis C virus, tuberculosis, vesicular stomatitis virus, varicella
zoster virus, dengue virus and respiratory syncytial virus [6,7,23,30–35]. In contrast, the requirement of
both antibodies and multifunctional effector memory T cells has been described during infection with
malaria [36,37], simian/human immunodeficiency virus [38], Salmonella [39] and influenza virus [40,41].

TCR signaling leads to the expression of many genes and the entry of T cells into the cell
cycle. There are three significant variables that determine the effects of TCR stimulation in T cells:
the affinity and half-life of interaction between the TCR and the pMHC, as well as the phenotype
of the APC [6,7,24,42–46]. T cell activation induces T cell proliferation to clonally select and expand
antigen-specific T cells (Figure 1b). The transition from naïve T cells into effector cells occurs with
changes in cell function. CD8+ cytotoxic T cell (CTL) effector functions are stimulated by antigen
recognition of a cognate MHC class I–peptide complex by the TCR, inducing apoptosis in the target
cell [10]. Since many viruses have developed mechanisms to prevent presentation of their antigens
on MHC-I molecules in order to prevent the activation of CD8+ T cells, the development, abundance
and antiviral effector functions of TRM cells are usually dampened during viral infections [47].
Along these lines, several reports have shown that RSV prevents the development of protective
immunological memory by interfering with the capacity of the DCs to activate and elicit effector
activities of virus-specific CD4+ and CD8+ T cells [6,7,48,49]. RSV-infected DCs dampen the activation
of naïve CD4+ T cells, which downregulate the TCR-driven activation marker CD69 and show reduced
secretion of IL-2 [6]. Similarly, immunization of mice with formalin-inactivated RSV (FI-RSV) leads to a
pathology known as vaccine-enhanced respiratory disease (ERD), which elicits a pathological immune
reaction after vaccination when the individual is exposed to RSV. This disease is characterized by
exacerbated eosinophil infiltration and the development of a TH2-like response in lungs [50,51]. FI-RSV
immunization does not activate a CD8+ T cell response that contributes to the eosinophil infiltration in
lungs and increased pathology [52]. It is thought that this immune modulatory mechanism could in part
be responsible for the lack of generation of long-lasting immunological memory after RSV infection.
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Figure 1. Steps occurring during the activation and differentiation of T lymphocytes. (a). Antigen
Presentation. Activation of T cells requires the assembly of an immunological synapse with APCs,
which provides three types of signals: i) interaction between the TCR and a peptide-loaded
MHC class I or class II molecule, ii) co-stimulatory molecule signaling and iii) specific cytokines.
(b). Proliferation/Differentiation. T cell activation induces T cell proliferation to clonally select and
expand antigen-specific T cells. (c). Effector functions, surface markers and some cytokines required for
homeostasis [53–58] and transcription factors that characterize each subpopulation of memory T cells.
Central memory T cells (TCM) express lymphoid homing markers and circulate through secondary
lymphoid organs (SLO). The effector memory T cells (TEM) lack expression of lymphoid homing markers,
but express other migratory receptors with the potential to migrate through non-lymphoid tissues.
The third subset of memory T cells, which consists of resident memory T cells (TRM), stably reside in
non-lymphoid tissues and contribute to enhancing innate and adaptive immunity against pathogens.

3. Tissue-Resident Memory T Cells: Biogenesis, Transcription Factors and Surface Markers

Among the cellular components that constitute the first line of defense is a population of memory
T cells called tissue-resident memory CD8+ T cells (TRM). These cells are found in mucosal tissues such
as the lungs (both airways and parenchyma), digestive [15] and urogenital tracts [59]. TRM cells have
been characterized in elegant parabiosis experiments, which show that tissue surveillance is a function
performed by a subset of memory T cells with different characteristics and phenotype behavior than
TEM cells, to which this function was previously attributed [59,60]. Besides, once generated, TRM cells
can persist at the site of both the infection and vaccination [61].

