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Background: In most patients with aplastic anemia (AA), the diagnosis is limited to a
description of the symptoms. Lack of understanding of the underlying pathophysiological
mechanisms causing bone marrow failure (BMF), hampers tailored treatment. In these
patients, auto-immune cell-mediated destruction of the bone marrow is often presumed
to be the causative mechanism. The status of the bone marrow microenvironment,
particularly the mesenchymal stromal cell (MSC) component, was recently suggested as a
potential player in the pathophysiology of AA. Therefore, functional, and immune
modulatory characteristics of bone marrow MSCs might represent important
parameters for AA.

Objective: To conduct a systematic review to evaluate in vitro functional properties of
MSCs derived from patients with AA compared to healthy controls.

Methods: According to PRISMA guidelines, a comprehensive search strategy was
performed by using online databases (Pubmed, ISI Web of Science, Embase, and the
Cochrane Library). Studies reporting on phenotypical characterization, proliferation
potential, differentiation capacity, immunomodulatory potential, and ability to support
hematopoiesis were identified and screened using the Rayyan software tool.

Results: 23 articles were included in this systematic review, describing a total of 324
patients with AA and 285 controls. None of the studies identified a significant difference in
expression of any MSC surface marker between both groups. However, AA-MSCs
showed a decreased proliferation potential, an increased tendency to differentiate into
the adipogenic lineage and decreased propensity towards osteogenic differentiation.
Importantly, AA-MSCs show reduced capacity of immunosuppression and hematopoietic
support in comparison to healthy controls.
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Conclusion: We conclude that there are indications for a contribution of MSCs in the
pathophysiology of AA. However, the current evidence is of poor quality and requires
better defined study populations in addition to a more robust methodology to study MSC
biology at a cellular and molecular level. Future studies on bone marrowmicroenvironment
should aim at elucidating the interaction between MSCs, hematopoietic stem cells
(HSCs) and immune cells to identify impairments associated with/causing BMF in
patients with AA.
Keywords: aplastic anaemia (AA), bone marrow failure (BMF), mesenchymal stem (stromal) cell,
immunomodulation, hematopoietic regulation, lineage specific differentiation, proliferation, surface
marker expression
INTRODUCTION

Aplastic anemia (AA) is a rare disorder referring to the
combination of peripheral pancytopenia and a morphologic/
histologic hypocellular bone marrow. AA is characterized by loss
of hematopoietic stem cells (HSCs). The term ‘aplastic’ describes
the incapability of the bone marrow to produce any of the
hematopoietic lineages yet implicates no underlying
mechanism or cause. Furthermore, the term ‘anemia’ might be
somewhat misleading as patients present with cytopenia in
multiple lineages rather than exclusively anemia (1).

To establish the diagnosis of AA, a bone marrow aspiration
and biopsy are performed in which, next to a hypocellular
marrow, no signs of dysplasia, fibrosis or malignant infiltration
are shown. At this stage, often extensive diagnostic evaluation
has already been performed to exclude alternative causes for
cytopenia, such as various infectious triggers, nutrient
deficiencies, medication/toxic related disease, and paroxysmal
nocturnal hemoglobinuria (PNH). In addition, bone marrow
aspirates undergo cytogenetic analysis by karyotyping (or SNP
array) to detect chromosomal aberrations differentiating AA
from dysplastic disorders, i.e., myelodysplastic syndrome
(MDS). Due to lack of standardization of diagnostic protocols,
there can be diagnostic discrepancies at the (inter)national level.

