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Abstract

Background: One of the strategies for protein function annotation is to search particular structural motifs that are
known to be shared by proteins with a given function.

Results: Here, we present a systematic extraction of structural motifs of seven residues from protein loops and we
explore their correspondence with functional sites. Our approach is based on the structural alphabet HMM-SA
(Hidden Markov Model - Structural Alphabet), which allows simplification of protein structures into uni-dimensional
sequences, and advanced pattern statistics adapted to short sequences. Structural motifs of interest are selected by
looking for structural motifs significantly over-represented in SCOP superfamilies in protein loops. We discovered
two types of structural motifs significantly over-represented in SCOP superfamilies: (i) ubiquitous motifs, shared by
several superfamilies and (ii) superfamily-specific motifs, over-represented in few superfamilies. A comparison of
ubiquitous words with known small structural motifs shows that they contain well-described motifs as turn, niche
or nest motifs. A comparison between superfamily-specific motifs and biological annotations of Swiss-Prot reveals

ATP/GTP, NAD(P) and SAH/SAM.

that some of them actually correspond to functional sites involved in the binding sites of small ligands, such as

Conclusions: Our findings show that statistical over-representation in SCOP superfamilies is linked to functional
features. The detection of over-represented motifs within structures simplified by HMM-SA is therefore a promising
approach for prediction of functional sites and annotation of uncharacterized proteins.

Background

Protein structures can usually be broken down into their
component secondary structures: a-helices, -strands and
loops. a-helices and B-strands are regular secondary struc-
tures recurrent in many proteins. Protein loops corre-
spond to all residues not assigned to regular secondary
structures. Unlike a-helices and f-strands, protein loops
were initially seen as random coils because their sequences
and structures are highly variable. But the ever-increasing
availability of protein structures in the Protein Data Bank
(PDB) allowed extensive analyzes of protein loops, which
suggested a more complex view. For example, Panchenko
et al. [1] analyzed the evolution of protein loops and iden-
tified a linear correlation between sequence similarity and
mean levels of structural similarity between loops in
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protein families. They suggested that loops evolve through
a process of insertion/deletion and concluded that even
longer loop regions cannot be defined as irregular confor-
mations or random coils. Several classifications of short
and medium loops have been developed [2-7], according
to the type and structure of flanking secondary structures,
and the length and geometry of loops. These classifications
have revealed the existence of recurrent amino-acid
dependent loop conformations.

Loop regions play a role in protein function [8]. They
may be involved in the active sites of enzymes [9] or in
binding sites [10-13]. The classification of protein loops
has then been used to investigate the link between pro-
tein loops and function. From the loop classification sys-
tem ArchDB [3], Espadaler et al. [14], developed an
approach to identify loop clusters associated with the
protein functional sites provided by the PROSITE data-
base [15] or Gene Ontology (GO) [16]. They showed that
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loops contain structural motifs involved in the functional
sites of proteins. Using a similar approach, Tendulkar et
al. [17] and Manikandan et al. [18] extracted octapeptide
clusters involved in protein function. They first classified
octapeptides using geometric invariants [17] or dihedral
angles [18]. They then identified octapeptide clusters
associated with protein functions provided by SCOP
superfamilies [19] or GO terms. Tendulkar et al. found
that functional clusters consisted mostly of octapeptides
extracted from loop regions [17]. In a similar vein,
Polacco et al. [20] developed the GASPS approach
(Genetic Algorithm Search for Pattern in Structure) to
extract the structural motifs most useful for identifying
SCOP superfamilies. Ausiello et al. [21] developed an
approach called FunClust to identify conserved residues
of three-dimensional (3D) structural motifs through local
structural comparisons between non homologous pro-
teins. The common point between all these studies is
that no prior information about the location of the func-
tional sites is required, making it possible to discover
new functional sites.

Contrary to the methods cited above, other approaches
start from known functional sites and look for structural
motifs associated with them [22-26]. In all these
approaches, structural motifs are learned through struc-
tural alignment [27], conservation of environment
[26,28], or calculation of geometrical parameters [22-24].
The goal, here, is different than the one pursued by clas-
sification studies: since the focus is set on known func-
tional sites, these approaches are dedicated to the
prediction of these known functional sites, not to the dis-
covery of new sites with functional implication.

There is a third family of studies that we need to intro-
duce before presenting our work: the identification of
functional sequential motifs in DNA sequences using
pattern statistics. The strategy consists in searching for
nucleotide motifs with unusually high or low frequencies,
i.e. over- or under-represented, with respect to a refer-
ence model (generally a homogeneous Markov model)
[29,30]. The underlying idea is that the unusual fre-
quency of a sequence motif in a genome reflects a selec-
tive pressure on this motif, suggesting a functional role.
Such studies have led to the successful identification of
functional motifs, such as restriction sites [31], cross-
over hotspot instigator sites [32] and polyadenylation
signals [33].

In this paper, we propose an approach inspired by this
last category of studies to identify structural motifs in
loops involved in protein function. Our approach is based
on two components. The first one is the structural alpha-
bet HMM-SA described in [34-37]. It is a collection of 27
structural prototypes of four residues, called structural
letters, connected by transition rules. HMM-SA allows
simplifying protein 3D structures into one-dimensional
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(1D) sequences of structural letters. After this simplifica-
tion step, the search for 3D structural motifs is reduced to
the search for structural words in the 1D structural-letter
sequences. We can then apply the second component of
our approach: the SPatt software that allows computing
exact statistics in short sequences [38], which we use to
detect over-represented structural words. We specifically
focus on structural motifs of seven residues in loops, fol-
lowing the protocol developed in [39]. In this previous
publication, we have shown that this protocol allowed
grouping together seven-residue fragments with very simi-
lar structures, extracted from both short and long loops
[39]. An advantage of this method is that it does not
require pairwise comparison of all seven-residue frag-
ments. In this study, we further investigate the functional
implication of over-represented structural motifs. We con-
sider the SCOP classification at the superfamily level,
which groups protein with similar functions. For every
structural word, we compute the over-representation sepa-
rately in each SCOP superfamily. Based on the statistical
over-representation in SCOP superfamilies, we make the
distinction between two types of over-represented struc-
tural words within loops: structural words over-repre-
sented in multiple superfamilies, called ubiquitous words,
and structural words over-represented in one or few
superfamilies, called superfamily-specific words. To assess
the role of these words, we (i) investigate the correspon-
dence between a subset of ubiquitous words and known
recurrent motifs, such as turns and niches and (ii) check
the link between a subset of superfamily-specific words
and functional sites of proteins, provided by Swiss-Prot
functional annotations. This validation step confirms that
superfamily-specific words are involved in some functional
sites of proteins, such as the binding sites of small ligands.
Our method thus allowed the identification of structural
motifs important for protein function. Some were pre-
viously known as involved in protein functions, others are
new structural motifs with a putative functional role. Our
results indicate that our statistical approach is a promising
approach for the detection of new structural motifs of
interest in protein structures.

Methods

Protein data sets

Initial data set

A list of 8 119 protein structures was extracted from the
PDB of May 2008 with PISCES software [40], using the
following criteria: data obtained by X-ray diffraction, with
a resolution better than 2.5 A, longer than 30 residues,
less than 50% sequence identity between any pair. We
restricted this list to the 5 429 structures classified in
SCOP [19]. As it is assumed that proteins grouped in the
same SCOP superfamily have similar structure and func-
tion, this level was chosen for our analysis. For statistical



Regad et al. BMC Bioinformatics 2011, 12:247
http://www.biomedcentral.com/1471-2105/12/247

analysis, we further restricted the list to proteins classi-
fied into superfamilies with at least two members in the
data set, corresponding to 4 911 proteins from 1 493
superfamilies. On average, a superfamily contains 7.90
proteins (£13.78).

Annotation data set

To validate the functional role of over-represented struc-
tural words, we analyzed their correspondence with func-
tional annotations extracted from the Swiss-Prot database.
Swiss-Prot is a curated sequence database providing a high
level of annotation (description of protein function,
domain structure, post-translational modifications, var-
iants, etc.), a minimal level of redundancy and a high level
of integration with other databases [41]. To extract func-
tional annotations from our initial data set, we used the
PDB/UniProt Mapping database [42], which consists of
several files mapping the PDB and UniProt codes, and
PDB and UniProt sequence numbering. Only 1 487 of the
4 911 protein structures of our initial data set are present
in the PDB/UniProt Mapping database. From this set of 1
487 proteins, called annotation data set, we extracted the
Swiss-Prot annotations. We focused on the feature table
listing post-translational modifications, binding sites,
enzyme active sites, local secondary structure or other fea-
tures. We extracted only the following annotations:
“Repeat” (Positions of repeated sequence motifs or
repeated domains), calcium, DNA, nucleotide-binding
sites, metal-binding sites (cobalt, copper, iron, magnesium,
manganese, molybdenum, nickel, sodium), zinc finger,
active sites, and binding sites for any chemical group (co-
enzyme, prosthetic group, etc).

