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Critical patients and intensive care unit (ICU) patients are the main population of COVID-19 deaths.
Therefore, establishing a reliable method is necessary for COVID-19 patients to distinguish patients
who may have critical symptoms from other patients. In this retrospective study, we firstly evaluated
the effects of 54 laboratory indicators on critical illness and death in 3044 COVID-19 patients from the
Huoshenshan hospital in Wuhan, China. Secondly, we identify the eight most important prognostic indi-
cators (neutrophil percentage, procalcitonin, neutrophil absolute value, C-reactive protein, albumin,
interleukin-6, lymphocyte absolute value and myoglobin) by using the random forest algorithm, and find
that dynamic changes of the eight prognostic indicators present significantly distinct within differently
clinical severities. Thirdly, our study reveals that a model containing age and these eight prognostic indi-
cators can accurately predict which patients may develop serious illness or death. Fourthly, our results
demonstrate that different genders have different critical illness rates compared with different ages, in
particular the mortality is more likely to be attributed to some key genes (e.g. ACE2, TMPRSS2 and
FURIN) by combining the analysis of public lung single cells and bulk transcriptome data. Taken together,
we urge that the prognostic model and first-hand clinical trial data generated in this study have impor-
tant clinical practical significance for predicting and exploring the disease progression of COVID-19
patients
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The new coronavirus disease (COVID-19) is caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Accord-
ing to statistics up to July 28th, the spread of COVID-19 has
infected more than 16 million people worldwide and caused more
than 650,000 deaths. The number of confirmed cases and deaths in
some regions may be even higher than data available due to mul-
tiple factors, such as detection methods, medical resource lists,
political and cultural differences [1]. COVID-19 has resulted in con-
siderable morbidity and mortality. Thus early rapid diagnosis,
surveillance, risk assessments, and medical resource managements
are essential in the prevention and control of epidemics before pro-
tective vaccines are applied clinically. Generally, the COVID-19
patients with the highest mortality rate are the critically ill and
ICU patients, but they only account for a small proportion of the
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hospitalized mild and severe patients [2]. Therefore, establishing
reliable methods are crucial to distinguish high-risk patients from
others. Although combined nucleic acid detection, antibody detec-
tion and computed tomography (CT) imaging can effectively diag-
nose COVID-19, the severity and prognosis of patients cannot be
predicted [3,4].

Previous studies have reported multiple organ dysfunctions and
prognostic markers including neutrophils and interleukin-6 [5].
Myoglobin and C-reactive protein are related to myocardial inju-
ries [6]. Alkaline phosphatase is related to liver damage whereas
increasing D-Dimer causes new impaired blood coagulation [7,8].
These findings reveal the potential of laboratory indexes serving
as indicators of COVID-19 severity. Our previous work also indi-
cated that the level of tumor biomarkers is associated with the
severity of patients and could predict clinical outcomes [9]. How-
ever, most of the published data was based on a relatively small
sample size, which may reduce the statistical reliability. Therefore,
in order to establish a risk stratification model for finding key lab-
oratory indicators, which predict the disease progression and clin-
ical outcomes of COVID-19 patients, we here further conduct the
study based on a large sample size.

2. Methods

2.1. Study design and participants

3059 COVID-19 patients, who were hospitalized between
February 4th, 2020 and April 13th, 2020 in Huoshenshan hospital
Wuhan, China, were eligible for inclusion in the study. 3044
patients were further included in the final research cohort after
excluding these patients with incomplete medical records (e.g.,
transfer to any other hospital). The study was approved by the
Research Ethics Commission of Huoshenshan Hospital, and written
informed consent was obtained from each patient.

2.2. Data collection

According to the world health organization (WHO)/Interna-
tional Severe Acute Respiratory and Emerging Infection Consor-
tium case record form for severe acute respiratory infections,
baselines of participants, epidemiological and clinical manifesta-
tions, laboratory findings and outcome data were extracted from
electronic medical records. Major basic information (i.e., age, sex,
the highest historical classification, preliminary diagnosis, dis-
charge diagnosis and discharge conditions) were collected except
for patients’ personal information (e.g., name and identification)
and comorbidities were also included in clinical symptoms.

2.3. Definition

All COVID-19 patients were implemented in accordance with
the New Coronavirus Pneumonia Diagnosis and Treatment Plan
(7th edition) issued by the National Health Commission of China.
The diagnosis of COVID-19 was confirmed by the positive real-
time PCR results of throat swab performed in the laboratory. The
chest CT images were also used to assist in the diagnosis and
assessment of the condition of patients. SARS-CoV-2 nucleic acid
was detected by reverse transcription and real-time PCR assays
using a commercial detection kit (Changsha Sansure Biotech). Rou-
tine hematological test was analyzed by a Mindray Automatic
Blood Cell Analyzer (BC-5390CRP). The different treatment out-
comes and clinical severity classification during hospitalization
were defined as follows. ‘‘Cured” refers to patients who can be dis-
charged from hospital and they must meet all of the following con-
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ditions. 1. The body temperature returns to normal for more than
3 days. 2. Respiratory symptoms improved significantly. 3. Lung
imaging showed significant improvement in acute exudative
lesions. 4. Negative nucleic acid test of respiratory tract specimens
such as sputum and nasopharyngeal swab twice in a row (sam-
pling time interval of at least 24 h). ‘‘Improved” means that the
overall symptoms of the patient are significantly improved after
treatment, but still do not meet the criteria for discharge. ‘‘Severity
classification” represents the worst state (mild, severe, critical) of
patients during the entire hospitalization. ‘‘Mild” symptoms are
described as follows: 1. Clinical symptoms are mild and no imaging
findings of pneumonia are found. ‘‘Severe” symptoms should meet
one of the following: 1. Shortness of breath, respiration rate
(RR) � 30 times/min. 2. In the resting state, the oxygen saturation
is � 93%. 3. Arterial partial pressure of oxygen (PAOZ)/oxygen con-
centration (FIO2 � 300 mmHg) (1 mmHg = 0.133 kPa). ‘‘Critical”
symptoms should meet one of the following: 1. Respiratory failure
and the need for mechanical ventilation. 2. Shock. 3. Complicated
with other organ failure, ICU monitoring and treatment are
required.