Multipotent mesenchymal stromal cells (MSC), also known
as mesenchymal stem cells, are fibroblast-like cells present at
different sites and tissues in the body, including the bone
marrow, placenta, umbilical cord, dental pulp, and adipose
tissue (2). MSCs are known for their capacity to differentiate
into cells of various origin and their proposed therapeutic
potential. Their distinct properties have led to more than
50.000 scientific publications on this topic in the last three
decades as reported by Pittenger et al. (3). To facilitate
comparability between studies as well as to enhance uniformity
in the processing of MSCs a minimal set of criteria have been
established to define a MSC by the Mesenchymal and Tissue
Stem Cell Committee of the International Society for Cellular
therapy (ISCT). First, MSCs must be plastic-adherent when
maintained in standard culture conditions. Second, MSC must
express CD105, CD73 and CD90, and lack expression of CD45,
CD34, CD14 or CD11b, CD79a or CD19 and HLA-DR surface
molecules. Third, MSCs must differentiate into osteoblasts,
adipocytes and chondroblasts in vitro (Table 1) (4).
org 2
Due to their multipotential differentiation capacity, MSCs were
long thought to play a role in repair/replacement of damaged tissue.
However, in recent years emphasis has shifted more towards the
excretory functions of MSCs (3). Within the bone marrow, MSCs
are part of the niche, promoting maintenance, proliferation, and
differentiation of hematopoietic stem cells (HSC). This is achieved
by secretion of soluble factors providing regulatory signals for
hematopoietic progenitors specifically (5). Although many
properties of the HSC niche have yet to be unraveled, emerging
literature has illustrated thatMSCs and their adult progeny are able
to interact with HSCs directly in a so-called ‘dual stem cell niche’
within perivascular spaces of the bone marrow (BM) (6, 7).
Moreover, studies have demonstrated that depletion of CXC
chemokine ligand-12 (CXCL12) abundant reticular cells and BM-
resident MSCs expressing the marker Nestin, both yielding a
modulatory effect on HSC homeostasis, negatively affected
absolute HSC count (8, 9). Furthermore, MSCs have been
proposed to fulfill an important role in the organization and
stabilization of vascular networks in the BM by producing
molecules such as Angiopoietin-1, which is pivotal for the
organization of HSC niches (10, 11).

In addition to their supportive role, MSCs also exhibit
immunomodulatory properties. Immunosuppressive effects of
MSCs with regard to cytotoxic- and helper T lymphocytes,
natural killer (NK) cells, B lymphocytes have been studied and
described extensively (12–15). Additionally, MSCs were shown
to inhibit proliferation and differentiation of antigen presenting
cells (APC) such as dendritic cells, preventing stimulation of T
lymphocytes (16, 17). The interaction between MSCs and
immunological effector cells most likely takes places through
secretion of immunomodulatory mediators such as transforming
growth factor-b1 (TGFb), interleukin (IL)-10, hepatocyte growth
factor, prostaglandin E2 (PGE), indoleamine-2,3-dioxygenase
(IDO) and nitric oxide (NO) (18). However, the current
understanding is that MSCs are not immunosuppressive by
default . Instead, MSCs are thought to develop an
immunosuppressive or a pro-inflammatory profile based on
the environmental Toll-like receptor (TLR) signals (19). This
also suggests that MSCs require some sort of stimulatory signal
to employ their immunomodulatory functions. In addition,
MSCs can exert their immunomodulatory effects via direct
cell-to-cell contact involving mechanisms such as FAS/FASL
interaction (20).
March 2022 | Volume 13 | Article 859668
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The growing understanding of MSC physiology allows for
novel (therapeutic) applications, including for syndromes and
disorders regarding tissue injury and dysregulation of the
immune system. For example, graft vs. host disease (GVHD),
multiple sclerosis, and diabetes mellitus (21). Moreover, it
provides the opportunity to unravel the etiology of a range of
illnesses in which MSCs might play a role. AA is regarded as a
preeminent example. A condition which could potentially
develop when the two main functions of MSCs in the bone
marrow are disturbed: HSC support and immunoregulation.
Many studies have examined how individual characteristics
and functions of MSCs from patients with AA differ from
MSCs in healthy individuals. However, to date, no studies have
compared these differences in a comprehensive manner.
Therefore, we performed a systematic review to compare
phenotypic characterization, differentiation capacity,
immunomodulatory properties, and ability to support
hematopoiesis of MSCs derived from patients with aplastic
anemia to healthy controls.
METHODS

This systematic review was conducted according to the 2020
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement (22).

