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Abstract: We analyze the 7,8-dihydroxyflavone (DHF)/TrkB signaling activation of two main in-
tracellular pathways, mitogen-activated protein kinase (MAPK)/ERK and phosphatidylinositol 3
kinase (PI3K)/AKT, in the neuroprotection of axotomized retinal ganglion cells (RGCs). Methods:
Adult albino Sprague-Dawley rats received left intraorbital optic nerve transection (IONT) and were
divided in two groups. One group received daily intraperitoneal DHF (5 mg/kg) and another vehicle
(1%DMSO in 0.9%NaCl) from one day before IONT until processing. Additional intact rats were
employed as control (n = 4). At 1, 3 or 7 days (d) after IONT, phosphorylated (p)AKT, p-MAPK,
and non-phosphorylated AKT and MAPK expression levels were analyzed in the retina by Western
blotting (n = 4/group). Radial sections were also immunodetected for the above-mentioned proteins,
and for Brn3a and vimentin to identify RGCs and Müller cells (MCs), respectively (n = 3/group).
Results: IONT induced increased levels of p-MAPK and MAPK at 3d in DHF- or vehicle-treated
retinas and at 7d in DHF-treated retinas. IONT induced a fast decrease in AKT in retinas treated
with DHF or vehicle, with higher levels of phosphorylation in DHF-treated retinas at 7d. In intact
retinas and vehicle-treated groups, no p-MAPK or MAPK expression in RGCs was observed. In DHF-
treated retinas p-MAPK and MAPK were expressed in the ganglion cell layer and in the RGC nuclei
3 and 7d after IONT. AKT was observed in intact and axotomized RGCs, but the signal intensity of
p-AKT was stronger in DHF-treated retinas. Finally, MCs expressed higher quantities of both MAPK
and AKT at 3d in both DHF- and vehicle-treated retinas, and at 7d the phosphorylation of p-MAPK
was higher in DHF-treated groups. Conclusions: Phosphorylation and increased levels of AKT and
MAPK through MCs and RGCs in retinas after DHF-treatment may be responsible for the increased
and long-lasting RGC protection afforded by DHF after IONT.

Keywords: axotomy; adult rats; intraorbital optic nerve transection; retinal ganglion cells;
7,8-dihydroxiflavone (DHF); 7,8-dihydroxiflavone/TrkB signaling; AKT; MAPK; tropomyosin related
kinase B (TrkB)

1. Introduction

Retinal ganglion cells (RGCs) are the only neurons of the retina that send the visual
information through the optic nerve to the retinorecipient areas of the brain. Among all
experimental models to study neuronal degeneration and neuroprotection, intraorbital
optic nerve transection (IONT) is widely used due to its high reproducibility and easy
access to RGC axons compared to other central nervous system (CNS) tracts. This model
has been used frequently both in rats [1–5] and mice [5–10], showing two phases of RGC
degeneration: a first fast phase, from 1 to 9 days after IONT in mice [7,11] or 14 in rats [2,4,5],
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leaving 15% of the RGC population alive; and a second slower phase, from 9 to 45 days or
longer, in which RGCs degenerate much slower [5].

Neuroprotective therapies aim to restore visual function by preventing RGC degener-
ation using a variety of neuroprotective compounds, including trophic and neurotrophic
factors [5,12–15], alpha-2 adrenergic receptors agonist [16,17] nitric oxide (NOS) inhibitors,
or controlling glia-mediated neuroinflammation (reviewed in [18]).

The neurotrophin brain-derived neurotrophic factor (BDNF) is one of the most ef-
ficient RGC neuroprotectants [7,11,14,19–23] and has been used in several experimental
models such as IONT [7,9], intraorbital optic nerve crush (IONC) [24], ocular hyperten-
sion (OHT) [14,25], or in an in vivo model of focal light emitting diode-induced cone-
photoreceptor phototoxicity [23,26]. When administered intravitreally at the time of IONT,
BDNF rescues degenerating RGCs during the first phase of RGC death [5,7,11,21,22];
however, this effect is transient. BDNF binds and activates its high-affinity tropomyosin-
related kinase B (TrkB) receptor; triggers its dimerization, autophosphorylation, and in-
ternalization; and subsequently activates downstream signaling intracellular cascades:
phosphatidylinositol-3 kinase (PI3-K) through its main effector of neuronal survival,
serine/threonine kinase (AKT, or protein kinase B); mitogen-activated protein kinase
(MAPK)/ERK and phospholipase-C (PLC-Υ) [27–29]. Each subpathway triggers a cascade
of phosphorylation and dephosphorylation of several molecules that culminate in the
activation of transcription factors that promote gene expression of elements that support
cell survival. For instance, the PI3K/AKT pathway promotes anti-apoptotic signaling and
pro-survival activity and regulates N-methyl-D-aspartic acid (NMDA) receptor-dependent
synaptic plasticity [30–32]. MAPK/ERK pathways activated by BDNF seem to be relevant
for local protein synthesis involved in prolonged increase in synaptic transmission, essen-
tial in neuronal plasticity and long-term potentiation [33], and they have an important role
in neuronal growth and differentiation [34].