Validation data set

This data set was used to double-check the correspon-
dence between structural motifs and Swiss-Prot annota-
tions. From PDB/UniProt Mapping database, we
extracted a set of 2 640 proteins classified in SCOP.
From this protein set, we retained the 2 636 proteins
obtained by X-ray diffraction, with a resolution better
than 3 A, longer than 40 residues and presenting less
than 95% sequence identity between any pair.

Extraction of over-represented structural motifs from
protein loops

Our approach, summarized on Figure 1 is based on two
components: (i) the structural alphabet HMM-SA that
allows the simplification of protein structures into struc-
tural-letter sequences, (ii) the SPatt software that allows
the computation of exact pattern statistics in simplified
structural-letter sequences. We describe below these
two components.

Simplification of protein structures by HMIM-SA and
extraction of structural motifs

HMM-SA is a structural alphabet of 27 structural proto-
types of four residues, called structural letters, established
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with hidden Markov models. The main steps of HMM-
SA construction are the following (see [34,36] for details):

1. the backbone of protein structures of a large data
set are split in overlapping fragments of four
residues,

2. each four-residue fragment is described by the
three distances between the non-successive ¢-car-
bons and the projection of the fourth o-carbon on
the plan formed by the first three ones,

3. four-residue fragments are classified according to
their geometry and their succession in protein struc-
tures, using a hidden Markov model where the
inputs are the vectors of distance descriptors of each
fragment.

4. the optimal structural alphabet model is selected
using the parsimony principle to choose the model
that better fits the data with the smallest possible com-
plexity. In this goal, structural alphabets of different
lengths are compared using the Bayesian Information
Criterion, which balances the log-likelihood of the
model and a penalty term related to the number of
parameters of the model and the sample size.

The optimal HMM-SA resulted in 27 classes of four-
residue fragments and the transition matrix between
these classes. For each class, labelled by letters (a, A-Z)
and named structural letters, a representative four-resi-
due fragment, presented in Figure 2A, is computed. It
has been shown that four structural letters (A, a, W,
V) are specific to o-helices, five (L, M, N, T, X) are
specific to fB-strands and the remaining 18 describe
loops [36].

HMM-SA can be used to simplify a protein structure
of n residues into a sequence of (n - 3) structural letters.
This simplification takes into account the structural
similarity of four-residue fragments with the 27 struc-
tural letters. It is achieved by a dynamic programming
algorithm based on Markovian process to obtain maxi-
mum a posteriori encoding using the Viterbi algorithm.
The input is the sequence of distance descriptors of the
four-residue fragments of the input structure. The out-
put is a sequence of structural letters, where each struc-
tural letter describes the geometry of a four-residue
fragment.

We used HMM-SA to extract structural motifs from
protein loops using the protocol established in a previous
study [39] and summarized in Figure 2. We first simpli-
fied all the 4 911 structures of our initial data set in
sequences of structural letters. Since we focused our ana-
lysis on protein loops, regular secondary structures were
removed, based on the fact that some structural letters
are specific to regular secondary structures [36,37]. From
the initial data set, we obtain 90 811 protein loops
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Figure 1 Protocol used in this study. Non redundant protein structures were simplified using the structural alphabet HMM-SA and structural
motifs extracted using the protocol presented in Figure 2. Over-represented structural motifs in SCOP superfamilies in protein loops were
detected using the SPatt software. Based on SPatt statistics, two types of words were distinguished: ubiquitous words, over-represented in
several superfamilies, and superfamily-specific words, over-represented in few superfamilies. Some ubiquitous words were compared with known
structural motifs: B-turns identified by the ExtractTurn software and structural motifs presented in the Motivated Proteins database. Some
superfamily-specific words were compared with functional sites, using Swiss-Prot annotations and external softwares.
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Figure 2 Protocol used for extraction of structural motifs. A: the 27 structural letters of HMM-SA. B: input 3D structure. C: sequence of
structural letters resulting from the simplification. D: extraction of loops based on regular expressions of structural letters; the geometry of a

loop encoded by SPBDRPI is shown on the right side. E: systematic splitting of loops into overlapping words of four consecutive structural
letters. The geometry of two structural words, KGDR and DRPI, are shown with superimposition of their fragments. Fragments are
superimposed with ProFit software http://www.bioinf.org.uk/software/profit and represented with Pymol http://www.pymol.org.

encoded into structural-letter sequences. In these 90 811
protein loops, we chose to study the structural motifs
formed by four consecutive structural letters (i.e., seven
residues). The choice of the length of four structural let-
ters is motivated by our previous work [39], where we
showed that it allows a compromise between considering
long fragments on the one hand, and avoiding data spar-
sity on the other hand. The 90 811 protein loops are split
into 238 158 seven-residue fragments, described by
25 304 different words of four structural letters. As we
have previously shown that structural words with low fre-
quencies are linked to structural flexibility and regions
with uncertain coordinates [39], we did not consider
structural words seen less than five times in our initial
data set. This results in a set of 11 294 different structural
words, grouping 224 148 seven-residue fragments. Each
word is seen on average 20 times (+32), meaning that it
groups on average 20 seven-residue fragments.

Computation of pattern statistics using SPatt

We used the SPatt software [38,43], available from
http://stat.genopole.cnrs.fr/spatt/index.html to identify
structural motifs over-represented in SCOP
superfamilies.

Here, we computed the over-representation of four-
structural-letter motifs in sets of protein loops grouped
by SCOP superfamilies. The considered sequences are
typically short. The SPatt approach allows the calculation
of exact statistics in sets of short sequences [44,45]. The
over-representation of a word w in a set of sequences is
assessed by comparing its observed occurrence (N,s)
with the theoretical occurrence (Ny,.,) expected under a
background model. The over-representation score Lp of
w is given by

Lp(w) = —log,o(p — value) (1)
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where the p - value is defined by:

pvalie = P(Nieo = No) = PINiko = Nots 1 + PNiteo = (Nt 1)1 + PLNieo = (N 2] . (2)

where P denotes the probability of the events. For
instance, a Lp score of 3 means that a word is over-repre-
sented with a p - value of 107, SPatt allows the exact com-
putation of the distribution of the word occurrence Ny,
and thus the corresponding p - value. The approach imple-
mented in SPatt is based on the notion of automata. We
briefly present it below, see [44,45] for details. Let us con-
sider, for example, the word PZCD. The first step in SPatt
consists in building an optimal Markov chain embedding
through a Deterministic Finite Automata (DFA) shown in
Figure 3A. The second step in SPatt consists in passing the
structural-letter sequences in the DFA, resulting in the cor-
responding state sequence as illustrated in Figure 3B. By
definition these state sequences are a heterogeneous first
order Markov chain embedding over the alphabet
Q' = {states of the DFA}, with a starting distribution m,
(d e [1, r]) and a transition matrix 7. The computation of
my and T are explained in [44]. Then, these corresponding
Markov chain embedding parameters allow the
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computation of the generating function of N,, in each
structural-letter sequence. From the generating functions,
GNyoo Of Nyjeo, all terms of equation 1 are deduced, see
[44]:

GNueo (V) = G, (1) X G, (¥) X -+ X GN,(¥) (3)
= Z P(Ntheo = Nobs)yNObs (4)
Nops=0

A simple example of the computation of p - value of
word using DFA is presented in details [44]. Note that,
contrary to approaches based on the hypergeometric
distribution approximation, the exact approach does not
require any correction to take into account the size of
the data set in which the patterns are searched. This is
explicitly taken into account during the exact p - value
computation.