2.4. Single cell sequencing data analysis

The single-cell data of 8 normal tissues came from the gene
expression omnibus (GEO) database (GSE122960) [10]. The bulk
transcriptome data of normal tissues adjacent to lung cancer were
derived from The Cancer Genome Atlas (TCGA), and the standard-
ized fragments per kilobase per million mapped reads (FPKM)
expression data of these samples was obtained from the UCSC
Xena database (https://xenabrowser.net/hub/). The Seurat3.0 R
package was applied for quality control, filtering, standardization
and subsequent analysis [11]. The inclusion criteria for cell quality
control included 200–5000 genes detected in a single cell (nFea-
ture_RNA), and <5% mitochondrial gene expression. The logNor-
malize function was used to normalize and normalize the
expression matrix. The clustering performance of the cells was per-
formed using the top 2000 most variable genes with a resolution of
0.5. The cell scatter gram method was obtained from t-distributed
stochastic neighbor embedding (t-SNE) [12].

2.5. Statistical analysis

Median or average value indicates continuous variables, and the
n (%) stands for categorical variables. Two-tailed wilcoxon rank
sum test was applied to compare the differences of continuous
variables of two groups. When there were three groups (mild, sev-
ere and critical), they were compared with each other. Chi-square
test was used to compare the frequency of different groups, and
the fisher exact test was applied instead when the theoretical pre-
diction value of the chi-square test is <5. In order to avoid non-
convergence in modeling, the extreme value of each indicator
was processed by the block method in which data greater than
99 quantiles was replaced with 99 quantiles, while data <1 quan-
tile was substituted with 1 quantile. The impact of various labora-
tory indicators on clinical critical illness and death was explored by
logistic regression. These most important variables, which may
give rise to the severity and mortality of COVID-19, were assessed
by random forest machine learning algorithm. Logistic regression
was applied to model age, gender and 8 important prognostic indi-
cators. Receiver operating characteristic (ROC) curve was used to
evaluate the quality of the model in the training set and verifica-
tion set. All statistical analyses were performed using R software
(version 3.5.3), and p-value under 0.05 were considered statisti-
cally significant.
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3. Result

3.1. The demographic and clinical characteristics of 3044 COVID-19
patients

In this study, we intended to use the following process to find
the laboratory indicators which could be served as prognostic fac-
tors for developing critical illness and death (Fig. 1A). At the begin-
ning, 3044 patients with complete clinical information were
screened from 3059 COVID-19 patients (Fig. 1A). Secondly, statis-
tics were made on the demographics, hospitalization, baseline
characteristics, underlying diseases and complications of 3044
COVID-19 patients, whilst these laboratory indicators from
patients with different severity and death outcomes were further
compared to determine differences among them. Age and gender
were then introduced as covariates to screen for significant labora-
tory indicators, and these screened laboratory indicators can affect
critical illness and death by category. Next these 29 significant lab-
oratory indicators extracted from the above results were used to
undergo random forest algorithm screening, and a prognostic
model containing 8 prognostic indicators and age was constructed
and verified by performing ROC. The dynamic changes of 8 prog-
nostic indicators were also evaluated. Finally, public single-cell
and bulk transcriptome data were jointly analyzed to explore the
underlying molecular mechanisms of different COVID-19 types
with different ages and genders.

As shown in Fig. 1, these enrolled patient’s ages were from 10 to
100 years old, and the most inpatients concentrated (n = 932,
30.62%) between 61 and 70 years old (Fig. 1B). Another major
age population for hospitalization was from 40 to 60 years old or
from 70 to 80 years older, respectively (Fig. 1B). Our study indi-
cated that the elderly constituted the main population among
infected patients, which agrees with the previous report [13].
Our results demonstrated that the number of cured and improved
patients could respectively reached 2930 (96.25%) and 48 (1.41%)
in the clinical setting, indicating that most patients had good treat-
ment outcomes, but the number of deaths remained 66 (2.17%)
(Fig. 1C). Most patients could be attributable to mild and severe
level while the rest minority could progress to critical level
(5.2%) according to the classification (Fig. 1D). Similar to the
proportion of critical ones, the proportion of ICU patients
accounted for 4.2% and there was a great overlap between ICU
patients and critical patients (Fig. 1E). In view of gender, the
proportion of males was only 1.58% higher than that of females
(Fig. 1F), which seems to imply that the infection rate is
no significant gender difference.
3.2. Clinical baseline characteristics of COVID-19 patients with
different outcomes

In this study, patients were assigned into three severity groups
according to their highest severity classification, including 1467
mild, 1418 severe and 159 critical patients with median ages of
56.0 years (IQR: 45–65), 63.0 years (IQR: 53.0–71.0), and 68.0 years
(IQR: 61.5–76.5), respectively (Table 1). Except for 40 patients with
unknown survival outcome information, the median age of 2038
survivors was 60.0 (IQR: 49.0–68.0), while the median age of 66
deaths was 71.5 years (IQR: 65.5–78.0), indicating the elderly
patients have worse clinical status and a higher mortality rate
(p < 0.001, Table 1). In mild and moderate patients, the ratio of
men to women was equal, but there was a significant increase
number of male developing critical severity (p = 0.002, Table 1),
and the mortality rate of males was also markedly higher than that
of females (p = 0.013, Table 1). For ICU treatment, critically ill
patients were significantly higher than mild and severe patients
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(p < 0.001), accounting for 64.78% (Table 1). For the clinical out-
comes, there were 4 severe and 61 critical cases among these
deceased patients (p < 0.001, Table 1). In addition, most deceased
patients were critical patients and underwent ICU treatment. The
median length of hospital stay of 3044 COVID-19 patients was
13.0 days (IQR: 8.0–19.0), and patients with higher disease severity
had a significant longer hospital stay (severe: 14.0 days (IQR: 8.0–
22.0); critical: 19.0 days (IQR: 11.0–32.0) (Table 1).

In our work, three most common comorbidities of 3044
COVID-19 patients were hypertension, diabetes and coronary
atherosclerosis, which was similar to the reports from the United
States and other countries [14]. Interestingly, we found that peo-
ple with underlying diseases, such as hypertension, diabetes and
coronary atherosclerosis, tumors, chronic obstructive pulmonary
disease, and abnormal renal function, were more likely to develop
severe and critical illness (Table 1, p < 0.05). Remarkably, four
most common comorbidities related with clinical death were
hypertension (p < 0.001), diabetes (p = 0.001), coronary heart dis-
ease (p = 0.001) and chronic obstructive pulmonary disease
(p < 0.001). The result of logistic regression adjusted by age and
gender revealed that hypertension (OR = 1.483, p = 0.014), dia-
betes (OR = 1.557, p = 0.016) and tumor (OR = 2.315, p = 0.022)
were main risk factors (Table 1 and Table S1). Besides, respiratory
failure, acute respiratory distress syndrome and thrombocytope-
nia also were the most common comorbidities among critical
and dead patients, which could turn out to be potential lethal
factors (Table 1 and Table S1). Especially, we found that 1369
(45.57%) infected patients had no comorbidity (p < 0.001, Table 1
and Table S1).