Search Strategy
Studies were identified using multiple electronic databases
(Pubmed, ISI Web of Science, Embase and the Cochrane
Library). Also, trial registries such as ClinicalTrials.gov were
accessed to identify potentially relevant unpublished work. The
initial search was performed on the 9th of July 2021. The results
were monitored until inclusion on the 5th of October 2021. The
main components of the search strategy consisted of the
following keywords and related synonyms: “aplastic anemia”,
“bone marrow failure” and “mesenchymal stem cells”. Searches
were limited to original literature written in English. In addition,
a complementary hand-search of potentially relevant studies was
performed based on reference lists. If possible, citations were
tracked using Google Scholar. Following retrieval of results,
Endnote and Rayyan (23) were used to remove any duplicates
after which publications were assessed based on title and
abstract. Articles deemed highly unlikely to be relevant for this
systematic review were expelled from further assessment. Full
texts of remaining articles were retrieved and reviewed by two
authors independently according to the pre-specified eligibility
Frontiers in Immunology | www.frontiersin.org 3
summarized below. Disagreements on selection were resolved by
consensus (Supplementary 1).

Selection Criteria
The following eligibility criteria were applied to select articles:

• Original literature written in English only
• Articles should at least compare human bone marrow

mesenchymal stem cells (BM-MSCs) BM-MSCs from AA
patients to normal BM-MSCs

• Studied MSCs were unmanipulated, (necessary processing to
investigate under culture conditions were allowed)

• MSC properties were (at least) investigated in vitro
• At least one of the study outcomes concerns MSC surface

marker expression, proli feration, differentiat ion,
immunomodulation, or capacity to support HSCs.

• Utilized test modalities and outcomes of interest relate
directly to characterization, proliferation, differentiation,
immunomodulation, or capacity to support HSCs.

Studies were excluded when: 1) they assessed the outcomes of
interest in vivo, but not in vitro; 2) MSCs had undergone genetic
or potentiating modifications; 3) other cell types were used to
generate MSCs (e.g., induced pluripotent stem cells); 4) MSCs
were not of human origin; 5) MSCs were derived from other
tissues than BM; 6) MSCs were derived from patients and/or
controls with other potentially interfering comorbidities; 7)
MSCs were derived from patients with one specific type of
BMF only; 8) no direct analysis/measurement analysis of MSC
characterization, proliferation, differentiation, immunomodulation
or capacity to support HSC was performed; 9) published before the
year 2000. Other types of literature such as narrative and systematic
review articles, book chapters, letters, conference proceedings, and
editorials were also excluded.

Quality Assessment
Methodological quality and risk of bias in studies were assessed
independently by two authors (KA and AT) applying a modified
version of the Newcastle-Ottawa scale (NOS) for non-
randomized studies (24). This tool was most applicable since
to date no adequate quality assessment tool has been developed
for a non-animal in vitro study design. The NOS contains 9 items
divided over 3 subjects including: subject selection (scores
ranging from 0-6), subject comparability (scores ranging from
0-2), exposure (scores ranging from 0-2). Individual studies do
not have an overall quality score assigned to them provided that
threshold scores to describe whether a particular study is of low
or high quality, respectively, have not yet been validated for
TABLE 1 | Minimal criteria for defining MSCs according to the ISCT.