In this work, we computed the over-representation
scores for four structural-letter words, in the loop regions
of proteins classified into SCOP superfamilies. In each of

A

A,B,C,D,E,F,G,H,LJK,.LM,
N,0,QR,S,T,UVW,X.¥Za

A.B.C.D,EF,GHLIK.LM\N,O,QR,S.T.UVWX,YZ,a

A.B,C,D.EF,G,HLIKLMN,0,QR,STUV,WX)Y,Za

L3

" -
P /I—’} ” 3
AB:GD,EF,G,HLILLKLMN, 1
0.QRS,LUV.WX.Ya \ C
\
2
P
AB.CDEFGHLIKLMN,
0.QRS,LUV.WX.Y.Za
B

> 2pby_A: 213-226

Structural-letter sequence: DFSKPZCDSKGIKH
State sequence : 00001234000000

Figure 3 Example of Markov chain embedding for the PzCDpattern. A: Deterministic Finite Automaton (DFA) associated to PZCD. Initial
state is highlighted in green, transiting states in blue and final state in red. One proceeds in this DFA according to the labels associated to the
rows between states. Each occurrence of PZCD will reach the final state. B: state sequences obtained after passing of a structural-letter sequence
to the DFA.
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the 1 493 superfamilies, we computed the Lp scores of
those words, among the 11 294 that meet the condition
of being observed at least five times in the superfamily.
In order to take into account multiple testing, we used
the Bonferroni correction to set the significance thresh-
old, resulting in a final threshold equal to 5.97.

We further considered two criteria:

o Lp,a.: the maximal Lp score of a word among all
superfamilies,

« nby: the number of superfamilies in which a word
is significantly over-represented.

These two criteria enabled us to differentiate two
types of over-represented structural words, as defined in
Table 1: words over-represented in a large number of
SCOP superfamily, with Lp,,,, > 5:97 and nby >= 5,
which we refer to as ubiquitous words and highly over-
represented in one superfamily, with Lp,,,, > 5.97 and
nbg < 5, which we refer to as superfamily-specific words.

For comparison, we also calculated these criteria over
randomized data sets obtained by randomly reassigning
loops to SCOP superfamilies.

Extent of coverage of structural words

Let us consider a data set of protein structures encoded
in structural-letter sequences and a subset of structural
words. The coverage of the data set by the subset of
structural words can be calculated at various aspects,
illustrated in Figure 4:

« word coverage: the fraction of structural words
included in the word subset,

» fragment coverage: the fraction of fragments
encoded by words from the subset,

« loop length coverage: the fraction of residues in
loops covered by words from the subset,

« protein coverage: the fraction of proteins contain-
ing at least one of the words from the word subset.

Table 1 Definition of word types
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Validation of structural or functional role of structural
words

Our protocol enabled us to extract over-represented
structural motifs in from loops. Then, we tried to assess
the implication of these words in a structural or a func-
tional point of view. Specifically, we investigated (i) the
link between ubiquitous words and known structural
motifs and (ii) the link between superfamily-specific
words and known functional sites. This step of valida-
tion was performed on the annotation and validation
data sets, only for a subset of the most significantly
over-represented structural words, called extreme words,
as defined in Table 1.

Validation of the structural role of extreme ubiquitous
words

Ubiquitous words were compared with well-character-
ized 3D motifs: B-turns, niche and nest motifs. 3-turns
are detected in protein structures with ExtractTurn soft-
ware [46]. Turns are defined as tetrapeptides with an
C¥ — C?, distance lower than 7 A, with the two central
residues i + 1 and i + 2 in a non helical state [47]. Nest
and niche motifs are identified using the Motivated Pro-
teins database [48]. Nest motifs are fragments of three
consecutive residues, in which the main-chain NH of
residue i and the main-chain NH of residue i + 2 have
the potential to interact weakly with an anionic group
[49]. Niche motifs are formed by three or four consecu-
tive residues in which the main-chain CO of residue i
and the main-chain CO of the last residue i + 2 or i + 3
have the potential to interact weakly with a cationic
group [50]. The Motivated Protein database stores the
nest and niche motifs detected in a data set of 400
representative proteins. Only 249 of these 400 proteins
are also included in our initial data set. The comparison
of structural words with nest and niche motifs is thus
restricted to these 249 proteins. The Motivated Protein
database was also used to detect ends of B-turns. For a
pair formed by a structural word and a known structural
motif, we computed a precision measure given by the

Name

Definition

Structural word

Sequence of four successive structural letters

Over-represented word

Structural word with Lp,q, = 5.97

Ubiquitous word

Structural word with Lppa == 597 and nbys >= 5

Extreme ubiquitous word

Structural word with Lppax == 10 and nby >= 5

Superfamily-specific word

Structural word with Lppax = 597 and nbsx < 5

Moderately superfamily-specific

Structural word with Lpa == 10 and nbsx < 5

Extreme superfamily-specific word

Structural word with Lpa == 50 and nbgx < 5

Functional word

Extreme superfamily-specific word with a precision> 40% for a Swiss-Prot annotation

*: extreme structural words are subject to further examination to validate their structural or functional role.
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Figure 4 Definitions and illustration of coverage rates. We
considered a set of seven words of four structural letters (SPBD,
UQRS, RBTU, DOCI, ZPCD, PCDU, DUGO), grouping 14 seven-
residue fragments. Let us consider that these words and their
occurrence are examples and not the real occurrences in the data
set. From this set of words, we focused on three words, named
restricted set and presented in red in A, grouping seven seven-
residue fragments. Various coverage rates were calculated for these
words. A: word coverage, the fraction of structural words included
in the restricted set. B: fragment coverage, the fraction of fragments
encoded by words from the restricted set. C: loop-length coverage,
the fraction of residues in loops covered by words from the
restricted set. D: protein coverage, the fraction of proteins
containing at least one of the words from the restricted set.

proportion of fragments encoded by the structural word
that contain the known structural motif.

Validation of the functional role of extreme superfamily-
specific words

The functional implication of superfamily-specific struc-
tural words was explored using the biological annota-
tions from the Swiss-Prot database extracted from the
annotation data set. The comparison of structural words
with Swiss-Prot annotations extracted from annotation
data set is limited to the 1 487 proteins. In an effort to
limit this gap, we built a second data set, named valida-
tion data set composed of 2 636 proteins and favoring
the selection of annotated proteins.

In order to quantify the correspondence between
structural word and biological annotations, we com-
puted precision and sensitivity measures of the detection
of annotations using words. We considered two levels of
annotation: the first level, named annotation, corre-
sponds to the “Feature key” and the second level, named
second-level annotation, corresponds to the “Descrip-
tion” that provides a description of the annotation. For
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example, when the annotation is “binding”, the second-
level annotation indicates the ligand type.

The precision is defined as the proportion of frag-
ments encoded by a structural word that are annotated
by a given annotation considering the two levels of
annotation. A structural word with high precision is said
to be functional. In order to take into account the spar-
sity of Swiss-Prot annotations, we set a permissive
threshold of 40% precision. The sensitivity (also called
recall) is defined by the proportion of a given annotation
that is covered by a structural word. To compute the
sensitivity, we retained only annotations extracted from
protein loops, annotations seen in regular secondary
structures regions are discarded.

In complement to Swiss-Prot annotations, which are
of high quality but far from complete, we used various
external tools to identify putative functional motifs.

« The Catalytic Site Atlas (CSA) database [51] docu-
ments enzyme active sites and catalytic residues in
enzymes of known 3D structure. It identifies the
residues directly involved in the enzymatic reaction.
+ The Ligplot software [52] allows the identification
of interactions between proteins and ligands, by pro-
viding schematic diagrams of protein-ligand interac-
tions from a given PDB file.

+ The REP software [53] is used to predict repeat
regions from protein sequences. This software uses
an iterative homology-based repeat finding method.

+ The SitePredict software [24] http://sitepredict.
org/ is used to predict nucleotide and calcium-
binding sites. SitePredict is a machine learning
method based on diverse residue properties, includ-
ing the spatial clustering of residue types and con-
servation during evolution. Only residues with a
score above 0.5 are considered to be involved in
the binding site.

Results

Extraction of structural motifs over-represented in SCOP
superfamilies

The goal of our study is to systematically identify struc-
tural motifs of interest, i.e. motifs with structural or
functional implication, in protein loops. We made the
hypothesis that structural motifs of interest are subject
to selective pressure during evolution, which should
result in structural words with unexpectedly high fre-
quency in protein structures simplified into structural-
letter sequences. In order to make the connection with
protein function, we surveyed the over-representation of
structural words in SCOP superfamilies, by computing
over-representation scores for all structural words seen
at least five times in a SCOP superfamily.
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We counted a total of 1 705 structural words over-
represented in at least one SCOP superfamily in the
initial data set, corresponding to a coverage rate of 15%
of the words and 30% of the fragments, as reported in
Table 2. Based on the over-representation in SCOP
superfamilies, we built two statistical criteria to classify
the structural words: Lp,,,., which is the maximum
over-representation score Lp observed among SCOP
superfamilies, and nbg- indicating the number of super-
families in which a structural word is over-represented.
For example, structural word GSUS has a Lp,,,,, value
equal to 140 and a nby value equal to 3, meaning that
this word is over-represented in three SCOP superfami-
lies and very strongly in one of them with a Lp score
equal to 140, i.e. a p - value equal to 10™*°, Average
values observed for Lp,,,, and nby- are reported in
Table 3. Globally, structural words display an average
Lp,ax equal to 4.3 + 5.6, with extreme values observed
for the words PCDS (Lp,,..x = 0.39) and UODO (Lp,,,ux=
210). The mean value of nby- is equal to 0.2 + 0.7, ran-
ging from 0 to 25, indicating that many of these words
are not exceptional in any superfamily. We assessed the
relevance of these numbers by comparing them with
those obtained with randomized SCOP classifications.
The number of over-represented words using random
SCOP classifications is significantly smaller than that for
SCOP: only 47 words are over-represented for the ran-
dom SCOP classification, see Table 3. We can therefore
conclude that over-represented words significantly
depart from random regarding their repartition in SCOP
superfamilies.