The flavonoid 7,8-dihydroxyflavone (DHF) is a small molecule agonist of TrkB [35]
and, thus, a mimetic of the neurotrophin BDNF [36,37] that has been studied recently as
a neuroprotective drug in a number of experimental models of CNS diseases [36,38,39]
(for review see [40]). In the retina, the effect of DHF has been studied in few experimental
models: against excitotoxicity in isolated RGCs [41], or hypoxic-ischemic injury [42], both
in vitro. In vivo, in a model of chronic intermittent hypoxia in the retina, DHF reduces the
production of reactive oxygen species (ROS), activates TrkB signals and downstream AKT
and ERK signaling pathways, and upregulates the expression of mature BDNF, alleviating
RGC damage [43]. DHF has been also shown to have antioxidant and anti-inflammatory
effects (reviewed in [44]).

We have recently documented that DHF has a potent in vivo neuroprotective effect for
RGCs against IONT, at an optimal dose of 5 mg/kg administered intraperitoneally [45]. The
percentages of surviving Brn3a+RGCs in vehicle- or DHF-treated rats one week after IONT
were 60 and 94%, respectively [45]. The DHF afforded neuroprotection was observed up to
three weeks after IOP and, thus, lasted longer than our previously reported studies in which
we administered a single intravitreal injection of BDNF after IONT [22] or crush [7,24]. DHF
is known to activate TrkB receptor through its phosphorylation [40,43,46], and in our study
the retinas treated with DHF showed a higher survival of RGCs and TrkB phosphorylation
(pTrkB) at 7 days, thus suggesting that DHF reaches the retina and activates TrkB [45].
However, the signaling pathways responsible for the in vivo neuroprotective effects of
DHF in the axotomized adult rat retina are, to the best of our knowledge, unknown.
Moreover, whether different neuronal and nonneuronal retinal cells are involved in the
neuroprotection process is also unknown.

For the present studies, using an in vivo rat retinal model of axonal damage, we
demonstrate for the first time that the systemic administration of DHF results in activation
of the main TrkB activated signaling pathways: (i) phosphatidylinositol 3-kinase/protein
kinase B (PI3K/AKT), and (ii) mitogen activated protein kinases extracellular signal reg-
ulated kinases 1 and 2 (MAPK/ERK; ERK1/2), thus suggesting their involvement in
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the DHF afforded neuroprotection for RGCs against IONT. Moreover, our immunohisto-
chemical studies suggest an important role for RGCs and Müller cells as effectors in the
neuroprotection process.

2. Results
2.1. DHF Treatment Activates MAPK Signaling
2.1.1. MAPK Protein Levels and Expression Pattern

Western blotting analysis showed an increase in the amount of total MAPK protein
from 1 day after IONT (Figure 1A,B), with a strong phosphorylation from 1 to 3 days after
IONT in vehicle-treated groups and from 3 days in DHF-treated groups. At 7 days, MAPK
protein level decreased, but the activation was significantly higher in DHF-treated groups
than in vehicle-treated ones.

To analyze the MAPK signal and location in the retina, micrographs were acquired
with the same settings. In intact retinas, there was a weak signal of both p-MAPK and total
MAPK proteins along the retina, mainly observed in the outer retina, in the photoreceptor
layer (PRL) and retinal pigment epithelium (RPE) (Figure 1C). The levels of p-MAPK and
MAPK increased significantly 3 days after IONT, both in DHF- or vehicle-treated retinas,
as was also observed in Western blots (Figure 1A,C). This activation was observed in the
ganglion cell layer (GCL), in the outer retina and across the retina. At 7 days, this signal
was significantly higher in DHF-treated retinas when compared to vehicle-treated groups.