After respiratory virus infection, CD8+ T cell priming takes place in the regional draining lymph
nodes after lung-resident DCs have transported viral antigens to that site. Interestingly, CD103+ DCs
have the ability to cross-present foreign antigens to CD8+ T cells, conferring protection against
infection [62]. Two migratory DC subsets have been described in the mouse lung tissue, namely
CD103+-DCs (CD11c+/CD11blow/CD103+ DC) and CD11bhigh-DCs (CD11c+/CD11bhigh/CD103−).
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These DC-subsets show differential T cell-stimulatory functions, resulting in a range of distinct
memory CD8+ T cell subsets [30,63]. CD8+ T cells activated by CD103+ DCs proliferate vigorously
and acquire potent effector properties that, among others, bring them back to the lung to eliminate
virus-infected cells. Importantly, subsequent differentiation into TRM cells after influenza virus
infection was reported to require priming by CD103+ respiratory DCs for the development of resident
memory T cell phenotypes [64]. Interestingly, differences in the migration and antigen presentation
times between CD103+- and CD11bhigh-DCs have been observed, with CD103+ DCs cross-presenting
viral antigens in the mediastinal lymph node (MLN) at early time points of 2–4 days post-infection,
as compared to CD11bhighDCs at 5–7 days post-infection, possibly contributing to the development
of different T cells subsets [30]. Moreover, the selective loss of CD103+ respiratory DCs reduces
antigen-specific CD8+ T cell responses and only CD103+ DCs are capable of cross-presenting antigens
in the lymph nodes [65], which suggests that CD103+ respiratory DCs contribute to the development
of antiviral CD8+ T cell immunity.

To discriminate between memory precursor cells and effector T cells, killer-cell lectin-like receptor
G1 (KLRG1) has been used in mice; short-lived effector CD8+ T cells are generated from KLRG1high

precursors, and all memory CD8+ T cells are from KLRG1low precursors [66–68] (Figure 1). The TCR
sequences used by these T cells showed an overlap between TCM and TRM, suggesting that they could
derive from a single naïve T cell [69]. However, it is unclear whether an individual memory precursor
has the potential to differentiate into both TRM and TCM cells [70].

The generation and establishment of TRM cells in each tissue can significantly differ [71], indicating
that tissue-specific environments play pivotal roles in these processes [72]. Moreover, the transcriptional
regulation of these T cells poses specific requirements that vary between mice and humans [73,74].
However, both effector and memory T cells exhibit a similar pattern of chromatin accessibility,
as compared to naïve CD8+ T cells [75]. Particularly, the transcription factors (TFs) Blimp-1, ID2,
T-bet and STAT4 promote the development of TEM [67–79], while the expression of BCL-6, Eomes,
ID3, TCF-1 and STAT3 are associated with the generation of TCM (Figure 1c, blue boxes) [80–84].
In mice, TRM cells show an elevated expression level of the homolog of B lymphocyte-induced
maturation protein-1 in T cells (Hobit), B lymphocyte-induced maturation protein-1 (Blimp-1) and
Runx3 [85]. Together these TFs contribute to differentiation, residence and survival of TRM cells in
the tissue [86], and negatively regulate the expression of genes associated with tissue egress from
non-lymphoid organs [87]. Nevertheless, at the protein level, Blimp-1 expression increased only during
the effector stage, while Hobit mRNA and protein expression was constitutive during quiescence and
downregulated after activation [88,89]. Both transcriptional factors Hobit and Blimp-1 have overlapping
target genes that include cytotoxic molecules, such as granzyme B. During effector differentiation,
CD8+ T cells acquire these cytotoxic molecules. Blimp-1 initiates the cytotoxic effector function because
it is required for expression of granzyme B in murine effector T cells and TRM cells, while Hobit
maintains granzyme B expression in murine TRM cells during their memory phase [88]. After influenza
virus infection, CD8+ TRM require continuous recruitment from the circulating memory pool to establish
tissue resident cells, and this viral infection shows that Blimp-1, rather than Hobit, mediates the
formation of TRM cells within the lungs [86], potentially through control of the lineage choice between
TCM and TRM cells during the differentiation of influenza-specific CD8+ T cells [87]. These data
suggest that TRM cell differentiation towards a unique program of transcriptional regulation occurs in
a pathogen-specific manner. Besides, the differentiation of TRM cells is highly dependent on local cues
from the microenvironment and it has been shown that the expression of CD103 on T cells is dependent
on TGF-β, which is required for TRM cell establishment in some tissues. Indeed, the best-characterized
signal required for TRM cell development is mediated by TGF-β [90]; thus, CD8+ T cells that lack
TGFβR fail to upregulate the expression of CD103 after antigen exposure and subsequently fail to
differentiate into TRM cells [89–92]. The downregulation of transcription factors KLF2, Eomes and the
low expression of T-bet and TCF 1 is needed for proper TRM cell residency [93]. Both T-bet and Eomes
transcription factors control and down-regulate the signaling of TGF-β and upregulate CD103 [91].
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Also, low levels of T-bet are required to maintain cell surface expression of the IL-15 receptor β-chain
(CD122), which has been shown to be critical for the rapid proliferation of memory CD8+ T cells.
In response to viral infection, type-I IFNs trigger the expression of IL-15 that prepares memory T cells
for rapid division, independently of antigen re-exposure, by transiently inducing cell-cycle progression
by the mTOR complex-1 (mTORC1) signaling pathway [92,94,95].

