
polymers

Article

Biofunctional Glycol-Modified Polyethylene
Terephthalate and Thermoplastic Polyurethane
Implants by Extrusion-Based Additive Manufacturing
for Medical 3D Maxillofacial Defect Reconstruction

Matthias Katschnig 1,† , Juergen Wallner 2,3,*,†, Thomas Janics 1, Christoph Burgstaller 4,
Wolfgang Zemann 2 and Clemens Holzer 5

1 HAGE3D GmbH, 8020 Graz, Austria; m.katschnig@hage3d.com (M.K.); office@hage3d.com (T.J.)
2 Department of Oral and Maxillofacial Surgery, University Clinic of Dental Medicine and Oral Health,

Medical University of Graz, 8036 Graz, Austria; wolfgang.zemann@medunigraz.at
3 Department of Cranio-Maxillofacial Surgery, AZ Monica and the University Hospital Antwerp,

2018 Antwerp, Belgium
4 TCKT–Transfercenter für Kunststofftechnik GmbH, 4600 Wels, Austria; christoph.burgstaller@tckt.at
5 Chair of Polymer Processing, Montanuniversitaet Leoben, 8700 Leoben, Austria;

clemens.holzer@unileoben.ac.at
* Correspondence: j.wallner@medunigraz.at or juergenwallner@msn.com; Tel.: +43-316-3851-2428
† These authors are equally both first authors on this work: Matthias Katschnig and Juergen Wallner.

Received: 13 June 2020; Accepted: 3 August 2020; Published: 5 August 2020
����������
�������

Abstract: This work addresses the topic of extrusion-based additive manufacturing (filament-based
material extrusion) of patient-specific biofunctional maxillofacial implants. The technical approach
was chosen to overcome the shortcomings of medically established fabrication processes such as a
limited availability of materials or long manufacturing times. The goal of the work was a successful
fabrication of basic implants for defect reconstruction. The underlying vision is the implants’
clinic-internal and operation-accompanying application. Following a literature search, a material
selection was conducted. Digitally prepared three-dimensional (3D) models dealing with two
representative mandible bone defects were printed based on the material selection. An ex-vivo model
of the implant environment evaluated dimensional and fitting traits of the implants. Glycol-modified
PET (PETG) and thermoplastic polyurethane (TPU) were finally selected. These plastics had high cell
acceptance, good mechanical properties, and optimal printability. The subsequent fabrication process
yielded two different implant strategies: the standard implant made of PETG with a build-up rate of
approximately 10 g/h, and the biofunctional performance implant with a TPU shell and a PETG core
with a build-up rate of approximately 4 g/h. The standard implant is meant to be intraoperatively
applied, as the print time is below three hours even for larger skull defects. Standard implants proved
to be well fitting, mechanically stable and cleanly printed. In addition, the hybrid implant showed
particularly cell-friendly behavior due to the chemical constitution of the TPU shell and great impact
stability because of the crack-absorbing TPU/PETG combination. This biofunctional constellation
could be used in specific reconstructive patient cases and is suitable for pre-operative manufacturing
based on radiological image scans of the defect. In summary, filament-based material extrusion has
been identified as a suitable manufacturing method for personalized implants in the maxillofacial
area. A further clinical and mechanical study is recommended.

Keywords: biofunctional implants; glycol-modified Polyethylene terephthalate (PETG); thermoplastic
polyurethane (TPU); filament-based material extrusion; patient-specific maxillofacial implants
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1. Introduction

Repairing three-dimensional (3D) defects is a challenging part in maxillofacial surgery. Such defects
can occur for many reasons, e.g., after surgical resections of pathological lesions such as cysts or tumors
or after traumatic events such as traffic accidents or violent crimes. In this context, with about 40%,
the lower jaw represents the highest occurrence of all facial fractures in the maxillofacial field [1].
In Germany, more than 10,000 facial mouth/jaw surgeries are operated annually, and treatment times
are up to 14 h [2]. The reconstruction of maxillofacial defects is clinically important because if they
are not restored, defects variable in size and form remain and might cause disfigurements and/or
functional impairments. Such reconstructions always involve surgery and a patient-specific treatment
plan [3].