Figure 5 presents the values of Lp,,,, versus nbgy- for
all structural words seen at least five times in a SCOP
superfamily. Interestingly, this representation reveals
that some structural words are over-represented with
very high scores in a small number of superfamilies,
whereas others are over-represented with more moder-
ate scores but in several superfamilies. Accordingly, we
define two classes of words: ubiquitous and superfamily-
specific words, as detailed in Table 1. Ubiquitous words
are over-represented in several superfamilies, suggesting
that they may be involved in protein structures. By con-
trast, superfamily-specific words are over-represented in
few superfamilies, suggesting a possible association with
functional sites. We then carried out an analysis of (i)
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the link between ubiquitous words and known recurrent
structural motifs, and (ii) the link between superfamily-
specific words and functional sites in proteins. This ana-
lysis was carried out only for a subset of the ubiquitous
and superfamily-specific words, the extreme ubiquitous
words and extreme superfamily-specific words as
detailed in Table 1.

Link between extreme ubiquitous words and known
structural motifs

We focused on extreme ubiquitous words, defined by
Lpyax 2= 10 nbgy 2= 5. As reported in Table 2 these 24
words account for only 0.2% of words but cover more
5% of loop-length and are seen in 63% of proteins (see
Figure 4 for the definition of coverages). These words
are highly recurrent, with a mean occurrence equal to
326 (+ 216). They are seen in 32 to 285 superfamilies
and over-represented in 5 to 25 superfamilies.

Some recurrent structural motifs in loops are well
characterized and described in the literature. These
motifs include f-turns [54,55], o-turns [56] and y-turns
[57,58], nests [49] and niches [50]. They may play a role
in protein folding and stability [59,60] or in the biologi-
cal function of proteins, within the enzyme active sites
or binding sites [49,61]. We thus investigated whether
extreme ubiquitous words correspond to some of these
small structural motifs. The results of this analysis are
reported in Table 4.

B-turn motifs

We compared extreme ubiquitous words and standard
B-turns [54,55]. As B-turns are four-residue long and we
consider seven-residue motifs, the question is to know
whether B-turns are included in, or overlap with
extreme ubiquitous words. As shown in Table 4, eleven
structural words (PZCD, HBDS, ZCDS, UFQK, GYUQ,
YBDS, FQLG, YZDS, GUDO, FFFI, FQKG) are clearly
associated with B-turns, and two words (SLGI, QLGI)
contain the three last residues of a turn motif. To evalu-
ate the structural diversity of this set of eleven extreme
ubiquitous words, we computed the a-carbon Root-
Mean-Square Deviation (RMSD) between all word-pairs.
The RMSD between two words is measured by the aver-
age RMSD between 30 fragment pairs randomly selected
within pairs of seven-residue fragments encoded by the
two words. The set of eleven words clearly associated

Table 2 Coverage rate (%) of different word subsets in the initial data set

Word subset Number of words

Word coverage

Fragment coverage Loop-length coverage  Protein coverage

Over-represented 1705 15 30 44 61
Extreme ubiquitous 24 0.2 34 5 63
Extreme superfamily-specific 23 0.2 0.7 1 17
Relaxed ubiquitous 40 04 4.5 6.5 72
Moderately superfamily-specific 114 1 3 5 77
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Table 3 Statistics for the various word subsets
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Data set Word subset Word number LPmax nbgg
Initial data set All words 11 294 43 (5.6) 0.2 (0.7)
Over-represented words 1705 113 (12.1) 1304)
Extreme ubiquitous words 23 26 (14) 10.33 (5.5
Extreme superfamily-specific words 24 89 (47) 14 (0.4)
Initial data set+random SCOP? All words 11 294 25 (0.9) 0.006 (0.4)
Over-represented words 45 (7) 10.7 (11.9) 19 (22)

We report average values with standard deviation between brackets. % twelve random SCOP classifications were generated by permuting the loops in the real

SCOP classification.

with f-turns comprises structural words with very dif-
ferent conformations, with a mean RMSD of 2.12 A (¢
1.05). This reflects the diversity of B-turns motifs. For
example, word PZCD contains two type I turns, whereas
word UFQK contains one type II turn.

An example of an extreme ubiquitous structural word
corresponding to B-turn motifs, word PZCD, is illu-
strated in Figure 6 (upper panel). The superimposition
of PZCD-fragments and the amino-acid logo [62] asso-
ciated to the PZCD-fragments, presented in Figure 6A
and 6B, shows that PZCD-fragments are very similar in
terms of structure and present some amino-acid specifi-
cities at positions 2, 5 and 6. As shown in Figure 6C,
this word is very frequent (seen 560 times in the initial
data set), and over-represented in 25 superfamilies with

25
|

nbg-

UODO|
GZDO
uzcl

GSUS
USLG

{2 SONORIBEEEXID SLGS DODQ YUOD
© —
“
T T T T T
0 50 100 150 200
LPmax

Figure 5 Plot of statistical criteria Lp,,,qx and nbg for the
structural words seen at least five times in a SCOP superfamily.
Black: words with Lp,,.« <= 5.97. Red: extreme superfamily-specific
words (Lpmaex =50 and nbys > 5). Orange: extreme ubiquitous words
(Lpmax =10 and nbg~ > 5). Pink: over-represented words with Lpnayx
> 5.97 not discussed in this study.

an Lp,,,, equal to 34.82. The representation of two pro-
teins containing PZCD-fragments shows that this ubiqui-
tous word is present in superfamilies with different
folds. As reported in Table 4, 99.8% of PZCD-fragments
contain f-turns. Specifically, they contain two f-turns,
at positions 2:5 and 3:6.

However, some of the fragments encoded by the eleven
words strongly associated with -turns, given in Table 4,
do not contain turns as assigned by the ExtractTurn soft-
ware. This represents a small fraction of the fragments:
only 342 fragments out of 8 369, i.e. 4%. Out of these 342
fragments, 79 fail the turn assignment because they have a
C¥ — C%, distance greater than 7 A and 263 because they
have an internal residue in the helical state. For example,
only one of YZDS-fragments is not identified as a turn
because the distance is equal to 7.08 A (2ahu_A: 259-262).
Our structural words therefore group together fragments
including fragments identified as turns and some that nar-
rowly fail the turn assignment. This suggests that struc-
tural motifs could be used to assign “relaxed” turns and
supports the notion of turn-like conformations, introduced
by Fuchs et al, corresponding to four-residue fragments
with a C¥ — C¥ distance around 7 A [63].

Nest or niche motifs

We also compare extreme ubiquitous words with the 12
small hydrogen-bonded 3D motifs extracted from the
Motivated Protein database [48]. Results of this analysis
are reported in Table 4. As stated in the Methods section,
there is very little overlap between our initial data set and
the proteins stored in the Motivated Protein database.
Even on such a small number of fragments, the compari-
son reveals that seven extreme ubiquitous words (DRPT,
DSPI, DSGI, DSKG, DSKH, DOIP and OIPI) corre-
spond to nest motifs, with precision greater than 93%
and two words (BQGI and HBBQ) correspond to niche
motifs with precision greater than 95% precision. The set
of words corresponding to nest motifs includes structural
words with similar conformations, such as DRPI, DSPI
and DSGI or DSKG and DSKH. We also note that some
structural words overlap: in 81% of cases, structural word
DOIP is immediately followed by letter I, forming the
five-structural letter word DOIPI.
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Table 4 Correspondence between extreme ubiquitous words and small structural motifs