1. Adherence to plastic in standard culture conditions
2. Phenotype Positive (≥95%+)

CD105
CD73
CD90

Negative (≥95%+)
CD45
CD34
CD14 or CD11b
CD79a OR CD19
HLA-DR

3. In vitro differentiation: osteoblasts, adipocytes, chondroblasts (demonstrated by staining of in vitro cell culture)
March 2022 | Volume 1
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the NOS. Consequently, lower quality scores were not an
exclusion criterion. Nevertheless, any potential risk factor for
bias other than the items in the quality assessment tool was
addressed accordingly. Disagreements were resolved by
consensus. If necessary, attendance of a third independent
reviewer was requested (Supplementary 2).
Data Extraction
Extraction of data from each eligible study was performed by two
reviewers (KA and AT). Extracted data consisted of the following
study characteristics: name of authors, date of publication,
baseline population characteristics (including age, type, and
severity of AA), primary/secondary study objective, study
groups, prior treatments, test modalities to assess chosen
parameters within each outcome domain (MSC morphology,
proliferation, differentiation and/or capability to support
hematopoiesis) and the corresponding results of these tests. All
data was recorded in a table in MS Word (Microsoft
Corporation, Redmond, Washington, DC, USA).
RESULTS

Characteristics of Included Studies
The systematic literature search yielded a total of 1322 results of
which 1220 were removed after duplicate screening and title or
abstract screening (Figure 1). Of 102 articles assessed in the full-
text retrieval and screening phase, we identified 23 studies which
met the eligibility criteria described in the methods section. Most
studies were conducted in China (57%), followed by India (13%)
and Italy (9%). The included studies were geographically
representative based on a higher incidence of AA in Asia. As
shown in Table 2 only two studies did not compare cell surface
marker expression (30, 45). Proliferation capacity was measured
in eleven studies. All but three articles assessed and consequently
compared differentiation potential in MSC populations (30, 32,
36). Of the remaining 20 articles, four have investigated MSC
differentiation potential in all three lineages (adipocytes,
osteoblasts, and chondrocytes). Although Chao et al. (30) did
not evaluate surface marker expression nor differentiation
potential, these characteristics were analyzed in their previous
report, in which the same patient and control populations were
used (44). Immunomodulatory- and hematopoietic supporting
ability were reported in six and nine articles, respectively. To
graphically indicate how many studies have studied each
outcome of interest, a Venn Diagram is provided (Figure 2)
(48). Overlapping shapes correspond with the number of studies
that looked at multiple specific characteristics. For example, only
one study investigated all five characteristics together.

The results of the Newcastle-Ottawa risk of bias assessment
ranged from 5 to 9 (Table 3). The average score was 6.8. A lower
score was mainly related to incomplete or absent characterization of
patient cohorts, nonoptimal representativeness of the cases and/or
lack of control for age in both study groups, thus increasing the risk
for selection bias. This was particularly the case in both articles of Li
et al. (26, 27), Cheng et al. (35), and Tripathy et al. (40) which all
Frontiers in Immunology | www.frontiersin.org 4
lacked a comprehensive definition, characterization and
representativeness of AA cases. Other factors, such as used
products, instruments, processing, and passage numbers of MSCs,
were well controlled in all studies. In addition, all studies reported
on similar measurement methods of exposure/outcome for all
MSCs. Therefore, risk of performance and measurement bias
seemed limited.

Surface Marker Expression to Define
MSCs
Phenotypic characterization is a very important ISCT criterion
for the definition of MSCs and was investigated in 21/23 articles.
Third passage MSCs were mostly used for analysis of surface
marker expression (Table 4). The study by Bueno et al. (37) is the
only one that fully complies with the marker expression criteria
as established by the ISCT. Except for this article, CD79a/CD19
expression has not been examined in any of the other studies.
Both studies of Cheng et al. (35) and Jiang et al. (39) reported
flowcytometric surface marker expression analysis for all MSCs,
however without providing information on any comparative
analysis between the groups. None of the studies found a
difference in surface marker expression in BM-MSCs derived
from patients or controls.