The use of autologous bone is still the first choice in the restoration of any kind of bone defect.
Autologous bone can be harvested as a vascularized or non-vascularized graft from a donor site in the
same surgical procedure with the defect reconstruction. Although the autologous bone is regarded as the
reconstruction gold standard for bone defects, the harvesting procedure can be time-consuming, adding
additional operation time and a donor site morbidity that can cause surgery-related complications,
which are exhausting for the surgeon and the patient. Furthermore, autologous bone harvesting can
be impossible in medical cases where a donor site offering an adequate amount of bone is absent
or simply not accessible because of general medical reasons such as bad health conditions of the
patient [4]. As an alternative to autologous bone grafts, alloplastic (synthetic) materials can be used to
reconstruct defects. Alloplastic materials can be formed as implants intraoperatively by the surgeon or
virtually planned and customized, manufactured preoperatively according to patient-specific aspects.
Commonly used alloplastic materials include metals such as titanium and titanium alloys, ceramics
such as hydroxyapatite (HA) or polymers such as polyetheretherketone (PEEK) [5]. Although titanium
and titanium alloys are basically biocompatible, they are relatively stiff compared to human bone.
However, a bone-like modulus of elasticity is important to prevent stress shielding and/or osteolysis [6].
Additionally, metal implants are generally highly heat conducting, and thus can cause pain if patients
are exposed to environmental temperature variations [7]. PEEK, on the other hand, provides low heat
conduction, but also has a limited accumulation potential for cells: the surrounding bone tissue does
not stay entirely healthy on implant surfaces (“halo-effect”) [8,9]. Bulk hydroxyapatite, although highly
cell-friendly, is not suitable for high load bearing conditions due to its poor mechanical traits [10].

Since the discipline of maxillofacial surgery, in particular, has undergone a remarkable rate
of technological innovation associated with computer assistance in the last two decades [11],
patient-specific implants designed and manufactured using computer-aided design (CAD) and
computer-aided manufacturing (CAM) have become a highly clinically relevant part in routine and
complex individual surgical cases [12,13]. Based on a computer tomography scan (CT) or cone beam
computer tomography scan (CBCT) of the patient, implants can be virtually designed using CAD
software [14] and consecutively manufactured. Those services are usually clinic-externally supplied by
subtractive manufacturing like milling or by additive manufacturing (AM) like powder bed fusion [7].
In contrast to AM, the cost- and material-intensive subtractive process employs milling of the 3D
model from a material block in a computer numerical controlled (CNC) milling machine. Furthermore,
the freedom of implant design for successful milling is limited [7].

Although the reconstruction of complex bone defects is challenging due to the unique anatomy and
the variety of deficits [4,5], recent improvements in the field of CAD in combination with a compact and
efficient AM could lead to precise patient-specific implants in a very short production time [11]. Thus,
shorter operation times by a clinic-internal, maybe intra-operative implementation of CAD/AM would
lead to less patient stress and faster healing. In addition, time-related changes in the bone structure
and the extent of the lesion (bone growth) can be addressed. A material adaption to specific patient
needs could also be addressed by the surgeon. For the latter demand, the extrusion-based additive
manufacturing (“material extrusion” by EN ISO/ASTM 52900, edition 2017) is very promising because
of the intrinsic material flexibility. At present, clinical tests of extrusion-based implants, especially
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internally implemented as an intra-operative option, are still in the early stages. Nevertheless,
the research group MAM—Medical Additive Manufacturing, located at the University of Basel,
Switzerland, has evaluated the medical approach as very promising [15–17]. In contrast, Vaezi et al. [18]
displayed extrusion-based additive manufacturing as still not ready for clinical entry because of
insufficient print results.

Hence, the goal of this study was to face the specific problems of the established maxillofacial
alloplastic materials (stress shielding, heat conduction, halo-effect, mechanical performance) with
an adapted material selection and to combine those materials with the extrusion-based additive
manufacturing (on a filament basis) to prove the basic ability of this fabrication approach for the
CAD-based reconstruction of maxillofacial defects. This study is based on the preliminary work of
additive manufacturing of biofunctional implants for craniomaxillofacial surgery [7].

2. Materials and Methods

2.1. Material Selection

The implant materials were selected regarding melt flowability, mechanical toughness, mechanical
stiffness, and biotoxicity. Enough flowability should allow reliable extrusion and mechanical toughness
should deliver filament flexibility. Mechanical stiffness should ensure the form stability of the implant
under load. The lack of biotoxicity should avoid inflammation reactions in vivo.

Optimal flowability, displayed by the melt flow rate (MFR), was determined by the evaluation of
commercial filament technical data sheets [19]. The optimal MFR for material extrusion was evaluated
between 5 g/10 min and 50 g/10 min. The implant requirement of the mechanical toughness and the
mechanical stiffness were investigated for different polymers in previous works of Katschnig et al. [7,20].
The main results suggested a composite of a rigid and stiff polymer and a soft and tough polymer.
This material hybrid delivered a synergy effect in mechanical tests, especially in the non-linear increase
in the impact energy [7]. These findings can result in a stiff and at the same time tough implant.
These data are given in Table 1. The bioactivity of PETG and TPU was also examined by Katschnig [7]
and is given in Table 2. Moreover, the positive cell-impact of polyurethane polymers was proposed by
J.A. de La Peña-Salcedo et al. [21]. Following these preliminary works, the final material choice fell
on the (hard) thermoplastic polyethylene terephthalate glycol (PETG) as base polymer and the (soft)
thermoplastic elastomer polyurethane (TPU) as bioactive polymer. The PETG Mimesis DP300 was
supplied by Selenis (Selenis S.A, Portalegre Portugal) and the TPU Polyflex TPU95 was purchased
from Polymaker (Polymaker BV, Shanghai, China).