The type II C-lectin CD69 was initially related as an early T cell activation marker because its
expression is rapidly induced on the surface of activated T cells [96]. Besides, CD69 is an antagonist
of the sphingosine-1-phosphate receptor (S1PR1) that limits egress by blocking responsiveness to
sphingosine-1-phosphate (SP1) gradients. The S1PR1 expression is commanded by the transcription
factor Krüppel-like factor 2 (KLF2), and its downregulation is needed for TRM cell formation in
mice [97,98]. The constitutive expression of CD69 is essential for TRM cell formation and is a typical
marker of peripheral TRM cells [93,98].

Another relevant surface molecule is CD44, a C-lectin that can act as a receptor for hyaluronic
acid (HA). This molecule is maintained at high levels in TRM cells populations, but CD44 alone does
not single out TRM cells from other CD8+ T cell populations [99]. The most relevant function of CD44
is the maintaining of cell structure through adherence to the extracellular matrix, mainly composed by
HA [100,101].

The very late antigen 1 (VLA-1), also known as CD49a, is the α-subunit of the α1β1 integrin
receptor that pairs with CD29 (integrin β1) [102]. CD49a is an adhesion molecule that binds to collagen
IV (Coll IV) present in the basement membrane of epithelium [103]. Functionally, the blocking or
genetic deletion of CD49a results in smaller TRM cell population at the mucosal site, which becomes
susceptible to secondary infections. These data suggest that CD49a plays a striking role in keeping
these cells in the lungs [104,105].

CD103 is α-subunit of the integrin αEβ7. It is involved in tissue retention by its interaction with the
ligand E-cadherin and is upregulated on TRM cells upon exposure to TGF-β [106]. In a mouse model of
influenza infection, CD103 contributes to the retention of pathogen-specific cytotoxic T lymphocytes
in the lungs and CD103 deficiency results in a reduction of CD8+ TRM cells in the lungs [107,108].
Also, the expression of CD103 is essential for TRM cell formation and constitutes a typical surface
marker of TRM cells.