2.1.2. MAPK Activation in Retinal Ganglion Cells

Since DHF-treated retinas showed higher RGC survival [45], we investigated whether
MAPK was activated in RGCs. In intact retinas, no signal of p-MAPK or MAPK was observed
in Brn3a-labeled RGCs (Figure 1C, arrowheads). The time-course of RGC degeneration was
slower in DHF-treated retinas at 3 and 7 days after IONT when compared to vehicle-treated
ones. P-MAPK and MAPK were located in the retinal nerve fiber layer (RNFL) and in the RGC
nuclei of DHF-treated animals (Figure 1C, white arrows), but no p-MAPK and MAPK signals
were observed in RGCs of vehicle-treated ones (Figure 1C, arrowheads).

2.1.3. MAPK Activation in Müller Cells

After IONT, vimentin immunodetection revealed a strong hypertrophy of Müller cells
(MCs) expressing higher amounts of p-MAPK (Figure 2, left) and MAPK (Figure 2, right).
At 3 days after IONT, in DHF-treated retinas we observed colocalization of p-MAPK with
MCs throughout the retina. Colocalization of the total form of MAPK and MCs was only
present in the GCL. In the vehicle-treated retinas we observed the opposite; p-MAPK was
located in the GCL whereas MAPK was present throughout the whole retina. While at
3 days the increased MAPK was observed in both DHF- and vehicle-treated groups, at 7
days the phosphorylation of p-MAPK was higher in DHF-treated groups.
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Figure 1. MAPK signaling pathway. Representative images of Western blot (A) from MAPK protein levels in retinal 
samples (pool of four samples/time-point). Western blot was performed with retinal extracts from intact (c, control) and 
left injured retinas treated daily with DHF or vehicle (V) analyzed at 1, 3 or 7d after IONT. (B): Bar graphs of the 
quantitative analysis of phosphorylated (p-) MAPK and the total MAPK protein compared to actin protein levels, and 
normalized p-MAPK/MAPK. In all graphs, results are presented as mean ± SD relative to intact retinas (considered 1.0). 
Kruskal–Wallis test, * p < 0.05, ** p < 0.01, *** p < 0.001). (C): Representative cross-sectioned retinas (20×) of p-MAPK (left) 
and total MAPK (right) signal in intact and axotomized retinas treated with DHF or vehicle at 3 and 7 days after IONT. In 
the right column of each one, a magnification of double immunostaining with Brn3a (upper part) and p-MAPK or MAPK 
alone (lower part) is shown, pointing the co-expression (arrows) and no co-expression (arrowheads) between them. RNFL 
= retinal nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer 
plexiform layer, ONL = outer nuclear layer, PRL = photoreceptor layer, RPE = retinal pigment epithelium, d = days post-
lesion. Scale bar is shown at the bottom left. 

Figure 1. MAPK signaling pathway. Representative images of Western blot (A) from MAPK protein levels in retinal samples
(pool of four samples/time-point). Western blot was performed with retinal extracts from intact (c, control) and left injured
retinas treated daily with DHF or vehicle (V) analyzed at 1, 3 or 7d after IONT. (B): Bar graphs of the quantitative analysis of
phosphorylated (p-) MAPK and the total MAPK protein compared to actin protein levels, and normalized p-MAPK/MAPK.
In all graphs, results are presented as mean ± SD relative to intact retinas (considered 1.0). Kruskal–Wallis test, * p < 0.05,
** p < 0.01, *** p < 0.001). (C): Representative cross-sectioned retinas (20×) of p-MAPK (left) and total MAPK (right) signal
in intact and axotomized retinas treated with DHF or vehicle at 3 and 7 days after IONT. In the right column of each one,
a magnification of double immunostaining with Brn3a (upper part) and p-MAPK or MAPK alone (lower part) is shown,
pointing the co-expression (arrows) and no co-expression (arrowheads) between them. RNFL = retinal nerve fiber layer,
GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer
nuclear layer, PRL = photoreceptor layer, RPE = retinal pigment epithelium, d = days post-lesion. Scale bar is shown at the
bottom left.
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Figure 2. Activation of MAPK signaling pathway in Müller cells (MCs). Representative micrographs (20×) of 
phosphorylated (p-) MAPK (A) and total MAPK (B) signal in intact, and axotomized retinas treated with DHF or vehicle 
at 3 and 7 days after IONT. The signal of each protein, MCs immunodetected with vimentin and the co-localization of both 
images are shown. RNFL = retinal nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner 
nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, PRL = photoreceptor layer, RPE = retinal pigment 
epithelium. Scale bar at the bottom right = 50 µm. 
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Western blotting analysis showed that AKT protein level was strong in intact retinas 
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differences compared to vehicle-treated groups (Figure 3A,B). In intact retinas, 
immunohistochemistry showed that this strong signal of p-AKT and AKT was found in 
the outer retina, in the outer segments of the PRs and RPE (Figure 3C). In both groups, 3 
days after IONT, the levels of total and p-AKT were lower in the PRL and RPE but higher 
across the retina, mainly in the retinal fiber layer (RNFL), GCL and inner nuclear layer 
(INL). At 7 days, the signal pattern was similar to what we observed in the Western 
blotting; there was more AKT and p-AKT signal in DHF-treated retinas compared to 
vehicle-treated ones (Figure 3C). 