Statistics in the initial data set

Comparison with known motifs

Word Occurrence Lpmax nbsp/nby” Known motif Match® Precision (%)
B-turn comparison
PZCD 903 34.82 25/211 B-turn 902 100
HBDS 1588 2197 22/285 B-turn 1588 100
ZCDS 1112 27.55 22/246 B-turn 996 88
UFQK 449 2777 15/134 B-turn 441 98
GYUQ 278 14.40 11/96 B-turn 278 100
YBDS 391 20.60 9/136 B-turn 391 100
FQLG 242 2537 8/77 B-turn 236 98
YZDS 397 1030 7/130 B-turn 394 99
GUDO 43 27.55 6/11 B-turn 43 100
FFFI 265 2162 6/80 B-turn 206 78
FOKG 237 3277 5/71 B-turn 223 94
Motivated Proteins comparison®

SLGI 258 15.60 8/114 B-turn end 11 (13) 85
QLGI 185 15.16 7/89 B-turn end 4 (4) 100
DRPI 232 14.95 14/94 Nest 9 (10) 90
DSPI 541 2715 9/158 Nest 14 (15) 93
DSGI 387 3245 7/115 Nest 20 (20) 100
DSKG 346 23.16 9/145 Nest 9 (9) 100
DSKH 411 2046 7/145 Nest 10 (10) 100
DOIP 219 63.30 7/82 Nest 10 (10) 100
OIPI 201 69.81 8/71 Nest 11(11) 100
HBBQ 616 2329 10/219 Niche 23 (23) 100
BOGI 337 21.06 9/130 Niche 18 (19) 95
SKGI 34 18.93 12/127 - NA

DGPI 56 15.77 5/32 - NA

9 nby denote the number of SCOP superfamilies in which a structural word occurs. b match denotes the number of fragments containing a known motif. <
comparison with Motivated Proteins motifs is restricted to the set of proteins common to our database and the Motivated Proteins database. In this case, the
number between brackets denotes the number of fragments involved in the comparison.

Figure 6 (lower panel) provides an example of a struc-
tural word, DRPI, containing a nest motif. We observe
that DRPI-fragments are very similar in terms of struc-
ture and present some weak amino-acid specificities in
positions 3: 5 and 7. This word is recurrent (seen 232
times in the initial data set and in 94 superfamilies) and
over-represented in 15 superfamilies with a Lp,,,, equal
to 14.9. The representation of two proteins containing
the DRPI word shows it is present in superfamilies with
different folds.

Like turn motifs, nest and niche motifs are detected
by applying geometrical thresholds. In this case also, the
fact that a very small proportion of our fragments fail
the assignment suggest that structural words could be
used to assign nest- and niche-like motifs.

Extreme ubiquitous words not associated to known
structural motifs

Two ubiquitous words, DGPI and SKGI, are extracted
from proteins not listed in the Motivated Protein data-
base. It is therefore not possible to compare them with

niche and nest motifs. Let us note, however, that DGPI
is structurally close to the structural word DRPI
(RMSD equal to 0.74 + 0.24 A), which contains nest
motifs. In the same way, SKGI is similar to SLGI
(RMSD equal to 0.76 + 0.24 A), a word containing the
end of a S-turn.

Link between ubiquitous words and functional
annotations

In the previous part, we have shown that extreme ubi-
quitous words contain some known motifs such as
turns, nest, niche. It has been shown that these small
motifs could be involved in protein functions such as
active sites or binding sites [49,61]. We thus surveyed
the association between extreme ubiquitous words and
Swiss-Prot annotation by computing the precision of the
extreme ubiquitous words toward biological annotations.
As reported in Additional file 1: Table S1, we obtained
low precisions, suggesting that ubiquitous words are not
strongly associated to functional features.
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Figure 6 lllustration of two ubiquitous structural words. Upper part: structural word PZCD. Lower part: structural word DRPI. A: geometry
of several word fragments, optimally superimposed. B: amino-acid conservation of the word generated by WeblLogo http://weblogo.berkeley.

edu/. C: word statistics. D: example of structures containing the structural word. The location of structural word is indicated by arrows.
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Link between extreme superfamily-specific words and
biological annotations

Unlike ubiquitous words, superfamily-specific words are
highly over-represented in few superfamilies, suggesting
a possible implication in function. In this section, we
focus our analysis on the extreme superfamily-specific
words, defined by Lp,,,, == 50 and nby < 5, and inves-
tigate their correspondence with biological annotations
provided by Swiss-Prot extracted from the annotation
data set. We complement the analysis based on Swiss-
Prot by the use of external softwares (Rep, SitePredict,
CSA and LigPlot) for functional site identification/
prediction.

As reported in Table 2, extreme superfamily-specific
words account for 0.2% of the structural words, 0.7% of
the seven-residue fragments, and are seen in 17% of the
proteins of the initial data set. Their average Lp,,,. score
is equal to 88.9 + 46, ranging from 51.7 to 210, and their

Page 13 of 23

mean nbg is equal to 1.4 + 0.4. The results of the com-
parison between extreme superfamily-specific words and
Swiss-Prot annotations are reported in Table 5. We pre-
sent below these results grouped according to the Swiss-
Prot annotations identified during the comparison. For
each annotation, we computed the precision, i.e. fraction
of the fragments encoded by a structural word that actu-
ally correspond to the annotation. A structural word
associated to a precision greater than 40% with respect to
a functional annotation is said to be functional. For these
functional words, we also computed the sensitivity, i.e.
fraction of the annotation that is actually covered by the
structural word.

Disulfide annotation

Two overlapping extreme superfamily-specific words,
RNHB and URNH, are strongly over-represented in the
immunoglobulin superfamily (SCOP id = 48726). They
correspond to regions covalently linked by disulfide

Table 5 Correspondence between extreme superfamily-specific words and Swiss-Prot annotations in the initial data

set
Statistics in the initial dataset Comparison with Swiss-Prot

Word Occ’ LPmax nbyg/nb,P Superfamilies® Annot Match/total (Precision (%)) ¢ Sensitivity (%)
URNH 43 54.95 117 48726* Disulfide 4 (50) 4
RNHB 59 5133 1/28 48726* Disulfide 9/20 (45) 6
UQHS 53 75.07 1/16 52058* Repeat 12/22 (55) 41
SUQH 70 6342 1/25 52058* Repeat 11/26 (42) 38
QHSG 37 51.75 1/12 52058* Repeat 4/10 (40) 14
HSGI 63 76.26 1/18 52058* Repeat (42) 17
QXus 43 5205 1/10 51735* Repeat 5(7)

Z5Gl 99 5222 1/49 52058* Repeat 7/36 (19)

GSUS 169 140.49 3/59 141571%, 52047, 52058 Repeat 6/38 (16)

GZDO 115 84.72 3/49 47473%, 52833, 52935 Repeat 1/35 (3)
DODQ 73 157.01 1/17 47473* CA_BIND 15/23 (65) 75
ZDOD 48 91.27 1/13 47473 CA_BIND 11/16 (69) 58
YUOD 1 184.67 /11 52540* NP_BIND 39/41(95) 35
uoDO 142 210.14 4/14 52540% 53659, 54211, 55729 NP_BIND 49/60 (82) 38
OEl 33 53.84 1/4 51735*% NP_BIND 6/7 (86) 14
EDJU 48 51.68 1/13 51735% NP_BIND 7/15 (47) 20
USLG 121 137.35 2/47 141571%, 51206 NP_BIND 2/22 (9)

uzci 99 63.70 2/28 103025%, 56784 NP_BIND 1713 (8)

RUDO 27 55.55 1/4 53335% Binding 5/10 (50) 18
UGRU 37 60.07 1/8 53335% Binding 4/12 (33)

EGZD 48 51.68 1/5 51735%

GRUD 33 70.55 1/6 53335%

SLGS 60 11845 1/17 141571%

This comparison is made on a subset on the initial set: 1487 proteins that can be mapped to biological annotations using the PDB/UniProt Mapping database. “:

word occurrence.

b nby denotes the number of SCOP superfamilies in which the structural word is seen.

< superfamilies in which the word is over-represented. %

match and total denote the number of fragments annotated and the total number of fragments, respectively. Bold font indicates a match/total ratio greater than
40%. Italic font indicates a match/total ratio lower than 40%. Abbreviations used: NP BIND = nucleotide phosphate-binding site, CA_BIND = calcium-binding site.