Table 1. Mechanical characteristics [7].

Technical Parameters Unit PETG TPU PETG/TPU

Burst force (instrumented puncture test) N 551 ± 55 2325 ± 631 1048 ± 131
Puncture energy (instrumented puncture test) J 3.9 ± 0.6 19.5 ± 2.0 41 ± 9.8

Table 2. Medical characteristics [7].

Medical Parameter Unit PETG TPU

Cell viability
(CellTiter-Glo, reference: 54.284 ± 4915) RLU 74.805 ± 3242 92.598 ± 7700

This selection promoted the idea of using TPU outer layers (soft shell) as crack stoppers for
PETG-filled (stiff core) implants in the maxillofacial area. At the same time, a TPU shell could have a
cell-activating effect. The potential combination of enhanced mechanical performance and bioactive
shell forms the potential biofunctionality of the fabricated implant. Extrusion-based AM opens the
possibility of producing these biofunctional hybrids in one process step by dual printing.
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An Acrylester–Styrol–Acrylnitril (ASA) named ApolloX Natural from Formfutura (Formfutura
BV, Nijmegen, the Netherlands) was used for all printed ex-vivo bone models. The material was chosen
because of the bone-like colour and good printability.

2.2. Filament Preparation

TPU was purchased in filament form, but PETG was only available as pellets and had to be prepared
for filament-based material extrusion by filament extrusion. Payr described important influencing
factors in the extrusion of high-quality filaments [22]. For a polyethylene (PE), a polypropylene (PP)
and for a polycarbonate (PC) it was proven that optimal settings for high quality filaments include
slow and uniform cooling of the extruded filaments. As a result, filaments could be produced in
the range of 1.75 mm ± 0.05 mm in diameter, ±0.05 mm in ovality and without vacuoles. Slow and
uniform filament cooling can be done with symmetrical air cooling and a slow draw-off speed. This is
achieved, for example, by the table-top 3devo Advanced 1.0 filament extruder (3devo B.V., Utrecht,
the Netherlands), which was therefore used for the extrusion of PETG filaments. A further advantage
was the easy processing of small raw material batches below 5 kg. The 3devo Advanced 1.0 is
equipped with an optical filament diameter measurement, thus has an automated quality control
during production. Table 3 lists the machine specifications.

Table 3. 3devo filament extruder specifications [7].

Screw Configuration Three-Zone, Shearing Elements, Hardened

Maximum extrusion temperature 225 ◦C
Nozzle diameter 3 mm

(Pulled-off) filament diameter 1.75 mm ± 0.05 mm
Resolution of diameter measurement ±0.05 mm

Machine control software 3devo version 1.1.2

2.3. Clinical Data Preparation

The anatomical defect localizations were chosen to be clinically relevant and comparable to
the surgical routine, e.g., after the surgical resection of tumors and pathologic bone lesions or after
expanded traumatic injuries including heavy bone loss.

2.3.1. Maxillofacial Defect Data Source

A physiologically preserved anonymous human cadaver mandible, donated within the
“anatomical body donation program” of the Institute for Macroscopic and Clinical Anatomy at
the Medical University of Graz, was used to create two comprehensible bone defects in the lower chaw.

A first bone defect (implant A) was created in the anatomical area of the right mandibular angle
(approx. 3.0 cm × 2.0 cm × 1.0 cm), including the right oblique line, cortical bone and the infra-alveolar
nerve, as it often occurs after the resection of neoplastic processes that infiltrate the bone. The aim was
to digitally scan the defect and the previously resected defect positive. The aim was to achieve the
subsequent surgical filling of the defect with a printed replication of the defect positive.

A second bone defect (implant B) was created by the resection of the muscular process (pterygoid
process) on the left side of the human mandible (approx. 3.5 cm × 3.0 cm × 1.0 cm), as a potential result
of a pathological bone lesion resection or of a congenital missing or malformed anatomical hard tissue
structure. The aim was to replicate the second defect, i.e., to “model” the defect positive digitally and
then to print the implant.