3.3. Laboratory test results of patients with different clinical prognosis
of COVID-19

After sorting and summarizing the laboratory examination indi-
cators of COVID-19 patients, 54 indicators were screened for sub-
sequent analysis. Here, we urged that not all 3044 patients have
undergone all laboratory tests, and the specific number of people
tested for each indicator will be shown in the results below. More-
over, most patients underwent massive tests of multiple indicators,
but we here only used the earliest test values for subsequent anal-
ysis. These 54 indicators were roughly divided into 8 categories,
including blood routine examination, electrolytes, liver function,
urine tests, kidney function, heart function, blood coagulation indi-
cators and others. Red blood cells and several white blood cells,
including monocytes, lymphocytes, basophils, eosinophils and
neutrophils, were involved in the blood routine examination. Elec-
trolytes included sodium, potassium, chlorine, phosphorus, serum
magnesium and calcium. The indicators related to liver function
mainly contained alanine aminotransferase, aspartate aminotrans-
ferase, total protein, albumin, total bilirubin, direct bilirubin, total
bile acid, indirect bilirubin, globulin, alkaline phosphatase, c-
glutamyl transpeptidase, etc. Urine examination included cystatin
C, pH, white cells, red cells, etc. The related torenal function indica-
tors contained urea nitrogen, creatinine, total carbon dioxide, uric
acid and so on. The indicators related to cardiac function included
creatine kinase, lactate dehydrogenase, a-hydroxybutyrate dehy-
drogenase, creatine kinase isoenzyme, myoglobin, hypersensitive
troponin I, B-type natriuretic peptide, etc. Coagulation indexes
included fibrinogen, activated partial thromboplastin time, pro-
thrombin time, thrombin time, international standardized ratio,
DD dimer, etc. Other indicators included C-reactive protein, hyper-
sensitive C-reactive protein, interleukin-6, procalcitonin, and blood
glucose.

Multiple analysis revealed that the levels of many indicators
were significantly different within diverse severity circumstances.
For example, the median of neutrophil percentage and neutrophil



Fig. 1. The research flow and overall distribution of 3044 COVID-19 patients. A: The roadmap of research. B: Age distribution of COVID-19 patients. C: Treatment outcome
chart of COVID-19 patients. D: Ratio chart of the highest historical classification (mild, severe, critical) of COVID-19 patients. E: Scale diagram of COVID-19 patients staying in
the ICU. F: Sex ratio chart of COVID-19 patients.
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Table 1
Baseline characteristics of 3044 COVID-19 patients.

Total. NO. (Highest classification) Total (n = 3044) Mild (n = 1467) Severe (n = 1418) Critical (n = 159) p-value

Demographics and characteristics
Age, median [IQR] 60.0 (49.0–68.0) 56.0 (45.0–65.0) 63.0 (53.0–71.0) 68.0 (61.5–76.5) p < 0.001
Sex
Female 1498 (49.21%) 719 (49.01%) 722 (50.91%) 57 (35.85%) 0.002
Male 1546 (50.78%) 748 (50.99%) 696 (49.08%) 102 (64.15%)
Stay in ICU 127 (4.17%) 1 (0.07%) 23 (1.62%) 103 (64.78%) p < 0.001
State of Death 66 (2.17%) 0 (0.00%) 4 (0.35%) 61 (38.36%) p < 0.001
Basic comorbidity
Hypertension 935 (30.72%) 366 (24.95%) 492 (34.7%) 77 (48.43%) p < 0.001
Diabetes 435 (14.29%) 169 (11.52%) 224 (15.8%) 42 (26.42%) p < 0.001
Coronary atherosclerosis 165 (5.42%) 50 (3.41%) 98 (6.91%) 17 (10.69%) p < 0.001
Tumor 61 (2.00%) 15 (1.02%) 38 (2.68%) 8 (5.03%) p < 0.001
Chronic obstructive pulmonary disease 30 (0.99%) 5 (0.34%) 21 (1.48%) 4 (2.52%) 0.001
Hyperlipidemia 23 (0.76%) 11 (0.75%) 12 (0.85%) 0 (0%) 0.505
Abnormal liver function 59 (1.94%) 27 (1.84%) 27 (1.9%) 5 (3.14%) 0.522
Gastritis 36 (1.18%) 17 (1.16%) 17 (1.20%) 2 (1.26%) 0.991
Cirrhosis 16 (0.53%) 4 (0.27%) 11 (0.71%) 1 (0.63%) 0.245
Hepatitis 55 (1.81%) 30 (2.04%) 24 (1.69%) 1 (0.63%) 0.403
Nephritis 7 (0.23%) 3 (0.2%) 3 (0.21%) 1 (0.63%) 0.558
Benign prostatic hyperplasia 32 (1.05%) 6 (0.41%) 22 (1.55%) 4 (2.52%) 0.002
Prostatitis 4 (0.13%) 1 (0.07%) 3 (0.21%) 0 (0%) 0.509
Asthma 8 (0.26%) 3 (0.2%) 4 (0.28%) 1 (0.63%) 0.599
Complications
Respiratory failure 52 (1.71%) 0 (0%) 16 (1.13%) 46 (28.93%) p < 0.001
Acute respiratory distress syndrome 24 (0.79%) 0 (0%) 2 (0.14%) 22 (13.84%) p < 0.001
Abnormal kidney function 26 (0.85%) 6 (0.41%) 17 (1.20%) 3 (1.89%) 0.024
Heart failure 14 (0.46%) 2 (0.13%) 6 (0.42%) 6 (3.77%) p < 0.001
Venous thrombosis 10 (0.33%) 3 (0.20%) 5 (0.35%) 2 (1.25%) 0.079
Thrombocytopenia 20 (0.66%) 5 (0.34%) 11 (0.78%) 4 (2.51%) 0.010
Days in hospital, median [IQR] 13.0 (8–19) 12.0 (8–17) 14.0 (8–22) 19.0 (11–32) p < 0.001
No additional diseases 1386 (45.53%) 751 (51.19%) 604 (42.60%) 31 (19.50%) p < 0.001
Effects on clinical outcome adjusting for age and gender
Basic comorbidity OR log2OR 95% CI lower 95% CI upper p-value
Hypertension 1.483 0.394 1.081 2.029 0.014
Diabetes 1.557 0.443 1.076 2.216 0.016
Coronary atherosclerosis 1.174 0.161 0.671 1.947 0.553
Cancer 2.315 0.839 1.068 4.570 0.022
Chronic obstructive pulmonary disease 0.822 �0.196 0.233 2.241 0.728
Hyperlipidemia 0 �13.76 NA NA 0.978
Abnormal liver function 1.573 0.453 0.530 3.758 0.355
Abnormal renal function 1.313 0.272 0.303 3.950 0.667
Gastritis 0.778 �0.252 0.124 2.648 0.735
Cirrhosis 1.918 0.651 0.288 7.507 0.411
Hepatitis 0.651 �0.430 0.105 2.173 0.559
Nephritis 2.426 0.886 0.123 15.895 0.430
Benign prostatic hyperplasia 0.919 �0.084 0.264 2.461 0.880
Prostatitis 0 �11.778 NA NA 0.978
Asthma 2.605 0.957 0.132 16.834 0.393