SCOP ids: 103025 = Folate-binding domain, 141571 = Pentapeptide repeat-like, 47473 = EF-hand, 48726 =

Immunoglobulin, 51206 = cAMP-binding domain-like,

51735 = NAD(P)-binding Rossmann-fold domains, 52047 = RNI-like, 52058 = L domain-like, 52540 = P-loop-containing nucleoside triphosphate hydrolases, 52833
= Thioredoxin-like, 52935 = PK C-terminal domain-like, 53335 = S-adenosyl-L-methionine-dependent methyltransferases, 53659 = Isocitrate/isopropylmalate
dehydrogenase-like, 54211 = Ribosomal protein S5 domain 2-like, 55729 = Acyl-CoA N-acyltransferases (Nat), 56784 = HAD-like. “*" denotes the superfamily in

which the word is most over-represented.
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bridges and identified by the “Disulfide bond” Swiss-Prot
annotation with a precision of 50 and 45%. This annota-
tion provides no functional information per se, but
might indicate that these structural motifs result from
structural constraints induced by the disulfide bridge.
However, the very low sensitivity observed (4 and 6%)
shows that a only small fraction of the disulfide annota-
tions are encoded by these words.
Repeat annotation
Four overlapping extreme superfamily-specific words
SUQH, UQHS, QHSG, HSGI are strongly over-repre-
sented in the “L domain-like” superfamily (SCOP id =
52058). This superfamily groups proteins containing
repeat regions, which are regions of 20 to 30 amino acids
unusually rich in leucine [64]. Repeat regions have strong
implications for the biological role of protein, as they are
often involved in protein-protein interactions in plant and
mammalian immune responses [64]. A number of human
diseases have been shown to be associated with mutations
affecting leucine-rich repeat domains [64]. These repeat
regions may therefore be of functional relevance.
Structural words SUQH, UQHS, QHSG, HSGI often
occur in the same proteins, allowing the formation of
longer motifs, like illustrated in Figure 7: in protein
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logq A, SUQH and UQHS overlap to form the five-struc-
tural letter words SUQHS.

Figure 8A illustrates the example of the word UQHS. It
is a recurrent word (seen 52 times in the initial data
set), strongly over-represented in one superfamily
(SCOP id = 52058), with a high maximal score (Lp,ux =
75.07). The superimposition UQHS-fragments shows that
they are very similar in terms of structures, with a turn
conformation. The amino-acid logo indicates that UQHS
presents amino-acid conservation at positions 1, 4 and
6, resulting in an amino-acid profile close to the consen-
sus sequence of LRR (LxxLxLxxNxL or LxxLxLxxCxxL
(65]).

The comparison with Swiss-Prot annotations reveals that
the four structural words SUQH, UQHS, QHSG and HSGI
correspond to the “repeat” annotation with precision
greater than 40% (see Table 5). According to our definition
of functional words, these four words are thus functional.
Some fragments encoded by these functional words,
however, do not correspond to repeat annotations. For
example, in the initial data set, 10 UQHS-fragments are
unannotated. To determine whether these 10 fragments
might still correspond to repeat regions unannotated in
Swiss-Prot database (i.e., false negatives), we used the REP

repeat regions. Yellow: even-numbered repeat regions.

A logq A (108-114,132-138, 156-162, 181-187, 204-210, 228-234, 251-257, 275-281)
B
QKPVWVWAAAAAAAAADFRHBVOBESPBQKPVEDEQKUSXMKGZCDOPSYG
UQHS UQHS
UQHS UQHS UQHS
UQHS OWBQKHBBCQUSKFSXJIFQJIYK

Figure 7 lllustration of the word UQHS corresponding to the repeat annotation. A: position of UQHS word in protein Togqg A. B: structural-
letter sequence of the protein 1ogq_ A. C: representation of the 3D structure of this protein. Blue: UQHS-fragments. Orange: odd-numbered

UQHS

UQHS
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Figure 8 lllustration of four functional words. A: structural word UQHS. B: structural word DODQ. C: structural word YUOD. D: structural word
RUDO. For each word, we provide word statistics (frequency, Lpmax. Nbsp), the name of the superfamily in which the word has highest Lp score,
the superimposition of fragments associated with this word, and amino-acid conservation data.

software to predict repeat regions. Two repeat regions are
predicted: 1dce A:484-507 and 529-553. Region ldce A:
484-507 actually contains the word UQHS, whereas the sec-
ond region: 529-553 does not (see Table S2).

The sensitivity measure for the repeat annotation for the
four structural words SUQH, UQHS, QHSG and HSGI
ranges from 17 to 41%, meaning that repeat regions corre-
spond to a variety of conformations, not only the ones
encoded by SUQH, UQHS, QHSG and HSGI. By defini-
tion, repeat regions are formed by the repetition of a
motif.

Calcium-binding site annotation

Two overlapping extreme superfamily-specific words,
ZDOD and DODQ, are over-represented in only one super-
family: “EF-hand” (SCOP id = 47473). This superfamily
contains proteins with EF-hand units, which consist of
two helices connected by a calcium-binding loop. The
words ZDOD and DODQ are frequently overlapping: in
66% of cases, DODQ is preceded by the letter Z, forming

the word ZDODQ. Figure 8B presents the statistics, geo-
metry and amino-acid sequence conservation of the word
DODQ. The amino-acid logo shows that DODQ presents
amino-acid conservation at positions 2, 3, 4, 5 and 7,
with a strong conservation of an aspartic acid or aspara-
gine residue at positions 2 and 4 and of a glycine residue
at position 5. This conserved sequence is in close agree-
ment with the consensus sequence of calcium-binding
motifs [DxDxDG] [66].

The two words ZDOD and DODQ correspond to the cal-
cium-binding site annotation (CA_BIND) with precision
greater than 65%, they thus are functional motifs. As
shown in Figure 9A, DODQ contains residues directly
involved in the binding of calcium ions. Five ZDOD-frag-
ments and nine DODQ-fragments are not annotated as
calcium-binding sites in Swiss-Prot. However, six of
these unannotated DODQ-fragments are identified as
putative calcium-binding sites by the SitePredict software
(see Table S3). The sensitivity of the calcium-binding site
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Figure 9 lllustration of the functional role of three words. A: DODQ corresponds to calcium-binding sites. B: YUOD contains residues
involved in nucleotide-binding sites. C: RUDO contains residues involved in SAH/SAM-binding sites. Structural words are highlighted in red and
ligands in blue.
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annotations with respect to ZDOD and DODQ ranges from
58 to 75%, meaning that the majority of calcium-binding
sites actually correspond to these structural words. These
two structural words could thus be used to predict cal-
cium-binding site candidates.

Nucleotide-binding site annotation

Five extreme superfamily-specific words are associated
with nucleotide-binding site annotations (NP_BIND)
with precision greater than 47%. Some correspond to
ATP/GTP-binding sites, others to NAD(P)-binding sites.
We discuss these two cases separately.

ATP/GTP-binding sites Structural words YUOD and
UODO are strongly over-represented in the superfamily
“P-loop-containing nucleotide triphosphate hydrolase”
(SCOP id = 52540), grouping proteins with a phosphate-
binding site. These two words are often found in the same
proteins: in 90% of cases, the structural word YUOD is fol-
lowed by the letter O, forming the word YUODO.

Figure 8C illustrates the statistics, geometry and
amino-acid sequence conservation of the YUOD word.
This word displays clear amino-acid conservation: glycine
in positions 1 and 6, lysine in position 7, and threonine
or serine in position 8, consistent with the consensus
sequence of P-loops: [AG]XXXXGK[TS] [10].

Structural words YUOD and UODO correspond to the
nucleotide-binding site annotation with precision greater
than 80%. YUOD and UODO are thus functional words
with residues directly involved in ATP/GTP-binding
sites, as shown in Figure 9B for YUOD word. In the initial
data set, two YUOD-fragments and eleven UODO-frag-
ments are unannotated. SitePredict indeed predicts ATP/
GTP-binding sites for four of the eleven unannotated
UODO-fragments (see Table S4). The sensitivity is equal
to 35 and 38%, meaning that roughly one third of the
ATP/GTP-binding sites adopt conformations described
by these structural words.

NAD(P)-binding sites Two structural words, OEIJ
and EIJU are strongly over-represented in the “NAD
(P)-binding Rossmann-fold domain” superfamily (SCOP
id = 51735) grouping proteins with NAD(P)-binding
sites. These words are often overlapping: in 95% of
cases, OEIJ is followed by the letter U.