TRM cells in each tissue are maintained by different microenvironments, implicating that the
process of the establishment and renewal of these cells varies between tissues (reviewed in [109]
and [110]). This also implies that the signals and mechanisms of action are also dependent on the
tissue milieu and, eventually, in the formation of particular structures for their maintenance [111–113].
For instance, in the lung tissue, an injury promotes the temporary generation of spatial niches called
Repair-Associated Memory Depots (RAMDs) that contribute to tissue regeneration and constitute a
niche that supports TRM cell maintenance in the lungs [114]. Furthermore, the time for which TRM

cells persist in each tissue over time may vary. Several studies have shown that the dynamics of the
establishment/renewal of TRM cells in the lungs is different as compared to the female reproductive
tract (FRT) or the skin [110]. Particularly, the establishment of TRM cells in the FRT and skin are trigged
by antigen-independent inflammation that recruits memory CD8+ T cells [115]. However, in the lung
tissue, TRM establishment depends on cognate-antigen and inflammation that promotes the formation
of RAMDs [116]. On the other hand, the presence of memory T cells in the lung airways is maintained
by continual recruitment from circulation [117], and presumably TRM cells in the airways could be
supported by RAMDs. Nonetheless, the transient formation of RAMDs may account for the shorter
longevity of CD8+ TRM cells in the lung as compared to the gut and skin [22]. In addition, another
essential aspect of T cells proliferation and differentiation is the exposure to damage/danger-associated
molecular patterns (DAMPs), such as the nucleotides ATP and NAD+ [118]. CD8+ TRM cells express the
P2RX7 receptor, but not TCM cells. Thereby, during infection or tissue damage, the release of DAMPs
contributes to depleting TRM locally [119]. For example, P2RX7 activation in vivo by exogenous NAD+
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led to a specific depletion of TRM while retaining circulating T cells, suggesting that the P2RX7 pathway
contributes to the regulation of TRM maintenance [120].

TRM elicits a faster and more potent response after antigen recognition than circulating memory
T cells [121]. TRM triggers an innate-like alarm characterized by the production of massive amounts of
effector molecules, such as: IFN-γ, TNF-α and granzyme B, as well as pro-inflammatory cytokines,
chemokines and antimicrobial molecules [122]. The contribution of TRM cells in mediating protective
responses has attracted the attention for developing vaccination strategies that exploit the ability of
these cells to establish long-lasting residency, which would prevent infections, particularly respiratory
infectious diseases [22–124].

4. TRM cells in Response to RSV Infection

Both in mice and humans, natural infection with RSV induces the generation of virus-specific
CD8+ TRM cells that provide protection against RSV infection and contribute to reducing the severity
of the disease. In the murine model, the adoptive transfer of airway CD8+ TRM from RSV-infected
mice into naïve recipients diminished the disease severity upon viral challenge. Additionally, RSV
infection in mice induced TRM recruitment in the airways and lung parenchyma [23]. Moreover, a study
performed with humans showed that adults with higher frequencies of RSV-specific CD8+ T cells in
the airways (many of which show a TRM phenotype), developed less severe lower respiratory tract
symptoms and reduced viral loads upon RSV challenge. It is noteworthy that increased protection
against RSV did not correlate with an increase in circulating CD8+ T cells in the blood, but instead
correlated with increased abundance of a preexisting TRM cell population in the airways prior to
infection [125]. Interestingly, during acute infection, RSV-specific CD8+ TCM cells were temporarily
accompanied by a CD103+/CD69+ population that could represent a cell population that migrates from
the blood to the airways, which could represent TRM cells [125].

In a non-human primate model, the infection of juvenile naïve African green monkeys with RSV
showed that the peak of abundance of virus-specific CD8+ T cells emerging in peripheral blood and
bronchoalveolar lavage (BAL) coincided with the declining of viral titers, suggesting that virus-specific
cellular responses contribute to the clearance of RSV infection [21]. Moreover, this study showed an
abundant CD103+ CD69+ population in BALs among the T cell population of these monkeys.

Influenza virus is another major respiratory pathogen, and CD8+ TRM cells in nasal epithelia
reduce viral transmission to the lungs, preventing pulmonary infection [126]. During secondary
influenza virus infection, TRM cells were shown to limit early viral replication, attenuating the duration
of inflammation in an IFN-γ-dependent fashion. Additionally, specific TRM showed an indispensable
role in cross-protection against different influenza virus strains. These data suggest that TRM plays a
critical role in protection against respiratory infections in the upper and lower respiratory tracts [40,127].