All defect preparations were done with a commercially available oscillating bone saw and a blade
width of 0.8 mm, using water cooling to secure further structures in the mandible cadaver bone.

Regarding the localization of the reconstruction sites for implant A and B, the mandible was chosen
for both defect creations because it provided highly complex geometry for additive manufactured
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implants, a bone to be subject to naturally occurring strong biomedical forces and clinical highly
relevant fracture sites [1–3].

2.3.2. Imaging of Anatomical Structures

All defects were scanned using the CT scanner Siemens Sensation 64 (Siemens Medical
Solutions, Malvern, PA, USA). The scanners are regularly subjected to quality control evaluations;
scanning procedures were done with a standard scanning protocol. High-resolution images with an
in-plane resolution of 0.98 × 0.98 mm2 of the craniomaxillofacial area and a slice thickness of 1 mm
were provided by the Department of Oral and Maxillofacial Surgery (Medical University of Graz, Graz,
Austria) in digital imaging and communications in medicine(DICOM) file format.

2.3.3. Segmentation and STL Model Creation

All defects were converted and segmented with the help of Invesalius v3.1 (Campinas, Brazil) a
free medical open source software used to generate virtual reconstructions of structures in the human
body [23]. The segmentation was done by bi-level thresholding. The additional modeling of implant B
was done with Meshmixer 3.5 (Autodesk Inc., San Rafael, CA, USA).

2.3.4. Post-Processing of the STL Models

Any post-processing of the STL models was performed using 3D Builder (Microsoft Corporation,
Redmond, WA, USA) and Meshmixer 3.5 (Autodesk Inc., San Rafael, CA, USA).

2.4. Material Extrusion Machines

For all single extrusion prints, the cartesian industrial printer HAGE3D medmex (HAGE3D
GmbH, Graz, Austria) was used. All dual extrusion prints were carried out with the cartesian industrial
printer HAGE3D 84L-A (HAGE3D GmbH, Austria). Table 4 shows the machine specifications.

Table 4. Performance specifications of the printers.

Parameter Medmex 84L-A

Print bed glass/PEI glass/PEI
Print area (X × Y) 250 mm × 210 mm 600 mm × 400 mm
Print height (Z) 200 mm 350 mm

Extrusion temperature 285 ◦C (max) 450 ◦C (max)
Print bed temperature 110 ◦C (max) 130 ◦C (max)

Build room temperature RT (20 ◦C–30 ◦C) 85 ◦C (max)
Print (machine) resolution in X-Y 0.1 mm (<0.1 mm) 0.1 mm (0.05 mm)
Print (machine) resolution in Z 0.1 mm (<0.1 mm) 0.1 mm (0.05 mm)

Print speed 200 mm/s (max) 100 mm/s (max)
Machine control system Prusa firmware 3.5.0 Sigmatek control

The medmex machine used an air-cooled direct drive printhead (abbr. SDK) with synchronized
profile wheels and mosquito hotends (Slice Engineering, Gainesville, FL, USA). The 84L-A machine
used a water-cooled high friction feeding system printhead (abbr. HFFS) with shortened aluminium
hot ends for precise melt control.

2.5. Slicing and Print Parameters

All implants and ex-vivo bone models were sliced using the software Simplify3D Version 4.0
(Simplify3D Inc., Cincinnati, OH, USA) with a brass nozzle of 0.4 mm diameter using the settings
summarized in Tables 5–7. Those settings were based on a previous process development by the
author [7]. The heatable print bed was covered by polyetherimide (PEI) foil. For dual printing,
an additional value setting and a tool change script were required and are shown in Tables 8 and 9.
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Table 5. Glycol-modified Polyethylene terephthalate (PETG) parameter table, nozzle: 0.4 mm [7].

Parameter Unit Medmex 84L-A

Print bed temperature ◦C 90 90
Extrusion temperature ◦C 230 230
Extrusion multiplier / 0.88 0.50

Layer height mm 0.18 0.18
Extrusion width mm 0.48 0.48

Shrinkage compensation (X-Y-Z) % +0.3 +0.3
Cooling intensity % 100 100
Retraction length mm 2 2

Rapid motion speed mm/s 200 200
Printing speed mm/s 50 50

Wiping mm 0 5
Angle bridging infill ◦ 45 45

Bridging speed multiplier / 0.9 1
Bridging extrusion multiplier / 1.1 1

Support density % 30 30
Support angle ◦ 45 45

Support offset horizontal mm 0.3 0.3
Support offset vertical mm 0.3 0.3

Table 6. Thermoplastic polyurethane (TPU) parameter table, nozzle: 0.4 mm [7].