Proliferation
As depicted in Table 5, different methods have been used to
measure proliferation capacity, including population doubling.
Another quantifiable measure for proliferative capacity is the
clonogenic potential of cells. This has been examined in 5 studies
using the colony forming unit-fibroblast assay (33, 36, 43, 45, 47)
(Table 6). Whereas the majority of studies (8/11) indicated worse
proliferation and clonogenic ability of AA-MSC compared to
control-MSC, others (2/11) did not observe a difference (25, 47).
In a single study the opposite result was found (45). The latter
study showed that AA-MSC maintained their growth capacity
beyond the sixth passage while control-MSC stopped growing at
this stage. It was also the only study showing that the majority of
cell colonies of AA patients were larger in size and higher in
quantity as compared to controls.

Differentiation Capacity
The final criterion proposed by the ISCT for the definition of
MSCs is differentiation capacity towards osteoblasts, adipocytes
and chondroblasts in vitro (4). Most included studies (N=20)
reported on differentiation capacity of the AA-MSCs compared
to healthy controls (Table 7). Among these articles, Bacigalupo
et al. (47) performed a trilineage differentiation assay, and Jiang
et al. (39) performed an adipo- and osteogenic differentiation
assays for the purpose of MSC quality control, however, without
comparing effectiveness of differentiation potential between both
groups. A second Venn diagram is presented to depict the
number of articles that have studied differentiation towards
one or more lineages (Figure 3).

Adipogenic Differentiation
Adipogenic differentiation potential was most frequently
assessed among the three lineages (19/20 studies). In all
March 2022 | Volume 13 | Article 859668
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studies, the Oil Red O staining method was used to demonstrate
adipogenic differentiation. In addition, three studies used a semi-
quantitative method by dissolving the staining and measuring
the extraction spectrophotometrically (35, 41, 44). As a
quantitative method, RT-qPCR and western blot analysis was
most frequently used to measure mRNA and protein expression
of specific genes directly or indirectly involved in the
differentiation process (e.g., PPAR-g, GATA-2). In 11 studies a
higher adipogenic differentiation tendency of AA-MSCs was
observed. In contrast, three studies reported lower adipogenic
potential among MSCs derived from AA-patients. Of these three
studies only one used a quantitative method (44). Finally, no
difference was detected between AA-MSCs and control MSCs in
three studies (25, 33, 37)

Osteogenic Differentiation
Osteogenic differentiation was second most frequently studied
(18/20 studies). Staining for calcium deposition and
mineralization was used as a qualitative measure for osteogenic
differentiation. Alizarin red staining was most frequently used
followed by von Kossa and alkaline phosphatase activity staining.
As with adipogenic differentiation, the same (semi-)quantitative
methods were applied to measure osteogenic differentiation
capacity. 5/20 studies found no difference in osteogenic
Frontiers in Immunology | www.frontiersin.org 5
differentiation capacity between patients and controls. Three of
these studies (3/5) also did not find differences in adipogenic
differentiation capacity. On the other hand, 11/20 observed a
lower osteogenic differentiation potency in AA-MSCs compared
to healthy MSCs.

Chondrogenic Differentiation
Qualitative methods to measure chondrogenic differentiation
potential included Alcian Blue staining in addition to RT-
qPCR as a quantitative measurement method. 2/4 studies
found no difference in chondrogenic differentiation tendency
(25, 33) while one study observed lower chondrogenic potency in
AA-MSCs (29). As indicated previously no information could be
deduced from the study by Bacigalupo et al. (47).