Word OEIJ is associated with the NP_BIND annotation
with precision equal to 86% and 47% respectively, they
thus are functional words. One OEIJ-fragment and seven
EIJU-fragments are unannotated. Two of the seven unan-
notated EIJU-fragments are predicted as NAD(P)-binding
sites by SitePredict (see Table S5). The sensitivity is quite
low, ranging from 14 to 20%, meaning that NAD(P)-bind-
ing sites probably adopt various conformations, and not
only the ones encoded by OEIJ and EIJU.
S-adenosyl-L-methionine binding sites
The superfamily-specific word RUDO is strongly over-
represented in the “S-adenosyl-L-methionine-dependent
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methyltransferase” superfamily (SCOP id = 53335), group-
ing proteins with SAH/SAM-binding sites. Figure 8D pre-
sents the geometry of the structural word RUDO and its
amino-acid signature, with glycine residues preferred at
positions 1, 3 and 5. Figure 9C presents an illustration of a
SAH/SAM-binding site for a RUDO-fragment, showing the
residues involved in the SAH/SAM-binding site. This
word corresponds to the “binding” annotation with a pre-
cision equal to 50%, therefore it is a functional word.
Three out of the five unannotated RUDO-fragments actu-
ally correspond to SAH/SAM-binding sites according to
our analysis using LigPlot. The sensitivity is equal to 18%,
suggesting that SAH/SAM-binding sites adopt other con-
formations than the one identified by the RUDO word.
Unannotated extreme superfamily-specific words

Ten superfamily-specific structural words QXUS, ZSGI,
GSUS, GZDO, USLG, UZCI, UGRU, EGZD, GRUD and
SLGS, indicated in italics in Table 5 could not be validated
as functional motifs because they have low precision
values toward Swiss-Prot annotations. This could be due
to (i) the limited number of proteins of the initial data set
that are annotated in Swiss-Prot and (ii) the incomplete
annotation of Swiss-Prot, since annotations for a given
protein simply reflect our current knowledge about it.

Double checking the link between functional words and
biological annotations using the validation data set

The previous analysis was based on the Swiss-Prot anno-
tations of the annotation data set. Since many proteins of
the initial data set are lost in the UniProt/PDB mapping
step, we complement our results using a data set specifi-
cally built to maximize the coverage by Swiss-Prot: the
validation data set composed of 2 636 proteins. In the
validation data set, 17% of seven-residue fragments in
loops are covered by a Swiss-Prot annotation versus only
2% in the initial data set.

For the functional words identified in the previous sec-
tion, we compute the precision and sensitivity measures
presented in Table 6. We do not consider the words asso-
ciated to disulfide and the repeat annotations since they
are non specific to annotations. The seven functional
words considered have precision greater than 40%, the
threshold used for their validation in the annotation data
set. These two criteria are stable on the annotation and
validation sets with sligth global increase for the validation
set: on average 70% to 76% for precision and 37% to 39%
for sensitivity. The precision values are high indicating
that most of the fragments encoded by these words are
annotated by the corresponding annotation.

Discussion

In this work, we used a structural alphabet-based simplifi-
cation of protein structures and applied an exact statistical
approach to identify structural motifs over-represented in



Regad et al. BMC Bioinformatics 2011, 12:247
http://www.biomedcentral.com/1471-2105/12/247

Table 6 Precision and sensitivity for functional words
computed in the validation data set

Words Annotation Second-level Precision  Sensitivity
annotation (%) (%)
popg  CA_BIND - 82 95
zboD  CA_BIND - 92 64
YUoD  NP_BIND ATP/GTP 91 29
UoDO  NP_BIND ATP/GTP 80 40
OEIJ  NP_BIND NAD(P) 94 7
EIJU NP_BIND NAD(P) 54 10
RUDO  Binding SAH/SAM 44 30

loops in SCOP superfamilies. Our underlying hypothesis
was that structural words with unexpectedly high fre-
quency are probably linked to structural or functional
implication. We discovered two distinct trends: some
words, termed ubiquitous words, are over-represented in
several superfamilies, whereas others, termed superfamily-
specific words, are over-represented in a small number of
superfamilies. We then investigated the link between these
structural motifs and known structural motifs and func-
tional sites annotated in Swiss-Prot, on a subset of struc-
tural words with extreme over-representation scores.

We focused on structural motifs formed by seven conse-
cutive residues, i.e. four structural letters, since it is the
optimal length to have a good description of the 3D con-
formations and enough data to allow statistical treatments
[39]. However, our findings revealed longer motifs formed
by overlapping four-structural letter words, such as
YUODO, ZDODQ, corresponding to eight-residue motifs or
shorter motifs consensus as LGI common to SLGI,
QLGI. These results suggest that this motif approach
could be extended to motifs of different lengths.

Interpretation of ubiquitous words

Since ubiquitous words are over-represented in several
SCOP superfamilies with various functions, it is likely
that they are the result of structural rather than func-
tional requirement. A comparison of ubiquitous words
with extreme scores and known small 3D motifs showed
that extreme ubiquitous words contain f3-turn, nest or
niche motifs. Several studies have shown that turns, nest
and niche motifs may play a functional role in determin-
ing the conformation of enzyme active sites and binding
sites [13,49,61]. We were not able to confirm this point
using our extreme ubiquitous words. However, among
the functional words identified in the subset of extreme
superfamily-specific words, three words (ZDOD, UQHS,
UODO) actually contain turns, which is in agreement with
the fact that turn motifs could be involved in binding
sites [13]. Let us note that turns, niches and nests are
shorter (three or four residues) than our structural words
(seven residues). The fact that we capture them using
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structural words suggests that structural motifs longer
than previously described are important for protein fold-
ing and stability. Long structural motifs are thus part of a
“basic structural repertoire”, similarly to regular second-
ary structures which are used in protein structures
regardless of the overall fold and function of the protein
concerned. In addition, structural words allow detecting
structural motifs without computing hydrogen bonds, or
dihedral angles, and without explicit pairwise comparison
of fragments. This could thus be very useful to detect
structural motifs with relaxed parameters like turn-like
motifs.

Interpretation of superfamily-specific words and their link
with function

Usage of superfamily-specific words for functional site
prediction

The analysis of the correspondence between extreme
superfamily-specific words and Swiss-Prot annotations
revealed that some of superfamily-specific words are
linked to functional sites. For example, we found super-
family-specific words associated to repeat annotations and
binding sites to ATP/GTP, SAM/SAH, NAD(P), calcium
and iron. Thus functional words allow a reliable prediction
of some binding sites.

Limitations introduced by the Swiss-Prot mapping

Some annotations, such as metal-binding sites (cadmium,
lithium, mercury, potassium, vanadium) are very rare and
not represented in our data set. This explains why these
functional sites are not detected at all by superfamily-spe-
cific words. Moreover, only a fraction of the annotation
data set is covered by Swiss-Prot annotations (2% of
seven-residue fragments) and the step of mapping annota-
tions to PDB structures using the PDB/UniProt Mapping
database further reduces significantly the data available for
comparison. The link between structural words and func-
tional sites is thus established on a limited amount of data
and is probably under-estimated by our analysis. For
example the structural word UGRU, over-represented in
the “S-adenosyl-L-methionine-dependent methyltransfer-
ase” superfamily (SCOP id = 53335), is not characterized
as “functional word” in the annotation or validation data
sets (precision = 33% and 36%). The manual analysis of
the functional annotations of UGRU-fragments show that
69% of them are actually involved in SAH/SAM-binding
sites, see Table S6. This illustrates the case of a functional
motif missed by our analysis due to a defect of biological
annotations.

In this paper, the link between superfamily-specific
words and functional sites is established only for the 23
extreme superfamily-specific words. These 23 words cover
1% of residues in loops and they are seen in 17% of pro-
teins. If we consider superfamily-specific words with mod-
erate scores (565 words with Lp,,.,, > = 10, see Table 2),
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the coverage can be increased to 10% of residues and 90%
of proteins. From these moderately superfamily-specific
words, 13 words are clearly associated with a functional
Swiss-Prot annotation ("binding site” or “active site” anno-
tations), 17 correspond to a repeat annotation and 16 to a
disulfide annotation (data not shown). For example, word
ZCLH is over-represented in the superfamily SCOP id =
53474 with a Lp,,,, equal to 12. This word has a precision
for the detection of “active site” annotation of 67% (see
Table S7). This suggests that over-represented words with
moderate Lp,,,, score may be functional too.

Intrinsic limitation of the structural word approach
However, some functional sites were not detected by
structural words. To be identified by our structural
word approach, a functional site must meet two condi-
tions: (i) at least one part of the functional site must be
located in protein loops and (ii) it must correspond to
recurrent structures across different proteins. Indeed,
structural words can only identify a functional motif if
structural conformation spanning at least seven or more
consecutive residues. Thus, superfamily-specific words
cannot detect DNA-binding sites or zinc finger motifs
because these functional sites are preferentially seen in
a-helices. In the same way, some metal binding sites
(cobalt, copper, magnesium, canganese, colybdenum,
nickel, sodium) are not detected because they display a
high flexibility [67] or a structural conservation
restricted to few residues.