Note: IQR: The 25% and 75% quantiles. ICU: intensive care unit. OR: odds ratio. log2OR: log2 (odds ratio). 95% CI lower: The lower of 95% confidence interval. 95% CI upper: The
upper of 95% confidence interval.
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count increased with the disease grade (60.2vs. 63.35vs. 82.4,
3.3vs. 3.57vs. 6.27, p < 0.001, Table S2), but the lymphocyte per-
centage and lymphocyte count gradually decreased (29vs. 25.4vs.
10.3, 1.58vs. 1.43vs. 0.82, p < 0.001, Table S2). Various electrolytes
such as sodium, potassium and calcium had large disturbances
among patients with different grades (Table S2). Remarkably,
aspartate aminotransferase and alkaline phosphatase related to
liver function gradually increased with disease level upgraded
(p < 0.001, Table S2), and total protein and albumin decreased
gradually (p < 0.001, Table 2), whereas alanine aminotransferase
and indirect bilirubin had no significant changes (p = 0.670,
p = 0.340, Table S2). Urine test-related cystatin C increased as the
progression of infection (0.9vs. 0.96vs. 1.08, p < 0.001, Table S2).
Creatinine in renal function also increased with the worsen situa-
tion of disease (0.9vs. 0.96vs. 1.08, p < 0.001, Table S2). Further-
more, the amount of many other indicators were more highly
increased in more severe situations. For example, myoglobin and
B-type natriuretic peptide were related to cardiac function, while
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fibrinogen and increase in D-Dimer indicates new blood coagula-
tion. Notably, C-reactive protein, interleukin-6, procalcitonin and
blood glucose showed a significant increase in severe and critical
patients (p < 0.001, Table S2). Similar changes in all above indica-
tors were also observed in both ICU and non-ICU groups (Table S3).

By comparing laboratory indicators in patients with different
survival outcomes and severity classification, we found that their
trends were not identical. Some usual prognostic indicators such
as neutrophils, interleukin-6, D-Dimer, and C-reactive protein
increased markedly, while lymphocytes, eosinophils, total protein,
and albumin abnormally decreased in both critical and dead
patients (p < 0.001, Table S2 and Table S4). In addition, sodium,
chloride, fibrinogen, globulin and other indicators had significant
differences between different grades (p < 0.001, Table S2) but not
the clinical outcomes (p > 0.05, Table S4). Taken together, we sug-
gested that the disturbance of these indicators may be related to
the disease progression but not survival rate because they are
not obvious lethal factor.



Table 2
The impact of different laboratory test indicators on clinical death and critical illness outcomes.

Laboratory testing index OR log2OR 95% CI lower 95% CI upper p-value Total

Neutrophil percentage 1.136 0.127 1.118 1.155 p < 0.001 2976
Neutrophil absolute value 1.466 0.382 1.387 1.553 p < 0.001 2976
Basophil percentage 0.014 �4.260 0.006 0.035 p < 0.001 2976
Absolute value of basophil 0.000 �48.688 0.000 0.000 p < 0.001 2976
Eosinophil percentage 0.539 �0.618 0.462 0.622 p < 0.001 2976
Eosinophil absolute value 0.003 �5.689 0.000 0.023 p < 0.001 2976
Monocyte percentage 0.657 �0.420 0.610 0.705 p < 0.001 2976
Monocyte absolute value 0.937 �0.065 0.415 2.003 0.872 2976
Lymphocyte percentage 0.854 �0.157 0.836 0.873 p < 0.001 2976
Lymphocyte absolute value 0.150 �1.895 0.103 0.217 p < 0.001 2976
Blood leukocytes 1.349 0.299 1.282 1.422 p < 0.001 2976
Red blood cells 0.803 �0.212 0.600 1.079 0.1424 2976
Potassium 1.113 0.107 0.833 1.474 0.4623 2851
sodium 0.966 �0.034 0.925 1.009 0.126 2851
chlorine 0.903 �0.102 0.867 0.942 p < 0.001 2851
calcium 0.002 �6.116 0.001 0.008 p < 0.001 2850
phosphorus 0.193 �1.644 0.091 0.406 p < 0.001 2390
Serum magnesium 18.143 2.898 3.165 105.618 0.0012 2389
Alanine aminotransferase 1.004 0.004 1.001 1.008 0.0184 2898
Aspartate aminotransferase 1.007 0.007 1.003 1.012 0.0072 2907
Total protein 0.918 �0.085 0.894 0.942 p < 0.001 2901
albumin 0.800 �0.223 0.769 0.832 p < 0.001 2901
Total bilirubin 1.038 0.037 1.020 1.057 p < 0.001 2900
Direct bilirubin 1.080 0.077 1.046 1.124 p < 0.001 2900
Total bile acid 0.971 �0.029 0.939 0.998 0.064 2899
Indirect bilirubin 1.050 0.049 1.010 1.094 0.017 2378
globulin 1.014 0.014 0.976 1.051 0.475 2380
Alkaline phosphatase 1.008 0.008 1.005 1.011 p < 0.001 2899
c-glutamyl transpeptidase 1.005 0.005 1.003 1.007 p < 0.001 2899
Cystatin C 1.837 0.608 1.431 2.390 p < 0.001 2894
PH 1.002 0.002 0.750 1.332 0.99 2313
Urine red blood cells 1.001 0.001 1.001 1.002 0.004 2377
Urine leukocyte 1.000 0.000 1.000 1.001 0.184 2378
Urea nitrogen 1.250 0.223 1.187 1.319 p < 0.001 2903
Creatinine 1.003 0.003 1.001 1.005 0.0023 2903
Uric acid 0.996 �0.004 0.994 0.998 p < 0.001 2898
Total carbon dioxide 0.962 �0.039 0.912 1.015 0.1551 2897
Creatine kinase 1.003 0.003 1.001 1.004 p < 0.001 2847
Lactate dehydrogenase 1.010 0.010 1.009 1.012 p < 0.001 2850
alpha-hydroxybutyrate dehydrogenase 1.012 0.012 1.010 1.013 p < 0.001 2850
Creatine kinase isoenzyme 1.006 0.006 1.000 1.017 0.0821 2846
Myoglobin 1.008 0.008 1.005 1.012 p < 0.001 1270
Hypersensitive troponin I 1.525 0.422 1.168 2.353 0.012 1276
B-type natriuretic peptide 1.001 0.001 1.001 1.002 p < 0.001 1638
Fibrinogen 1.064 0.062 0.895 1.222 0.385 2528
Activated partial thromboplastin time 1.046 0.045 1.021 1.078 0.001 2529
Prothrombin time 1.328 0.284 1.224 1.445 p < 0.001 2529
Thrombin time 1.186 0.170 1.100 1.291 p < 0.001 2529
International standardized ratio 27.539 3.316 10.362 75.970 p < 0.001 2529
DD dimer 1.265 0.235 1.200 1.339 p < 0.001 2510
C-reactive protein 1.023 0.023 1.020 1.027 p < 0.001 2926
Hypersensitive C-reactive protein 1.227 0.204 1.179 1.278 p < 0.001 2923
Interleukin-6 1.012 0.012 1.008 1.017 p < 0.001 1472
Procalcitonin 1.881 0.632 1.368 2.899 0.002 2018
Glucose 1.252 0.225 1.184 1.326 p < 0.001 2900