Figure 2. Activation of MAPK signaling pathway in Müller cells (MCs). Representative micrographs (20×) of phosphory-
lated (p-) MAPK (A) and total MAPK (B) signal in intact, and axotomized retinas treated with DHF or vehicle at 3 and 7
days after IONT. The signal of each protein, MCs immunodetected with vimentin and the co-localization of both images
are shown. RNFL = retinal nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear
layer, OPL = outer plexiform layer, ONL = outer nuclear layer, PRL = photoreceptor layer, RPE = retinal pigment epithelium.
Scale bar at the bottom right = 50 µm.

2.2. DHF Treatment Activates PI3K/AKT Signaling Pathway
2.2.1. AKT Protein Levels and Expression Pattern

Western blotting analysis showed that AKT protein level was strong in intact retinas
(Figure 3A). After IONT, both p-AKT and AKT decreased at 1 day and then increased at 3
days in both DHF- and vehicle-treated groups. At 7 days, the amount of p-AKT and AKT de-
creased, and it was significantly higher in DHF-treated groups compared to vehicle-treated
ones, although normalized p-AKT/AKT did not show significant differences compared to
vehicle-treated groups (Figure 3A,B). In intact retinas, immunohistochemistry showed that
this strong signal of p-AKT and AKT was found in the outer retina, in the outer segments
of the PRs and RPE (Figure 3C). In both groups, 3 days after IONT, the levels of total and
p-AKT were lower in the PRL and RPE but higher across the retina, mainly in the retinal
fiber layer (RNFL), GCL and inner nuclear layer (INL). At 7 days, the signal pattern was
similar to what we observed in the Western blotting; there was more AKT and p-AKT
signal in DHF-treated retinas compared to vehicle-treated ones (Figure 3C).
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daily treated with DHF or vehicle (V) analyzed at 1, 3 or 7d after IONT. (B): Bar graphs of the quantitative analysis of 
phosphorylated (p-) AKT and the total protein AKT compared to actin protein level, and normalized p-AKT/AKT. In all 
graphs, results are presented as mean ± SD relative to intact retinas (considered 1.0). Kruskal–Wallis test, * p < 0.05). (C): 
Representative cross-sectioned retinas (20×) of phosphorylated AKT (left) and total AKT (right) signal in intact and 
axotomized retinas treated with DHF or vehicle at 3 and 7 days after IONT. In the right column of each one, a magnification 
of double immunostaining with Brn3a (upper part) and p-AKT or AKT alone (lower part) is shown, pointing the co-
expression (arrows) and no co-expression (arrowheads) between them. RNFL = retinal nerve fiber layer, GCL = ganglion 
cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, 
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2.2.2. AKT Activation in Retinal Ganglion Cells 
In intact retinas, few RGCs express low levels of p-AKT and AKT (Figure 3C). At 3 

and 7 days after IONT, p-AKT and AKT signals co-localized with Brn3a+RGCs in DHF- 
and vehicle groups. This signal was slightly higher in the RGC nuclei when retinas were 
treated with DHF (arrows) at 3 and 7 days after IONT (Figure 3C). 

  

Figure 3. AKT signaling pathway. Representative images of Western blot (A) from AKT protein level in retinal samples
(pool of four samples/time-point). Western blot was performed with retinal extracts from intact (c) and left injured retinas
daily treated with DHF or vehicle (V) analyzed at 1, 3 or 7d after IONT. (B): Bar graphs of the quantitative analysis of
phosphorylated (p-) AKT and the total protein AKT compared to actin protein level, and normalized p-AKT/AKT. In
all graphs, results are presented as mean ± SD relative to intact retinas (considered 1.0). Kruskal–Wallis test, * p < 0.05).
(C): Representative cross-sectioned retinas (20×) of phosphorylated AKT (left) and total AKT (right) signal in intact and
axotomized retinas treated with DHF or vehicle at 3 and 7 days after IONT. In the right column of each one, a magnification
of double immunostaining with Brn3a (upper part) and p-AKT or AKT alone (lower part) is shown, pointing the co-
expression (arrows) and no co-expression (arrowheads) between them. RNFL = retinal nerve fiber layer, GCL = ganglion
cell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer,
PRL = photoreceptor layer, RPE = retinal pigment epithelium, d = days post-lesion. Scale bar is shown at the bottom left.