To quantify the correspondence between extreme
superfamily-specific words and Swiss-Prot annotations,
we computed the precision and sensitivity of annotation
detection by these words. We observed that sensitivity
values depend on the functional sites and structural
words. For example, two overlapping words DODQ,
ZDOD present a high sensitivity for calcium-binding
sites, meaning that most of these binding sites can be
detected by these two structural words. Other structural
words have lower sensitivity, e. g. YUOD detects only
one third of ATP/GTP-binding sites. However, we
checked, on randomized data sets, that these sensitivity
measures are significantly greater than expected by
chance (see Table S8). Indeed, random sensitivities are
very low and the sensitivity of structural words reported
in this study are higher in any case. Thus, even if the
sensivity measures reported in this sudy may seem mod-
est, they are still significant, meaning that all the super-
family-specific structural words presented here are
significantly enriched in functional sites. These low sen-
sitivity values indicate that some functional sites actually
correspond to several conformations encoded by differ-
ent structural words. These different conformations of a
functional site could be explained by (i) its flexibility or
(ii) the fact that it can span several segments in a pro-
tein. Figure 10 presents an illustration of flexibility of
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binding-site through the four calcium-binding sites of
protein Calcium-dependent protein kinase 3 (pdb code
3k21). This flexibility results in the encoding of these
functional sites into two close words: ZDOD and WDOD,
with a RMSD of 0.419 A. A way to take into account the
flexibility of binding-site could be to consider “degener-
ated words” (for example [W/Z]DOD) instead of “exact”
word. This would certainly increase the ability to detect
functional sites.

In Figure 10, we also present an example of protein
Translation initiation factor if2/eif5b (pdb code 1g7s) data,
illustrating a binding site involving different 3D regions.
This protein contains a GTP-binding site involving three
regions, which two are annotated by one NP_BIND anno-
tation, resulting in two NP_BIND annotations for this
protein. Each annotated region is detected by a superfam-
ily-specific word: YUOD and UGBB. This indicates each
word can detect one part of the GTP-binding site, thus
each word is expected to detect to 50% of the NP_BIND
annotations at most. Thus, the weak sensitivity value of
some functional words shows that these words can detect
one part of the functional site. To identify the entire func-
tional sites, we could couple the different functional words
associated to the same annotation.

Comparison with existing approaches

Several approaches address the link between local struc-
tures and protein function. These methods can be clus-
tered into three groups.

The first group corresponds to the characterization of
structural motifs specific to functional sites [22-28].
Such methods consist in learning the structural motifs
of known functional sites and are therefore dedicated to
the prediction of those sites.

The second group corresponds to the discovery of con-
served structural motifs in proteins with the same func-
tion. These methods start from protein superfamilies and
search for structural motifs specific to superfamilies
[20,21,68]. They can identify conserved motifs in different
proteins with the same function. In these approaches, the
extraction of structural motifs is based on the comparison
of structural fragments using RMSD. These methods are
able to discover new functional sites within superfamilies.
However, they cannot identify functional motifs common
to several superfamilies.

The third group corresponds to structural classifica-
tion of local conformations, followed by an analysis of
the association between clusters and functional sites
[14,17,18,69]. These methods do not focus on the
description of a particular functional site, or restrict the
analysis to a particular superfamily. Instead, they analyze
a posteriori the association between fragment clusters
and protein superfamilies or GO annotations. Our
approach is based on the same philosophy as these
methods.
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Figure 10 llustration of the binding sites, which correspond to different words. A: lllustration of the flexibility of calcium-binding sites in
the Calcium-dependent protein kinase 3 (pdb code 3k21), which is cristallized with 3 calcium atoms (colored in blue). Among these 3 calcium-
binding sites two are detected by overlapping words ZDOD and DODQ, colored in red. The third binding site is detected by overlapping words
WDOD and DODQ, colored in magenta. B: lllustration of a GTP-binding site involving different 3D regions in the Translation initiation factor if2/
eif5b (pdb code 1g7s). The GTP is represented in blue. The binding site is composed of three 3D regions (15-20, 130-133; 198-199). In red are
colored the two regions, which are detected by superfamily-specific words: YUOD and UGBB over-represented in the superfamily “P-loop
containing nucleoside triphosphate hydrolases” (52540). In magenta is colored the third region, which is not detected by superfamily-specific
word. In Swiss-Prot this protein is annotated by two NP_bind annotations (12-19, 76-80, 130-133).
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Compared to Espadaler et al. [14], Tendulkar et al.
[17], and Manikandan et al. [18], our method is original
in three ways: (i) the extraction of structural motifs is
based on a structural alphabet, which allows defining
structural motifs without using geometrical thresholds
or extensive pairwise structural comparison, (ii) the
functional role of a motif in a particular superfamily is
assessed by its statistical over-representation within the
superfamily, and (iii) it can deal with all loops, irrespec-
tive of their length or secondary structure types. This
last point is particularly important: in a previous study,
we have shown that 64% of structural words display no
specificity for loop length [39]. It is also the case of the
functional motifs identified in the present study: for
example, 60% fragments of the word DODQ), involved
in calcium-binding sites are extracted from short loops,
and 40% from long loops. The fact that we made a sys-
tematic decomposition of loops into structural words,
instead of clustering full-length loops as done by Espa-
daler et al. [14] makes the comparison with their study
difficult.

Two studies by Tendulkar ez al. [17] and Manikandan
et al. [18] aimed at the extraction of structural motifs
specific to a protein function. Contrary to our approach,
they considered all structural motifs including o-helices
and B-strands. In these two studies, structural motifs
were extracted by a systematic classification of eight-
residue fragments based on geometric invariants [17] or
dihedral angles [18]. They then analyzed the association
between structural clusters and protein functions pro-
vided by SCOP superfamilies [17] or GO terms [18].
Tendulkar et al. [17] defined a cluster as functional if at
least 70% of its fragments are found in a same SCOP
superfamily. Manikandan et al. [18] identified functional
clusters on the basis of the over-representation of GO
terms in clusters. These two definitions restrict the defi-
nition of functional motifs to motifs specific of one
superfamily or GO term. By contrast, the statistical
treatment presented here allows the extraction of motifs
shared by several families, even if the superfamily con-
tains few members.

Recently, Wu et al. [69] have proposed an approach to
extract functional structural motifs from DNA-binding
proteins using a structural alphabet. As in our approach,
the structural alphabet is used to simplify 3D structures
into uni-dimensional sequences. The structural alphabet
used in [69] is composed of 16 structural letters, named
protein blocks. Wu et al. focused on DNA-binding sites
by searching structural words present in DNA-binding
proteins binding and absent in others, and considered
long and degenerated structural words (26 residues)
without secondary structure restriction. In the present
study, we discarded helices and strands. In addition, our
statistical treatment is radically different from theirs, and
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allows retrieving structural words shared by several
superfamilies, even in superfamilies with few proteins.
Even if based on a similar method of protein structure
simplification, both these works thus pursue quite differ-
ent objectives and consider different structural motifs.

Conclusion

In this study, we present a systematic extraction of 3D
motifs from loops likely to be important for protein
structure or function. This method is based on the struc-
tural alphabet HMM-SA and an advanced method for
pattern statistics. We identified ubiquitous structural
motifs over-represented in several superfamilies, and
superfamily-specific structural motifs over-represented in
few superfamilies. Some ubiquitous words correlate with
known 3D motifs such as -turns, niches and nests. The
link between the word over-representation and function-
ality was proved for some superfamily-specific words.
Thus, some of these structural words allows the detection
of calcium-binding sites, some part of nucleotide, SAH-
binding sites, or active site. As in DNA sequence analysis,
statistical over-representation can be related to functional
features.

These results could be used for the prediction of func-
tional sites in protein structures: the identification of
these structural motifs in uncharacterized proteins could
provide useful clues to protein function in complement
to usual methods based on homologous proteins.

As some functional annotations are supported by reg-
ular secondary structures, current perspectives include
the consideration of regular secondary structures. Also,
some functional words present sequence specificity,
which opens the perspective to the prediction of these
functional motifs from their amino-acid sequence.

Additional material

Additional file 1: Supplementary information. This file is a pdf file. It
contains different information about the comparison between some
over-represented words and biological annotations: « Table S1: Precision
of annotation dectection by extreme ubiquitous words. - Table S2:
Analysis of UQHS fragments. « Table S3: Analysis of DODQ fragments. «
Table S4: Analysis of UODO-unannotated fragments. - Table S5: Analysis of
EIJU fragments. - Table S6: Analysis of UGRU fragments. - Table S7:
Analysis of ZCLH fragments. Table S8 present the results of the
computation of a random sensitivity for each functional word.
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