Parameter Unit Medmex 84L-A

Print bed temperature ◦C 60 60
Extrusion temperature ◦C 240 245
Extrusion multiplier / 0.95 0.52

Shrinkage compensation (X-Y-Z) % 0 0
Cooling intensity % 100 100
Retraction length mm 2 2

Rapid motion speed mm/s 200 200
Printing speed mm/s 50 50

Wiping mm 0 5
Angle bridging infill ◦ 45 45

Bridging speed multiplier / 1 1
Bridging extrusion multiplier / 1 1

Support density % 10 10
Support angle ◦ 45 45

Support offset horizontal mm 0.3 0.3
Support offset vertical mm 0.3 0.3

Table 7. Acrylester–Styrol–Acrylnitril (ASA) parameter table, nozzle: 0.4 mm [7].

Parameter Unit Value

Print bed temperature ◦C 85
Extrusion temperature ◦C 245
Extrusion multiplier / 0.95

Shrinkage compensation (X-Y-Z) % 0.47
Cooling intensity % 50
Retraction length mm 1

Rapid motion speed mm/s 200
Printing speed mm/s 60

Wiping mm 5
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Table 8. Dual printing parameters [7].

Parameter Unit Value

Tool 0 / TPU
Tool 1 / PETG

Support / PETG
Retraction length on tool change mm 6
Retraction speed on tool change mm/s 20

Primetower location / south-west to home position
Primetower width mm 25

Number of contours (TPU) / 2
Contour extrusion width (TPU) mm 0.96

Angle core layer/shell layer ◦ 45

Table 9. Tool change script [7].

G1 X0 F15000; move to waste management
G1 Y30 F15000; move to waste management

G92 E0; set E0 to zero
T[new_tool]; change tool

M6
T[new_tool]

{IF NEWTOOL=0} M104 S200 T1; idle right extruder
{IF NEWTOOL=0} M104 S[extruder0_temperature] T0; heat left extruder

{IF NEWTOOL=0} M109 S[extruder0_temperature] T0; wait for left extruder
{IF NEWTOOL=1} M104 S200 T0; idle left extruder

{IF NEWTOOL=1} M104 S[extruder1_temperature] T1; heat right extruder
{IF NEWTOOL=1} M109 S[extruder1_temperature] T1; wait for right extruder

G1 E10 F180; extrude 10 mm filament
G92 E0; set E0 to zero

G1 X60 F15000; move 60 mm forward

After finalizing the printing job, the printed parts were detached from the cooled down print bed
with a spatula and stored under standardized conditions for more than 72 h before subsequent tests
were conducted.

2.6. Clinical Evaluation

Defect reconstructions were done ex-vivo with conventional surgical methods as they are also
routinely used intraoperatively. The fixation of each implant was done with commercially available
osteosynthesis microplates and screws (MedArtis AG, Basel, Switzerland). These plates and screws are
also used intraoperatively in the clinical routine in facial reconstructive and bone fixation procedures
and can generally remain in the patient without the need of second operation for their removal.

3. Results

3.1. Implant Models

Figure 1 shows the final STL models of implant A and implant B, which were obtained through
imaging, segmentation and STL modeling.
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Figure 1. On the left side: model of implant A [7], on the right side: model of implant B.

3.2. Slicing

A slicing strategy was created for a standard implant made of PETG and a performance implant
made of PETG (core) and TPU (shell). The standard implant should be manufactured by single printing
and the performance implant by dual printing.

An upright orientation in the build room was chosen to minimize the support structures and at
the same time sufficiently stabilize the implant during printing. In addition, care was taken to ensure
that the layer orientations correspond as far as possible to the principal stress directions in a biaxial
stress state of the implant. For dual printing, a primetower was also printed. The tower ensures that
the nozzle is filled after the tool change. Figure 2 shows the sliced implants including orientation in
the build room, layer orientation and the material sections of PETG and TPU.
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Figure 2. The sliced and orientated maxillofacial implant A [7]; (A): standard implant; (B): standard
implant cut at Z = 5 mm and enlarged; (C): performance implant with TPU shell (green) and PETG core
(blue); (D): performance implant cut at Z = 5 mm and enlarged; additionally shown in 3: the prime
tower to the left of the implant.
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Print times calculated by Simplify3D are given in Table 10. For dual printing, the primetower is
included in the print time.

Table 10. Calculated print times.