Note: OR: odds ratio. log2OR: log2 (odds ratio). 95% CI lower: The lower of 95% confidence interval.
95% CI upper: The upper of 95% confidence interval.
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3.4. Logistic regression analyzes the impact of laboratory indicators on
the critical and death

We further assessed the contribution of the 54 laboratory indi-
cators above to the clinical critical illness and survival. Critical
patients accounted for 92.4% (61/66) in deaths and 81.1%
(103/123) in ICU patients, indicating a great overlap between
ICU, dead and critical patients. Thus we here defined a composite
endpoint event. Specifically, the composite endpoint event repre-
sents the died, critical and ICU patients as event occurrences, while
the rest as no event occurrences. Then, we set age and gender as
covariate corrections, and used multivariate logistic regression to
calculate the impact of various indicators, which turned out that
1168
multiple laboratory indicators affected the prognosis and disease
progression of patients. For example, neutrophils percentage
(OR = 1.136, p < 0.001), neutrophil count (OR = 1.466, p < 0.001),
white blood cells amount (OR = 1.349, p < 0.001), cystatin C level
(OR = 1.837, p < 0.001), D-Dimer level (OR = 1.265, p < 0.001),
interleukin-6 level (OR = 1.012, p < 0.001), C-reactive protein level
(OR = 1.023, p < 0.001), blood glucose level (OR = 1.252, p < 0.001)
and other multiple detection indicators are risk indicators of clin-
ical critical illness and death (Table 2). Conversely, lymphocyte
percentage (OR = 0.854, p < 0.001), lymphocyte count
(OR = 0.150, p < 0.001), eosinophil percentage (OR = 0.539,
p < 0.001), albumin level (OR = 0.800) are all protective factors
against clinical critical illness and death (Table 2). Some indicators
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such as monocyte count (OR = 0.937, p = 0.872), red blood cells
amount (OR = 0.803, p = 0.142), pH (OR = 1.002, p = 0.990) and cre-
atine kinase isoenzyme (OR = 1.006, p = 0.082) are not the main
factors correlating with clinical critical illness and death (Table 2).
In short, we found that 44 indicators (p < 0.05) might affect the
patient’s disease process and survival outcomes (Table 2).

3.5. Effects of different categories of laboratory indicators on critical
illness and death

In order to further explore the main indicators in each category,
a multi-factor stepwise regression analysis was carried out on each
category, including blood routine test, electrolytes, urine tests, and
function assessments of kidney, liver, heart and blood coagulation.
In terms of cell ratio, we found that white blood cells amount
(OR = 1.063, p = 0.026) and neutrophil percentage (OR = 1.130,
p < 0.001) were the main risk factors (Table 3) that can promote
disease progression. On the absolute level, lymphocytes
(OR = 0.215, p < 0.001) and neutrophils (OR = 1.415, p < 0.001) were
the main prognostic factors which can inhibit virus infection and
increase inflammation, respectively (Table 3). At the electrolyte
level, although differences were significant in potassium, sodium,
and magnesium (p < 0.001), the regression coefficient of the overall
model was not significant (p = 0.090, Table 3). In renal function
assessments, cystatin C (OR = 3.782, p < 0.001) and urine red blood
cells (OR = 1.001, p = 0.006) were the main risk factors while urea
nitrogen (OR = 1.526, p < 0.001), creatinine (OR = 0.994, p < 0.001)
and uric acid (OR = 0.991, p < 0.001) played more important roles
in urine examination (Table 3). Among the liver function indexes,
aspartate aminotransferase, albumin, alkaline phosphatase, etc.
were the main prognostic factors. Meanwhile, we found that ala-
nine aminotransferase (OR = 0.990, p = 0.01), globulin
(OR = 1.042, p = 0.041) and other indicators were significantly
independent of age and gender (Table 3 vs. Table 2). These findings
proposed that these indicators are greatly affected by age and gen-
der or they are not sufficiently robust as prognostic indicators.
Among cardiac-related indicators, lactate dehydrogenase
(OR = 1.013, p < 0.001), myoglobin (OR = 1.012, p < 0.001) and cre-
atine kinase (OR = 0.995, p < 0.001) were the main prognostic fac-
tor (Table 3) while prothrombin time (OR = 1.187, p < 0.001),
fibrinogen (OR = 1.277, p < 0.0141), thrombin time (OR = 1.099,
p < 0.017) and D-Dimer (OR = 1.255, p < 0.001) were the main prog-
nostic factor in coagulation parameters (Table 5). The remaining
index items, including C-reactive protein (OR = 1.019, p < 0.001),
interleukin-6 (OR = 1.014, p < 0.001), procalcitonin (OR = 2.362,
p < 0.001) and blood glucose (OR = 1.227, p < 0.001) had nothing
to do with clinical critical illness and death (Table 3). Finally, we
found that 34 laboratory indicators could serve as independent
prognostic signatures (Table 3).