In a mouse model of influenza and Sendai virus infection, the intratracheal transfer of
antigen-specific CD8+ TRM cells from immunized into naïve mice was sufficient to confer protection
against respiratory virus infection. Interestingly, upon antigen exposure, the TRM secreted IFN-γ
quickly enough to limit viral replication in the lungs [128]. Additionally, the transfer of airway-resident
IFN-γ-deficient CD8+ TRM cells had a reduced protective potential. These findings suggest that
airway-resident CD8+ TRM cells contribute to the generation of protective immunity against respiratory
pathogens and to the rapid secretion of IFN-γ, which is essential for achieving a successful viral
clearance [128,129].

5. Tissue-Resident T Cells as a Target for Vaccine Development

While B cells mount responses against pathogens’ surface epitopes, CD8+ T cells attack mainly
the internal epitopes of pathogens, which are more conserved and therefore prevent the pathogen’s
escape of the immune system via antigenic drift. Therefore, the remarkable ability of CD8+ TRM cells
to serve as a first line of defense against reinfecting pathogens has become attractive so as to develop
vaccination strategies that take advantage of the ability of TRM cells to prevent respiratory infectious
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diseases [6,26,30]. Moreover, intranasal RSV infection in mice leads to the generation of antigen-specific
CD8+ TRM cells (CD103+/CD69+) in the lungs and airways. It has been shown that intranasal transfer
of CD8+ TRM cells from the airways of previously infected animals to naïve animals reduces weight
loss upon infection. Additionally, the transfer of airway pan-CD8+ cells protected the body upon
infection, ameliorating illness, reducing viral load and increasing IFN-γ secretion in the airways of the
recipient mice [23].

Experimental RSV vaccines are capable of inducing protective memory T cells, such as the
recombinant Mycobacterium bovis bacillus Calmette-Guèrin (BCG) expressing the RSV-N protein
(rBCG-N-hRSV vaccine expressing RSV-nucleoprotein N), which is capable of eliciting protective
immune responses [130,131]. This promising formulation developed under good manufacturing
practices (GMP) has been shown to be safe in preclinical models and induces a strong antiviral TH1/TH17

T-cell memory response [132]. Additionally, some formulations are capable of generating TRM cells.
For example, intranasal administration of virus-like particles containing RSV M and M2 proteins
has also been shown to induce TRM cell development in the lung [133]. Moreover, DCs pulsed with
Listeria monocytogenes as an immunization strategy were able to avoid the immunopathology caused by
circulating T cells, and protect against a subsequent RSV challenge by promoting the generation of
TRM cells when administered locally [134].

The route of antigen delivery is relevant for gathering TRM to the target tissue. For example,
immunization with recombinant cytomegalovirus expressing the RSV M protein generated TRM and
TEM CD8+ T cells populations when administered intranasally. However, when the vaccine was
administered intraperitoneally, these cell populations were undetectable [21]. These findings support
the notion that the route of antigen delivery in a vaccination context is a crucial determinant of immune
priming at the infection site. Controversially, the immunization with a vaccine candidate G1F/M2
plus CpG as an adjuvant by the intraperitoneal route elicits high levels of TCM cells and TH1 type
of TEM cells in the spleen, which may contribute to inhibition of lung inflammation. Nevertheless,
the intranasal immunization recruits high levels of TRM cells that lack or possess a weak TH1 type
immune memory that transfers from the spleen into the lung, which might promote lung inflammation
following RSV infection [135].

An interesting approach for generating TRM cells is designated “prime and pull,” which combines
vaccination (prime) with local administration of chemokines, adjuvants or antigens to recruit TRM

precursors to target tissues (pull) [136]. For example, zymosan can promote differentiation of effector
CD8+ T cells to their differentiation in lung TRM cells when administered as an adjuvant into the
airways without any antigen [137].