2.2.2. AKT Activation in Retinal Ganglion Cells

In intact retinas, few RGCs express low levels of p-AKT and AKT (Figure 3C). At 3
and 7 days after IONT, p-AKT and AKT signals co-localized with Brn3a+RGCs in DHF-
and vehicle groups. This signal was slightly higher in the RGC nuclei when retinas were
treated with DHF (arrows) at 3 and 7 days after IONT (Figure 3C).
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2.2.3. AKT Activation in Müller Cells

Colocalization between AKT and vimentin+MCs showed a similar behavior as ob-
served with MAPK signaling pathway (Figure 2). MCs showed high levels of phosphoryla-
tion from 3 days after IONT and treatment with DHF or vehicle compared to intact retinas.
At 7 days, the increased AKT protein level and activation was maintained higher when
DHF treatment was administered (Figure 4).
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Figure 4. Activation of AKT signaling pathway in Müller cells (MCs). Representative micrographs
(20×) of phosphorylated AKT (A) and total AKT (B) protein levels in intact, and axotomized retinas
treated with DHF or vehicle at 3 and 7 days after IONT. The signal of each certain protein, MCs
immunodetected with vimentin and the co-localization of both images are shown. RNFL = retinal
nerve fiber layer, GCL = ganglion cell layer, IPL = inner plexiform layer, INL = inner nuclear layer,
OPL = outer plexiform layer, ONL = outer nuclear layer, PRL = photoreceptor layer, RPE = retinal
pigment epithelium. Scale bar at the bottom right = 50 µm.

3. Discussion

The results of this study indicate that systemic treatment with DHF prevents axo-
tomized RGC degeneration through the activation of the DHF/TrkB signaling pathway,
specifically PI3K/AKT and MAPK/ERK signaling pathways. This is the first in vivo study
demonstrating that the phosphorylation of MAPK/ERK and AKT induced by DHF treat-
ment is located in RGCs and MCs, thus establishing a neuro-glial interaction that may be
responsible for the DHF-afforded long-term RGC protection against axonal damage.
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DHF is an agonist of the TrkB receptor. Both BDNF/TrkB and DHF/TrkB signaling
pathways have been demonstrated to have a role in inhibiting apoptosis and, thus, pro-
tecting RGCs against retinal damage [42,43,47,48]. A recent study from our group showed
strong rescuing effects of DHF against axotomy of the RGC population with a systemic
daily dose of 5 mg/kg; almost the entire population of axotomized RGCs survived by 7
days (see Figures 3 and 6 of [45]), and the protection lasted for three weeks, considerably
longer than our previously observed effects when a single intravitreal injection of 5 µg
BDNF was administered as neuroprotectant [7,22]. It is likely that such in vivo differences
in the protective lasting effects result from different pharmacokinetics of the receptor
TrkB activation by the ligands BDNF or 7,8-DHF, which may follow different temporal
patterns [36,47]. DHF is a small molecule (254 Da) [44], approximately 1% compared to
the size of BDNF (28 kDa), that crosses the blood–brain barrier [46]. This difference in
size allows DHF to have a long half-life in plasma and to reach the brain within 10 min of
administration [38], and it has no apparent toxicity when administered chronically [45,49].
Indeed, BDNF-elicited TrkB signals are transient and fade within 1h [29] while TrkB activa-
tion by DHF may last for hours [36,43,45]. Moreover, BDNF-activated TrkB receptors, but
not DHF-activated TrkB receptors, are ubiquinated and degraded [36].

TrkB receptor, activated by neurotrophins, is followed by the downstream activation
of PI3K/AKT and MAPK/ERK pathways, which are the two strong survival pathways that
block both extrinsic and intrinsic apoptotic pathways [20,50]. In agreement with our recent
report [45], DHF treatment resulted in an increased Brn3a+RGC survival when compared to
vehicle-treatment at 3 and 7 days after IONT. This finding was paralleled by increased levels
of both total MAPK and phosphorylated MAPK proteins at a time when RGC survival was
optimal. These results are similar to those observed in other experimental models, such as
chronic intermittent hypoxia, where DHF treatment activates downstream AKT and ERK
signaling pathways in RGCs in vitro [43] or, with BDNF treatment, only from 1h to 3 days
after IONT [29].