3.6. Random forest screening of prognostic indicators causing critical
illness and death

Monitoring such large amounts of laboratory indicators is a
heavy burden for clinical doctors in anti-virus therapy. Therefore,
29 significant prognostic indicators obtained from 491 patients
were selected and further tested in random forest machine learn-
ing algorithms at the same time. Interestingly, they could clearly
distinguish the event group (Critical or ICU or Dead) and non-
event group according to the principal component results
(Fig. 2A). Moreover, 5 times 10-fold cross-validation was used to
screen the best number of variables included in the model, and
eight turns out to be the most suitable for its the smallest error
(Fig. 2B). Combined with the importance of indicators given by
the random forest algorithm (Fig. 2C), eight indicators were
selected as the final prognostic indicators including neutrophil per-
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centage, procalcitonin, neutrophil absolute value, C-reactive pro-
tein, albumin, interleukin-6, lymphocyte absolute value and
myoglobin due to their significant differences in different disease
grades, survival outcomes and ICU grouping (Fig. S1).

More importantly, these 8 prognostic indicators at different
times in the event and non-event patients showed stable and sig-
nificant differences. In particular, neutrophil percentage, procalci-
tonin, neutrophil absolute value, C-reactive protein, myoglobin
and interleukin-6 in patients with compound endpoint events
were always higher than the non-event group (Fig. 2D). On the
opposite, these protective factors, such as lymphocyte count and
albumin obtained from patients with a composite endpoint event,
were always lower than those without a composite endpoint event.
Hence, these 8 laboratory testing indicators indeed be treated as
the prognostic factor of patients, because they were significantly
different in both the critical and mild groups from onset to a long
time before the end event (Fig. 2D).

3.7. Establishing a COVID-19 patient prediction model

In order to assist doctors in defining patients who are more
likely to be critically ill or even die, we here combined age and
eight prognostic indicators presented above to establish a clinically
available prognostic model. Prior to that procedure, patients were
divided into normal and abnormal groups according to eight prog-
nostic indicators and the cumulative event rate was counted
between the two groups. The cumulative event rates in the abnor-
mal risk factor group were significantly higher than the non-
abnormal group (p < 0.001, Fig. 3A ~ F). Similarly, the cumulative
event rate in the abnormal protection factor group was signifi-
cantly higher than the healthy group (p < 0.001, Fig. 3G and
p < 0.001, Fig. 3H).

In order to further analyze the clinical reliability of the model in
the 491 samples training set, logistic regression was applied to
construct a joint model which contains age and the selected eight
prognostic indicators. Receiver operating characteristic curve
(ROC) indicated that the model had a good AUC value of 0.878
(95% CI: 0.829–0.927) (Fig. 3I). The model regression equation for
calculating the probability of event occurrence was as follows:
y = 1 / (1 + e-z), z = -4.038 + 0.051 * (neutrophil percentage) + 0.763
* (procalcitonin) + 0.003 * (mymyoglobin) + 0.128 * (neutrophil
absolute) + 0.005 * (C reactive protein) + 0.003 * (interleukin 6)
� 0.148 * (lymphocyte absolute) � 0.089 * (albumin) + 0.015 *
(age). This model was further verified in another independent
cohort containing 170 patients and its AUC value reached 0.897
(95% CI: 0.787–1.000) (Fig. 3J). These results clearly demonstrated
that this model has great robustness. Finally, a nomogram contain-
ing all 611 patients was drawn to facilitate clinical use and explain
the relationship between model variabilities, which may not only
query the risk scores of patients’ various model indicators conve-
niently, but also predict the risk of disease progression and death
in patients according to the sum of scores.

3.8. Analyses of lung single cell and full transcriptome data of different
ages and genders

During the analysis, we noticed that age and gender are always
important factors leading to critical illness and death compared
with various testing indicators. Therefore, we compared three
key genes ACE2, TMPRSS2 and FURIN, which were related to virus
infection at both single cell and whole tissue levels under different
ages and genders [15–17]. As shown in Fig. 4, 13 cell populations
were identified from 8 normal lungs (Fig. 4A ~ B, Table S5). ACE2
was mainly expressed in alveolar epithelial type 2 cells (AT2), basal
cells and tuft cells (Fig. 4C). Based on our analysis, the expression of
ACE2 was detected in limited cells. In AT2 subpopulation, <1% of



Table 3
Independent prognostic factors for laboratory inspection indicators of various categories.