Implant Calculated Print Time

Implant A Standard 25 min
Implant A Performance 2 h 30 min

Implant B Standard 29 min
Implant B Performance 2 h 38 min

3.3. Implant Printing

The PETG single print of implant A and B yielded good results, which are shown in Figure 3A,B.
After the manual removal of the support structure, which came off easily and without residue,
the implants could be used without further post processing. The surfaces of the implants were
generally clean. Very rough structures were visible on the interior of implant A, which were caused by
the natural trabecular bone structure of the model, and on the bottom of implant B, which were caused
by the support interfaces. The appearance of the implants was reminiscent of milk glass with a silvery
and shiny shimmer. There were no cracks or extrusion inhomogeneities and only slight layer start
marks were visible. The implants appeared firm and stiff and a manual compression and bending test
did not reveal any typical “crackling” indicating underextrusion and/or a lack of interlayer adhesion.
The haptic surface quality was generally hard and smooth. The printing time for implant A was
27 min and for implant B 30 min, which was at maximum 1% longer than the predicted printing time.
The build-up rate was approximately 10 g/h.
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Figure 3. Results of the single print: Picture (A) shows the outside of implant B, picture (B) the inside.
Picture (C) [7] shows the outside of implant A, picture (D) [7] the inside (with porous inner bone
structure).

The PETG/TPU dual print of implant A and B exhibited good results, which are shown in Figure 4.
Removal of the PETG support structure from the TPU outer layer was more difficult than with the
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standard implants. The supported interfaces had to be carefully ablated with key files to obtain an
acceptable clean surface. In contrast, the non-supported surface of all implants was smooth and
clean and the PETG core material was completely enclosed by the TPU shell. On the interior side of
implant A, rough structures were visible due to the cancellous bone structure. The appearance of the
implants was pure white and shiny and was determined by the TPU. There were no cracks or extrusion
inhomogeneities and only slight layer start marks. The implants felt strong and rigid, and a manual
compression and bending test also showed no “crackling”. Only the peripheral corners were stiffer
than the main body, as only TPU shell layers without PETG core material were printed here due to
the small wall thickness. The general haptic surface texture was softer and less smooth compared to
the PETG prints. The printing time for implant A was 2 h and 50 min and, for implant B, 2 h and
59 min, which was at maximum 11% longer than the predicted printing time. The build-up rate was
approximately 4 g/h.
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Figure 5 shows the hybrid structure of a performance implant. Printing was stopped before
completion at Z = 8 mm to obtain a sectional top view.
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Figure 5. Structure of a printed performance implant (implant B, top view, cut at Z = 8 mm);
white: TPU shell, transparent: PETG core.

3.4. Clinical Suitability for Use

Under the aspect of clinical suitability, only the accuracy of fit (implant adaption to the defect)
and the assembly capability (implant fixation in the defect) are addressed in this work. An evaluation
of both the mechanical implant behavior ex-vivo/in-vivo and the real implant use during an operation
were not part of this work.

For simplification, only the standard implants were manually embedded in an associated bone
model and checked for easy insertion, smooth transitions to the bone, good adaptation to the skull
surface contour and the correct distance to the bone margins. The assembly capability was defined by
the screwability with surgical fixatives and the holding power of the fixation. Figure 6 shows the results.

Polymers 2018, 10, x 14 of 20 

 

by the screwability with surgical fixatives and the holding power of the fixation. Figure 6 shows the 

results. 

The fit of implant A and B was particularly good (cp. Figure 6C and 6D). The countering of the 

jaw (mandibular countering) was anatomically correct and aesthetically satisfying. After fixation, 

the implant reconstructed the defect satisfactorily. The transition to the bone was without visible 

height differences; the distances to the bone margins were in the ideal range of approximately 1 mm 

to 2 mm. The assembly could be carried out without any occurring problems; the screw connection 

did not produce any cracks or splinters. The screws were tight, and the implants were sufficiently 

fixed to the bone without remaining movements. 

 

Figure 6. Clinic-internal assembly of the maxillofacial standard implants A [7] and B with a 

mandibular mini plate system from Medartis AG. The self-tapping screws were 5 to 7 mm long. A: 

lesion A (lateral); B: lesion B (lateral); C: inserted implant A (lateral); D: inserted implant B (lateral); E: 

mounted implant A (lateral); F: mounted implant B (lateral); G: inserted implants A and B (frontal); 

H: mounted implants A and B (frontal). 

4. Discussion 

The main task in this work was to search for alternatives to the established alloplastic implant 

materials with an adapted material selection and combine those new materials with the 

extrusion-based additive manufacturing on a filament basis to produce ready-to-use reconstructions 

of maxillofacial defects. From a manufacturing perspective, this can be affirmed based on the 

achieved results. 

The (STL-) models “implant A” and “implant B”, made by semi-automatic segmentation and 

defect reconstruction with open source software, delivered a precise adaptation to the region of 

implantation. The three-dimensional bone contour was well reconstructed. The models had no mesh 

defects and the slicing was performed smoothly. The model quality was comparable to already 

presented CAD-based mandible reconstructions [24,25]. 