MAPK/ERK is involved in cellular growth and differentiation by activating three
members—P38, ERK1/2 and JNK—and it has been described to have a long-term effect
in injured retinas. In this study, we found that the amount of MAPK was higher from
1 day after IONT with both treatments, but phosphorylation was higher in the vehicle-
treated group, which might mean that RGCs are not degenerating yet when DHF is
administrated. After 3 days, DHF or vehicle treatment in normalized p-MAPK/MAPK
levels showed a similar activation, and it remained highly phosphorylated at 7 days in
retinas treated with DHF. This is in agreement with our previous description of a higher
phosphorylation of TrkB at this time-point [45], which initiates this signaling cascade, as
has been described with BDNF [47]. The late activation of p-MAPK and the maintenance
of phosphorylation with DHF at 7 days could explain the longer survival rate of RGCs
after IONT when compared to BDNF, which has a shorter effect [7,22]. It is interesting that
p-MAPK levels increased but also the total MAPK protein, although further studies are
needed to understand such an increased MAPK protein expression.

In this study, the results of DHF were compared with vehicle. Previous findings from
our group have shown that the time course of RGC degeneration after IONT in rats without
treatment [1,2,4] or with intraperitoneal injection of vehicle (1% DMSO in 0.9% NaCl) are
comparable [45], suggesting that intraperitoneal administration of vehicle has no effect on
its own in the IONT model. Thus, our results may be interpreted in that IONT induces this
molecular change by itself.

Moreover, MAPK and p-MAPK proteins were clearly observed in DHF-treated surviv-
ing RGCs, while no MAPK nor p-MAPK signal was observed in intact or vehicle-treated
retinas (Figure 1), similar to the results described with BDNF at shorter times [29]. MAPK
and p-MAPK were also observed 3 days after IONT in MCs of retinas treated with DHF or
vehicle, indicating that MCs respond fast to retinal damage by MAPK phosphorylation.
This result, similar to a previous study that described MAPK activation after IONT without
treatment [51], would suggest that MCs become active after injury to protect RGCs. How-
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ever, the burst activation of MAPK in MCs was maintained up to 7 days in the DHF-treated
group but decreased in the vehicle-treated group. Previous studies have described IONT
induced MCs hypertrophy, with upregulation of GFAP and vimentin 7 days after optic
nerve injury [25]. This overexpression is mainly observed in the GCL where the end feet
of MCs reside [52] and close to the damaged RGCs, as shown in Figures 2 and 4. Thus, it
is tempting to suggest that the activation of the survival MAPK signaling pathway results in
neuroprotection through activation of both MCs and RGCs, as has been described in other
experimental models such as NMDA excitotoxicity [53,54], or retinal detachment, ischemia-
reperfusion, inflammation and glaucoma (reviewed in [55]). P-MAPK and MAPK was also
observed in the outer retina; however, further studies are need to understand this event.

We also studied the AKT signaling pathway. PI3-K activates AKT (protein kinase
B, a serine/threonine kinase) and promotes cell survival and growth, inhibiting Bad and
Bcl-2, which are anti-apoptotic. The phosphorylation of AKT also suppress Casp-9 and
Forkhead (reviewed in [27]). Our results indicate that, in contrast to the MAPK/ERK
signaling pathway, AKT is abundant in intact retinas, and it decreases after IONT. This
was somewhat surprising because previous studies have reported higher AKT levels after
an injury [42,43,51]. Histologically, immunohistochemistry revealed higher levels of both
p-AKT and AKT in the outer segments of PRs and in the RPE of intact retinas. After IONT,
the signal of p-AKT and AKT decreased in the outer retina but increased in the GCL and
MCs. Although the signal intensity was weak, AKT was constitutively expressed in intact
RGCs, and the results indicate that DHF-treated retinas had a stronger signal intensity in
the RGC nuclei at 3 and 7 days after IONT. In the present experiments we have observed a
large amount of AKT and p-AKT in the outer segments of photoreceptors in intact retinas,
as well as p-MAPK and MAPK. Since these have large amounts of stress signals due to the
continuous renewal of the PRs [56,57], it is likely that p-AKT and AKT are more increased
in this section to protect the PRs [58,59]. When more severe damage occurs, such as IONT,
it is conceivable that retinal tissue prioritizes damage and thus protects the most damaged
neurons, in this case the RGCs, by phosphorylating AKT, although further studies are
required to test this hypothesis.