Immune cell percentage OR log2OR 95% CI lower 95% CI upper p-value

(Intercept) 0.000 (10.812) 0.000 0.000 p < 0.001
Red blood cells 0.783 (0.245) 0.598 1.023 0.073
Blood leukocytes 1.063 0.061 1.010 1.124 0.026
Neutrophil percentage 1.130 0.122 1.110 1.151 p < 0.001
Immune cell absolute value
(Intercept) 0.121 (2.111) 0.068 0.215 p < 0.001
Lymphocyte absolute value 0.215 (1.535) 0.147 0.310 p < 0.001
Monocyte absolute value 0.424 (0.859) 0.165 1.022 0.066
Neutrophil absolute value 1.415 0.347 1.330 1.510 p < 0.001
Electrolyte
(Intercept) 271.269 5.603 0.448 188182.081 0.090
Serum magnesium 72.921 4.289 11.323 482.399 p < 0.001
phosphorus 0.170 (1.772) 0.086 0.331 p < 0.001
chlorine 0.840 (0.174) 0.791 0.892 p < 0.001
calcium 0.001 (6.881) 0.000 0.004 p < 0.001
Potassium 1.747 0.558 1.285 2.366 p < 0.001
sodium 1.154 0.143 1.079 1.234 p < 0.001
Renal function
(Intercept) 0.014 (4.263) 0.009 0.022 p < 0.001
Cystatin C 3.782 1.330 2.683 5.485 p < 0.001
Urine red blood cells 1.001 0.001 1.000 1.002 0.006
Urine test
(Intercept) 0.097 (2.334) 0.059 0.158 p < 0.001
Urea nitrogen 1.526 0.423 1.431 1.632 p < 0.001
Creatinine 0.995 (0.006) 0.991 0.998 0.001
Uric acid 0.991 (0.009) 0.989 0.993 p < 0.001
liver function
(Intercept) 33.286 3.505 6.222 182.502 p < 0.001
Alanine aminotransferase 0.990 (0.010) 0.982 0.997 p < 0.001
Aspartate aminotransferase 1.016 0.016 1.006 1.026 0.001
albumin 0.797 (0.227) 0.764 0.829 p < 0.001
Total bilirubin 0.948 (0.053) 0.882 1.017 0.142
Direct bilirubin 1.288 0.253 1.122 1.485 p < 0.001
Total bile acid 0.904 (0.100) 0.875 0.930 p < 0.001
globulin 1.042 0.041 1.001 1.083 0.041
Alkaline phosphatase 1.007 0.007 1.003 1.012 0.001
Heart function
(Intercept) 0.009 (4.709) 0.005 0.016 p < 0.001
Creatine kinase 0.995 (0.005) 0.993 0.998 0.001
Lactate dehydrogenase 1.013 0.013 1.010 1.015 p < 0.001
Creatine kinase isoenzyme 0.970 (0.031) 0.937 0.999 0.059
Myoglobin 1.012 0.012 1.008 1.017 p < 0.001
Hypersensitive troponin I 0.614 (0.488) 0.269 0.998 0.260
Coagulation index
(Intercept) 0.001 (7.562) 0.000 0.002 p < 0.001
Prothrombin time 1.187 0.171 1.105 1.289 p < 0.001
Fibrinogen 1.277 0.244 1.090 1.585 0.014
Thrombin time 1.099 0.094 1.033 1.195 0.017
DD dimer 1.255 0.227 1.189 1.330 p < 0.001
Interleukin
(Intercept) 0.058 (2.841) 0.046 0.073 p < 0.001
Interleukin-6 1.014 0.014 1.010 1.019 p < 0.001
C-reactive protein
(Intercept) 0.017 (4.103) 0.011 0.023 p < 0.001
C-reactive protein 1.018 0.018 1.014 1.022 p < 0.001
Hypersensitive C-reactive protein 1.136 0.127 1.088 1.188 p < 0.001
Procalcitonin
(Intercept) 0.076 (2.575) 0.064 0.090 p < 0.001
Procalcitonin 2.363 0.860 1.562 3.857 p < 0.001
carbohydrate
(Intercept) 0.019 (3.966) 0.014 0.026 p < 0.001
Glucose 1.227 0.205 1.175 1.282 p < 0.001

Note: OR: odds ratio. log2OR: log2(odds ratio). 95% CI lower: The lower of 95% confidence interval. 95% CI upper: The upper of 95% confidence interval.
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this subpopulation were detected containing the expressed ACE2
with low expression level. In addition, we found that TMPRSS2
and FURIN could promote the binding of SARS-CoV-2 to ACE2,
which were also mainly expressed in AT2 cells [15–17]
(Fig. 4D ~ 4E). The average expression level of ACE2 and the cell
percent expressing it in the old group (age: 55 years, 63 years,
57 years) were higher than the young group (age: 21 years,
22 years, 29 years) (Fig. 4F). Besides, we also found that higher per-
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centage of cells in older patients express TMPRSS2 and FURIN
(Fig. 4F), even though their expression levels in elder group were
lower than the young group. The results of single-cell analysis par-
tially explain the differences of the infection rate and mortality
between people at different ages, which may not only be related
to the expression of ACE2, TMPRSS2 and FURIN, but also the num-
ber of cells with the expression of these three key genes. However,
in the analysis of the whole transcriptome from TCGA, there was



Fig. 2. Screening the most important prognostic indicators through random forest machine learning algorithms. A: Principal component analysis chart of age, gender and 29
laboratory test indexes. B: The 5 times 10-fold cross-validation curve shows the relationship between the model error and the number of variables used for fitting. C: The
ranking of the importance of 31 prognostic indicators calculated based on the random forest algorithm. MeanDecreaseGini represents the influence of each variable on the
heterogeneity of the observations on each node of the classification tree. The larger the value, the greater the importance of the variable. D: The overall dynamic changes of
the eight most important prognostic indicators at different time points before the end event. Red and blue lines represent the fit curve. 1 represents the composite endpoint
event group in which patients developed into critical illness or death or entered the ICU while 0 represents the group without composite endpoint events where patients have
milder symptoms and better treatment effects. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Analysis of lung single cell transcriptomes of different ages and genders. A: The heat map shows the marker genes corresponding to different cell types in the lung. B:
The UMAP cluster map shows the clustering of different cells in the lungs. C: Expression and distribution of ACE2 in different cell clusters in the lung. D: TMPRSS2 expression
and distribution in different cell clusters in the lung. E: Expression and distribution of FURIN in different cell clusters in the lung. F: Differences in expression and proportion
of ACE2, TMPRSS2 and FURIN in old and young people. G: Differences in expression and proportion of ACE2, TMPRSS2 and FURIN in men and women.

Fig. 3. A joint prognostic model that can be used for clinical decision-making. A ~ H: The cumulative event rate of patients with abnormal and non-abnormal groups of 8
important prognostic indicators. The normal reference range is as follows: neutrophil percentage: 40%-75%, procalcitonin: 0–0.05 ng/ml, neutrophil absolute value: 1.8–
6.3*10-9 /L, C reactive protein: 0–4 mg/L, albumin: 40–55 g/L, interleukin 6: 0–5.90 pg/mL, lymphocyte absolute value: 1.1–3.2*10-9 /L, myoglobin: 0–80 ng/ml. I: ROC curve of
the joint model in the training set. J: Validate the ROC curve of the joint model in the concentration. K: The nomogram shows the model prediction in all 611 samples
detecting 8 indicators at the same time. The line segment corresponding to each variable is marked with a scale, which represents the range of possible values of the variable,
and the length of the line segment reflects the contribution of this factor to the ending event. Point in the Fig represents the individual score corresponding to each variable
under different values. Total Point represents the total score of the individual scores after the values of all variables are added up. The risk probability represents the patient’s
probability that a composite endpoint event will occur.
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no significant difference in ACE2, TMPRSS2, and FURIN in popula-
tion older than 60 years old and younger than 60 years old
(Fig. S2). We inferred that the tissue-wide transcriptome data
masked subtle differences in key molecules of different ages, which
also highlighted the advantages of single-cell transcriptome data.
Considering gender, the infection rate of men was only 1.58%
higher than women (Fig. 1) while the proportion of men who
developed to critical illness and death was almost twice that of
women (Table 1), which might also attribute to higher ACE2
expression level [18]. To verify whether there is such a difference,
we compared the expression levels and cell ratios of ACE2,
TMPRSS2 and FURIN of different genders based on single cell
RNA sequencing. As shown in Fig. 4G, compared with females,
the expression levels of ACE2, TMPRSS2 and FURIN were higher
in males, and the proportion of cells expressing ACE2 and TMPRSS2
were also higher. In the bulk transcriptome, the expression of
TMPRSS2 in males was significantly higher than that in female,
which was consistent with the results derived from single cell
level. No significant differences between ACE2 and FURIN of differ-
ent genders was detected. Based on these results, the reasons of
higher infection and mortality rates in male were illustrated at
molecular level.
4. Discussion