As previously described, the formalin-inactivated RSV vaccine developed in the sixties (FI-RSV)
caused vaccine-enhanced respiratory disease (ERD). Recently, it has been described that modulation of
the immune response via TLR agonists can help to regulate the exacerbated immune response elicited
by FI-RSV. TLR3 agonist CpG together with Notch receptor inhibitor L685458 markedly reduced
FI-RSV-enhanced airway pathology symptoms, such as weight loss, lung inflammation and airway
hyperresponsiveness. Moreover, the combined treatment promoted protective CD8+ TRM cells in
the lungs. Interestingly, none of the treatments by themselves alone reduced ERD. The proposed
mechanism seems to involve the suppression of TH17 memory responses and the promotion of
tissue-resident memory cells. Additionally, these results imply that the modulation of lung immune
memory with adjuvants might be a good strategy to generate TRM cells with antiviral properties [138].

The migration of antigen-specific T cells into the lungs, among other non-lymphoid tissues, is key
for containing peripheral infections, and its modulation is an important strategy for the development
of prophylactic tools [139]. The homing of T cells can be taught and would be a strategy for TRM

cell establishment after immunization. Tissue-associated DCs are relevant for imprinting the tropism
of T cells during the priming phase. For example, T cell activation by intestinal DCs generates a
gut-tropism because these cells are able to suppress in T cells the expression of skin-homing receptors
once the T cell is activated [140]. Moreover, the synthesis of specific metabolites by DCs in each tissue
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contributes to particular T cell migration programs defined by DC priming [141]. Therefore, repeated
intranasal immunizations, which promote the generation of TRM cells through the development
of a precursor cell pool, may be a promising strategy for the establishment of long-lasting lung
TRM-mediated immunity against respiratory pathogens.

6. Concluding Remarks

In summary, CD8+ TRM cells are noncirculating adaptive immune cells that are localized as
sentinels at the physical barriers that are susceptible to the entry pathogens. Located at such
places, they are key for the avoidance of reinfections by previously encountered microbial agents.
Their placing at these hotspots of pathogen encounters provides rapid protection against viral infections.
However, the signals that stabilize the TRM population in the lung have yet to be identified.

Considering that RSV is a respiratory viral pathogen that infects the respiratory epithelia in order
to replicate, we consider that vaccination strategies against RSV should promote cell-based immunity
that relies on the contribution of CD8+ TRM response in the lungs. This claim is supported by the
fact that CD8+ T cells in mice infected with RSV are essential for the clearance of this virus upon
secondary infection. However, pre-existing RSV-specific memory CD8+ T cells migrating into the
lungs lead to exacerbated disease severity and promote lethal immunopathology, mediated by the
abundant secretion of IFN-γ in the lungs [142]. Therefore, CD8+ T cells are a critical subset that can
positively contribute to viral resolution, or negatively contribute to vaccine-enhanced respiratory
disease [134,143]. In addition, the establishment of a protective immune response against RSV requires
neutralizing antibodies that reduce the infectivity of virions [144]. Thus, a cell-based immunity that
recognizes virus-infected cells and neutralizing antibodies that prevent the propagation of virus is
desirable in an effective vaccine.

An attractive approach for generating TRM cells was recently described and named “prime and
pull,” which combines vaccination (prime) with the local administration of chemokines, adjuvants
or antigens to recruit TRM precursors that target particular tissues (pull) [136]. This strategy has
the ability to recruit circulating effector T cells and memory T cells to sites where pathogens may
enter, resulting in the generation of local TRM that may significantly contribute to protection against
viral infections caused by viruses, such as herpes simplex virus type 2 [18], malaria at the liver-stage
of infection [145,146], human papillomavirus [147,148], influenza and even for developing cancer
vaccines [149]. The main characteristics of these cells are their long permanence in the tissues, as well as
their rapid recall responses that release molecules that mediate both antiviral and anti-tumor immunity.
These attributes are desirable in the development of vaccines against viral pathogens and for cancer
vaccines [150]. Thus, a detailed characterization of tissue-specific factors that regulate TRM biology
and their contribution both in pathology and protection could be crucial to new therapeutic designs.
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