Finally, the present study has some limitations. First, our results document that,
following DHF administration, MAPK and AKT signaling pathways are activated, the two
main signaling pathways of TrkB, but it remains to be further elucidated whether PLC-Υ
and GTP-ases pathways are also implicated in DHF-afforded neuroprotection, and which
of the members of each pathway are responsible for this neuroprotective effect. Moreover,
further studies are needed to demonstrate that DHF-afforded neuroprotection could be
blocked using specific MAPK and AKT inhibitors.

Secondly, DHF has been shown to protect against glutamate-induced toxicity in
HT-22 cells via its antioxidant activity [60]. Moreover, DHF has been shown to have
antioxidant effects and protects cells in vitro from apoptotic cell death induced by high
glucose levels [61]. However, the protective effects of DHF against oxidative stress and
excitotoxicity, such as those observed in classic excitotoxicity models, such as the intravitreal
injection of NMDA (Gallego-Ortega et al., unpublished observations) and nonclassical
excitotoxicity models [60], or after a transient ischemia of the retina induced by an acute
elevation of the IOP (Gallego-Ortega et al., unpublished observations), needs to be further
studied to confirm whether they follow the same signaling pathways. Thirdly, the macro-
and micro-glial response caused by IONT and their importance in RGC survival has
been well documented [7,25,62]. Here we show that MCs respond to axonal damage and
treatment, and DHF has been shown to have an anti-inflammatory effect through microglial
activation in vitro, decreasing the release of pro-inflammatory cytokines through nuclear
factor kappa B (NF-κB) and MAPK signaling pathways [63,64]; thus, it would be interesting
to correlate both macro- and microglial responses to fully understand the neuroprotective
effect of DHF.
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4. Materials and Methods
4.1. Animal Handling

Adult female Sprague-Dawley rats (180–220 g) were used for this study. Animals
were housed in rooms of the animal house of the University of Murcia temperature-
controlled with 12h/12h light/dark cycles and were fed with food ad libitum and water.
The University of Murcia ethical animal studies committee approved all experiments
(Codes: A13170110, A13170111) and followed the Spanish and European Union Directives
for animal experiments and the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research.

4.2. Intraorbital Optic Nerve Transection

Rats were anaesthetized with i.p. ketamine (60 mg/Kg bw, Ketolar; Pfizer, Alcobendas,
Madrid, Spain) and xylazine (10 mg/kg Rompun; Bayer, Kiel, Germany). In the experimen-
tal rats, left intraorbital optic nerve transection (IONT) was performed as described [2,65].
Briefly, the left ON was exposed dissecting the orbita contents through a superior temporal
approach. The dura sheath was opened longitudinally, and the ON was divided close to
its origin without damaging the retinal vessels running on the inferomedial aspect of the
sheath. After the surgery, subcutaneous bruprenorfin (0.1 mg/kg; Buprex, Schering-Plough,
Madrid, Spain) was administered as analgesic, the eye fundus was inspected to assess
retinal blood flow, and to prevent corneal desiccation, an ophthalmic unguent was applied
on both eyes (Tobrex®; Alcon S.A., Barcelona, Spain). As control, intact animals were used.

4.3. Experimental Design

The animals were divided in three experimental groups (Figure 5): (i) intact animals,
used as control (Figure 5A); (ii) DHF-treated group (dose 5 mg/kg, diluted in vehicle) ad-
ministered in 1 intraperitoneal (i.p.) injection the day before IONT and 1 i.p. injection/day
until processing; and (iii) vehicle-treated group (0.9 NaCl containing 1% DMSO) following
the same administration regime of the DHF-treated group. These last two groups were
processed at 1, 3 and 7 days after IONT (Figure 5B).
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old rats were used (A). In the experimental groups (B), intraperitoneal injections of DHF (5 mg/kg) or vehicle (0.9 saline in
1% DMSO) were daily administered from one day before intraorbital optic nerve transection (IONT) to the day of processing.
In all groups, retinal extracts were used for Western blotting, and retinal cross-sections for immunohistofluorescence. d =
days, IONT = intraorbital nerve transection.
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Animals were sacrificed with an i.p. overdose of barbituric (Dolethal, Vetoquinol®,
Especialidades Veterinarias S.A., Madrid, Spain). For Western blotting, retinas were freshly
dissected and frozen in dry ice (n = 4/group and time-point). For retinal cross-sections,
animals were first perfused and eye cups were prepared for cryostate sectioning of 15 µm
thick as previously described (n = 3/group and time-point) [4].