It is urgent and necessary to find effective methods to predict
and monitor the critical illness and death of COVID-19 patients.
Regarding various clinical statistical indicators of COVID-19
patients that have been achieved in previous studies, they have
some inherent flaws. For example, limited sample size and defi-
ciency of detailed laboratory examination results made it difficult
to determine the main contribution of multiple testing indicators.

In our study, the most susceptible people are concentrated
between 51 and 70 years old and the average age of critically ill
patients and deceased patients is higher (Table 1). Consistent with
previous extensive reports, the elderly is the main population of
COVID-19 [13]. In addition, some studies have reported that the
difference between infection and death in elderly and young peo-
ple may be related to the expression of ACE2 receptor in the body
[19]. To further verify this conclusion at single cell level and bulk
tissue. Our results show that the elderly at the single-cell level
seems to express more ACE2 and the proportion of cells expressing
ACE2 is higher than that of the young (Fig. 4F), no significant differ-
ence was observed at the bulk transcriptome level (Fig. S2). The
same uncertainty appears in the results of TMPRSS2 and FURIN
genes (Fig. S2). Therefore, although this may partially illustrate
the difference between critical illness and death in elderly and
young people, more sufficient evidences still lack to fully explain.
According to that, we propose that the difference in the outcome
of the elderly and young people is related to the weakened immu-
nity and more comprehensive underlying diseases accompanied
with increasing age. Our research has proved that patients with
underlying diseases have a higher critical illness ratio and mortal-
ity (Table 1, p < 0.001 and Table S1). From the perspective of gen-
der, compared with the 39.7% female infection rate in the United
States [14], the infection rate of men is only 1.58 percentage points
higher than that of women (Fig. 1F). However, the proportion of
men who develop critical illness and death doubles compared with
women (Table 1 and Table S1), which may be also attributed to
higher ACE2 expression [18]. It is better to believe that the expres-
sion level difference of ACE2, TMPRSS2 and FURIN genes is the
cause of different critical illness rate and death rate in different
genders rather than different ages, because these can be strongly
supported by the data analysis results at the single cell and bulk
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transcriptome level (Fig. 4G and Fig. S2). In terms of comorbidities,
hypertension, diabetes, coronary heart disease, tumors, and
chronic obstructive pulmonary disease are prone to critical illness
and clinical outcomes (Table 1 and Table S1), which is consistent
with previous reports [14,20]. From the patient’s treatment out-
come, the number of patients cured and improved reached 2644
and 281 respectively (Fig. 1B) and the number of deaths was only
66, accounting for 2.17% (Fig. 1B). This shows that timely and
active medical treatment is essential to curb the mortality of
COVID-19 patients.

A large number of disorders are presented in COVID-19 patients
with death and critical illness regarding laboratory indicators.
Compared with mild and severe ill patients, those critical and dead
ones have obvious abnormalities in the immune system, kidney
function, liver function, heart function, blood coagulation indexes
and inflammatory factors. In order to facilitate clinical monitoring
and supervision, we further found the 8 most important prognostic
indicators. Among them, the increase of neutrophil percentage,
neutrophil absolute value and interleukin-6 indicated that inflam-
mation and inflammatory storm are some of the main manifesta-
tions of critical symptoms and death. The decrease of
lymphocyte absolute value represents a decrease in the immunity
of critically ill and dead patients, resulting in the inability to defend
against the combined infection and sepsis represented by the
increase in procalcitonin and C-reactive protein. In addition, the
disorders of myoglobin and albumin are related to impaired heart
and liver function, suggesting that many important organs of crit-
ical and dead patients have been damaged. Compared with mild
and severe patients, the values of these eight indicators are always
in a higher state before the end event, and patients with abnormal
indicators are more likely to have composite endpoint events
(Fig. 2D and Fig. 3). The model constructed by the combined age
and gender of the patients and the eight detection indicators has
good accuracy in the training set and validation set with the AUC
values for 0.878 and 0.897, respectively (Fig. 3I ~ J). Finally, we
establish a clinically useful regression equation and nomogram to
predict the risk probability of developing critical illness and death
(Fig. 3K). We believe that this model has practical significance for
the prediction and monitoring of COVID-19 patients.

In summary, we performed a statistical analysis of 3044 COVID-
19 patients to find the eight most important prognostic factors
(neutrophil percentage, procalcitonin, neutrophil absolute value,
C-reactive protein, albumin, interleukin-6, lymphocyte absolute
value and myoglobin) of COVID-19, and constructed a model to
predict the prognosis of patients, which is of great significance
for the management and monitoring of COVID-19. Moreover,
through reanalyzing public lung single-cell and bulk transcriptome
data, we suggest that compared with different ages, different gen-
ders have different critical illness rates and mortality are more
likely to be attributed to differences in key genes such as ACE2,
TMPRSS2, and FURIN.

However, our study still has many limitations. First, our estab-
lished prediction model still lacks an effective validation from
external queues, which may result in over-fitting of the model to
a certain extent. Therefore, in the further study, we suggest that
it is important to integrate multiple queues for modeling and val-
idation. One model can only withstand validation from multiple
external cohorts, it can be applied to a complex COVID-19 patient
population. Second, our model construction is mainly based on
random forest and logistic regression algorithm, which may have
certain deficiencies. In fact, a comprehensive comparison of the
results of the multiple algorithms will deepen our impression of
the key prognostic factors and models. Support vector machine,
Adaptive Boosting, neural network and artificial intelligence algo-
rithms are good choices. Third, our current study has not been able
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to analyze the genetic background of these differences in labora-
tory test indicators. This is mainly because we lack the genetic
information of these patients. We believe that the integration of
laboratory indicators and genetic information such as genomes,
transcriptome and proteome will greatly broaden our understand-
ing of COVID-19. We also hope that future studies will pay atten-
tion to the output of these data.
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