Figure 6. Clinic-internal assembly of the maxillofacial standard implants A [7] and B with a mandibular
mini plate system from Medartis AG. The self-tapping screws were 5 to 7 mm long. (A): lesion A
(lateral); (B): lesion B (lateral); (C): inserted implant A (lateral); (D): inserted implant B (lateral);
(E): mounted implant A (lateral); (F): mounted implant B (lateral); (G): inserted implants A and B
(frontal); (H): mounted implants A and B (frontal).
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The fit of implant A and B was particularly good (cp. Figure 6C,D). The countering of the
jaw (mandibular countering) was anatomically correct and aesthetically satisfying. After fixation,
the implant reconstructed the defect satisfactorily. The transition to the bone was without visible height
differences; the distances to the bone margins were in the ideal range of approximately 1 mm to 2 mm.
The assembly could be carried out without any occurring problems; the screw connection did not
produce any cracks or splinters. The screws were tight, and the implants were sufficiently fixed to the
bone without remaining movements.

4. Discussion

The main task in this work was to search for alternatives to the established alloplastic implant
materials with an adapted material selection and combine those new materials with the extrusion-based
additive manufacturing on a filament basis to produce ready-to-use reconstructions of maxillofacial
defects. From a manufacturing perspective, this can be affirmed based on the achieved results.

The (STL-) models “implant A” and “implant B”, made by semi-automatic segmentation and defect
reconstruction with open source software, delivered a precise adaptation to the region of implantation.
The three-dimensional bone contour was well reconstructed. The models had no mesh defects and the
slicing was performed smoothly. The model quality was comparable to already presented CAD-based
mandible reconstructions [24,25].

A clean and complete extrusion process could be carried out for both the standard and performance
implants. The optimized printing parameters derived from [7] could be confirmed. In dual printing,
the adhesion between the TPU shell and the PETG core seems to be good. The surfaces are homogeneous
and have a process-specific resolution (±0.1 mm [26]). The exceptions were slightly frayed areas on
the supported surfaces of the performance implants, which had to be smoothed in post-processing.
The reason for the surface damage was probably the good adhesion between the PETG support and
the TPU shell, if the defined offsets of 0.3 mm are bypassed by extrusion errors. TPU is known for its
increased adhesiveness [27], so if there is any offset bridging of extruded material, the contact adhesion
tends to be strong. In addition, slight traces of overheating in the TPU shell were found. The reason for
this may have been a local overheating by tool path-enforced low layer times (<10 s) [28].

The assembly ability of implant A and B was clinically proven in a printed ex-vivo bone model.
Figure 7 shows a qualitative comparison between an already published result of fitted and mounted
PEEK implants that are conventionally available for a clinical use and a fitted and mounted PETG
implant A. One can see that the clinical fixation with osteosynthesis microplates and screws possibly
does not harm the implants and leads to aesthetically good results. Furthermore, the implant fits to the
three-dimensional bone contour.
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Figure 7. (A): Fitted and additively manufactured polyetheretherketone (PEEK) implant by GBN
Systems GmbH/Kumovis GmbH [2]; (B): fitted and additively manufactured PEEK implant by KLS
Martin Group [29], (C): fitted PETG implant A [7]; (D): fitted and mounted PETG implant A [7].
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Every new AM-based patient-specific implant (PSI) fabrication effort must compete with the
already established (and often commercialized) technologies and materials. Looking at extrusion-based
AM with thermoplastics, the benchmark material is PEEK. PEEK PSIs are used clinically in a wide
medical field [30]. Various studies conducted with PEEK in the reconstruction of maxillofacial defects
have shown good postoperative aesthetic and functional results without any complications [31–34].

However, there are also reports of PEEK post-operative complications and implant failures [35,36],
although with better performance compared to titanium meshes [36], for example, and the difficulty to
print PEEK [37]. From a clinical point of view PEEK PSIs may cause local infection and increased soft
tissue scarring due to a limited biocompatible surface, especially in anatomical areas where strong
muscles are crossing and moving strong bones, for example in the lower jaw. Furthermore, PEEK is
not ideal for dual printing due its high extrusion temperature and consecutively beneficial material
composites like hard–soft-combinations, for example, rib replacements and fixtures are not easy to
achieve. Moreover, producing compounds with PEEK and bioactive fillers like HA is difficult [7].
Those disadvantages should motivate researchers to establish other thermoplastics and thermoplastic
elastomers as alternatives. Figure 8 depicts a visual comparison between a maxillofacial PEEK implant
and a standard/performance implant B. With the results of this publication and preliminary works of
the authors in mind, PETG or TPU as mono material implant or PETG/TPU as material composite are
potentially a promising substitute for PEEK.
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Figure 8. (A): Lightweight midface-zygomatic bone patient-specific implant (PSI) with support
structures for immediate replacement [30]; (B): muscular process (left side of the mandible, exterior)
PSI (performance implant B); (C): muscular process (left side of the mandible, interior) PSI (standard
implant B).