4.4. Western Blotting

Retinas were homogenized in 300 µL lysis buffer (PRO-PREPTM Protein Extraction So-
lution, Intron Biotechnology Inc. Cat. No. 17081), and the amount of protein was measured
using a bicinchoninic acid test (B9643 Sigma-Aldrich, Madrid, Spain) with cupric sulfate
(CuSO4, 7758-98-7 Sigma-Aldrich). Four individual samples of each group were mixed as a
pool sample, and samples were run on 1% SDS-PAGE, transferred to a nitrocellulose mem-
brane and incubated with the following protein specific antibodies overnight at 4 ◦C: rabbit
anti-p-AKT (at serine 473) (1:200, 4060T Cell Signaling, Danvers, MA, USA), rabbit anti-
AKT (1:1000, Cell Signalling, 9275S), rabbit anti-p-p42/44 MAPK (ERK1/2, Thr202/Tyr204,
1:100, Cell Signalling, 4370S) and rabbit anti-p42/44 MAPK (Thr202/Tyr204, 1:1000, Cell
Signalling, 4695S, which detects endogenous levels of total p44/42 MAP kinase (Erk1/Erk2)
protein). Donkey anti-rabbit antibody conjugated to horseradish peroxidase (HRP) (1:5000;
Santa Cruz Biotechnologies, Dallas, TX, USA) was used for secondary detection, and
samples were visualized by chemiluminescence (Enhanced Chemo Luminiscence [ECL];
Amersham GE Healthcare Europe GmBH). The signal was acquired with an Image LAS
500 (Amersham GE Healthcare Europe GmbH). Westerns were replicated three times, and
the protein concentration was calculated considering the intact retinas as 1. As a loading
control, β-actin (mouse anti-β Actin HRP conjugated 1:5000, Abcam ab49900) detection
was carried out.

4.5. Inmunohistofluorescence and Image Acquisition

Retinal cross-sections were immunodetected as described before (Nadal-Nicolas et al.,
2009) with the primary antibodies described above (p-AKT, p-MAPK, AKT and MAPK)
and mouse anti-Brn3a IgG1 (1:500, MAB1585) and goat anti-vimentin (1:250, Santa Cruz,
Sc-7557). The day after, retinas were rinsed in PBS 0.1% Tx and incubated 2h with the
secondary antibodies (1:500 in PBS-2% Tx, donkey anti-goat IgG Alexa 594, donkey anti-
mouse IgG1 Alexa 594 and donkey anti-rabbit IgG Alexa 488; Molecular Probes Thermo-
Fisher, Madrid, Spain), rinsed in PBS mounted with DAPI (Vectashield, Vector laboratories,
Palex Medical, Barcelona, Spain).

Images of cross-sectioned retinas were acquired using an epifluorescence microscope
(Leica DM4 B, Germany) at 20× magnification controlled by the software LAS X (Leica
Application Suite) and the camera Leica (Microsystems Heidelberg GmBH, Germany).To
allow qualitative comparisons between the antibodies used in terms of signal intensity, the
acquisition settings were the same for all conditions and compared to intact retinas.

4.6. Statistics

Statistical comparisons between different groups were done use non-parametric test
(ANOVA Kruskal–Wallis post-hoc tests) with the software Graph Pad Prism. A value of
p < 0.05 was considered statistically significant.

5. Conclusions

Using an in vivo adult rat model of retinal injury, we report for the first time the
involvement of TrkB-activated signaling pathways in the DHF-afforded protection of RGCs
against IONT. Our studies suggest the involvement of the TrkB-activated signaling path-
ways phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated
protein kinases extracellular signal regulated kinases 1 and 2 (MAPK/ERK; ERK1/2).
Moreover, our results indicate an important role for RGCs and Müller cells as effectors in
the neuroprotection process.
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AKT Protein kinase B
BDNF Brain-derived neurotrophic factor
CNS Central nervous system
d Days post-lesion
DHF 7,8-Dihydroxyflavone
ERK Extracellular signal-regulated kinase
GCL Ganglion cell layer
HRP Horseradish peroxidase
IONT Intraorbital nerve transection
MAPK Mitogen-activated protein kinase
MC Müller cells
NF-kB Nuclear factor kappa B
NMDA N-Methyl-D-aspartic acid
OHT Ocular hypertension
PI3K Phosphatidylinositol 3 kinase
PLC-Υ Phospholipase-C
PRL Photoreceptor layer
RGC Retinal ganglion cell
RNFL Retinal nerve fiber layer
ROS Reactive oxygen species
RPE Retinal pigment epithelium
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