However, there are some drawbacks in using PETG and TPU instead of PEEK, such as the
non-eligibility for autoclave sterilization (ultraviolet radiation sterilization or ethylene oxide sterilization
could be alternatives) or the minor load-bearing capability, which must be addressed in further studies.
Maxillofacial reconstructions need high-strength implants, especially if there is not enough supporting
biological bone structure. This is especially true in the mandible, where the highest forces of the whole
maxillofacial complex can occur that are punctually at a maximum average of 700 N in a healthy
human. These high-strength forces result from bite forces that influence the bone. However, clinically,
for as long as 6 weeks after an operation, bite forces are typically between 0 N and 100 N for incisal edge
front loading and between 0 N and 200 N for molar edge rear loading [38,39]. Thus, those value ranges
represent clinically relevant load limits for the mechanical testing of implants in the maxillofacial
complex [40]. After 6 weeks, the bone healing is known to be biologically stable enough and thus,
together with the implant, a biological stability can be achieved [41,42]. Another important aspect
that needs to be investigated further is the technology-specific mechanical anisotropy in printed parts.
This means the part is normally strongest in the direction of the extruding tool path and relatively
weaker in the two remaining part axes, vertically to the extruding tool path (layer bonding regions).
This anisotropy should be addressed in the slicing strategy considering the in-vivo implant orientation
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5. Conclusions and Future Work

The presented technical approach proved to be sufficiently fast, clean, and precise to exactly
reconstruct maxillofacial structures ex-vivo. If an intraoperative fabrication is considered or if non-risk
patients are clinically involved, a fast in-house printed PETG standard implant could potentially
serve as an alternative for maxillofacial bone reconstruction. For patients who are either at risk of
implant rejection or high impact stress, the TPU/PETG performance implant is a potential implant
solution. It has a TPU shell that is biofunctional and crack-stopping and a PETG core that gives
strength. The impact strength is synergistically increased; the risk of fracture and splintering is
low. The disadvantage of performance implants is the longer manufacturing time. In summary,
standard implants could make second operations obsolete by manufacturing them during surgery and
performance implants could compensate for the disadvantages of currently used implant materials
such as casual rejection reactions (titanium alloys etc.) or fracture susceptibility (HA etc.).

Concerning the study design, a pre-clinical ex-vivo defect creation and evaluation was done
because new fabrication strategies and material combinations (PETG/TPU) were used. An in-vivo study
within a clinical setting is planned as a following future work project. However, to reduce this ex-vivo
limitation in our study design, we used a physiologically preserved high quality human cadaver
(Institute for Macroscopic and Clinical Anatomy, Medical University of Graz), which completely
consists of human cellular tissue and naturally simulates a clinical setting regarding geometry and
mechanical behavior. The study design of this work was chosen according to previously successfully
performed investigations of new methods for a clinical use that suggest a first pre-clinical assessment
when new materials or technologies should be introduced as routine procedures in maxillofacial
surgery [1,40,43].

In general, the new requirements of the standards ISO 13485:2016 (introduction to quality
management for medical devices), VDI 3405 (additive manufacturing processes) and ISO 5832 (implant
certification) will pose questions in particular for the additive manufacturing of implants, which need
to be answered. The focus of those requirements is on the clinical evaluation of medical devices,
post-market surveillance systems and quality management for in-house production in hospitals.
The current standards also attach great importance to questions of approval and liability for printed
implants [44]. The central question here will be whether the risk of implant failure due to manufacturing
errors can be internalized, i.e., ultimately borne by the medical facility and its employees or whether
the risk will continue to be externalized by external service manufacturing. A possible way out
would be the separation into emergency medical operations, which require the time savings and
flexibility of in-house manufacturing, and standard procedures, which make standardized external
manufacturing appear reasonable. Extrusion-based AM, more precisely filament-based material
extrusion, will support the flexible, fast and low-cost ready-to-use in-house manufacturing with a
compact and clean printing process and the possibility of patient-specific material design. The authors
therefore recommend a systematic evaluation of the complete benefit chain from data generating to
clinical study of the presented technology including quality documentation and risk management.
A successful result would be a relevant and vital step towards the clinical acceptance and potential use
of filament-based material extrusion for patient-specific implants in maxillofacial defect reconstruction.
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