Immunomodulation
Immunomodulatory ability is one of the paracrine functions
exerted by MSCs. Within the six studies that examined this
ability, corresponding methods were used to test this such as the
Mixed Lymphocyte Reaction (MLR), Phytohemagglutinin
(PHA) stimulation assays, and T-cell differentiation patterns
(Table 8) . In addit ion, a common method to test
immunomodulatory ability was measurement of soluble
factors/cytokines produced by effector cells and/or MSCs (e.g.,
FIGURE 1 | Prisma flowchart illustrating the selection of studies.
March 2022 | Volume 13 | Article 859668
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TABLE 2 | In vitro properties assessed in control and AA-MSCs.
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Author (s) Year Groups (n=): controls vs. AA
(severity)

Prior treatment (Yes/
No/NR)

Proliferation Differentiation Surface
marker

expression

Immunomod
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adipo osteo chondro

Sharma et al.
(25)

2021 5 vs.5 (3 nSAA, 2 SAA) No • • • • • •

Li, H. et al. (26) 2021 5 vs. 5 NR • •

Li, H. et al. (27) 2020 9 vs. 9 NR • •

Li, S. et al. (28) 2020 9 vs. 21 (SAA) No • • • •

Huo et al. (29) 2020 14 vs. 15 (6 nSAA, 9 SAA) No • • • • • •

Chao et al. (30) 2018 5 vs. 5 No •

Chaturvedi
et al. (31)

2018 29 vs. 29 NR • • •

Lu et al. (32) 2017 19 vs. 28 (24 nSAA, 4 SAA) NR •

Michelozzi et al.
(33)

2017 7 vs. 8 (2 nSAA, 6 SAA) Yes (all, prior IST/
HSCT)

• • • • •

Wei et al. (34) 2016 12 vs. 12 (7 nSAA, 5 SAA) No • •

Cheng et al. (35) 2015 6 vs. 10 NR • • •

Hamzic et al.
(36)

2015 9 vs. 22 (9 nSAA, 13 SAA) Yes (9/22, prior IST) • •

Bueno et al. (37) 2014 7 vs. 9 No • • • •

El-Mahgoub
et al. (38)

2014 5 vs.5 NR • • • •

Jiang et al. (39) 2014 8 vs. 10 NR • • • •

Tripathy et al.
(40)

2014 10 vs.10 NR • • •

Zhao et al. (41) 2014 7 vs. 6 No • • •

Li, J et al. (42) 2012 11 vs. 15 No • • • •

Li, J et al. (43) 2012 20 vs. 21 (SAA) No • • • •

Chao et al. (44) 2010 5 vs. 5 (SAA) No • • • •

Shipounova
et al. (45)

2009 54 vs. 26 (10 nSAA, 16 SAA) Yes (17/26 prior
treatment)

• • •

Xu et al. (46) 2009 15 vs. 34 (8 nSAA, 19 SAA, 7
vSAA)

Yes (19/34 prior IST) • • •

Bacigalupo
et al. (47)

2005 19 vs. 19 (SAA) Yes (16/19, prior IST) • • • • • •

Bullet point means that this particular outcome in the column is studied in the discussed article. NR, Not reported.
u
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IFN-g, TNF-a). In general, MSCs are thought to exert an
immunosuppressive effect within a pro-inflammatory
environment (49, 50). Nevertheless, three studies reported a
decreased immunosuppressive ability by AA-MSCs compared
to healthy control MSCs as shown by less suppression of T-cell
proliferation and higher levels of pro-inflammatory cytokines
within AA-MSC co-culture setting (29, 42, 47). Of these studies,
Bacigalupo et al. (47) reported that AA-MSCs were less capable
of suppressing the inhibitory effect of activated T-cells on
hematopoietic colony formation. Furthermore, Huo et al. (29)
observed that T cells co-cultured with AA-MSCs were more
likely to differentiate into Th1, Th17 and Tc1 cells. This is in line
with the findings of Li et al. (43) in which T cells were less likely
to differentiate towards regulatory T-cells. In two studies no
difference could be detected between both groups (25, 37). In
contrast, a single study observed that AA-patient derived MSCs
were even more able to suppress proliferation of PHA-activated
peripheral bone marrow mononuclear cells (PBMCs) as
compared to healthy MSCs (30). Interestingly, in the same
study, a higher production of pro-inflammatory cytokines by
AA-MSCs was observed in a non-co-culture setting.

Hematopoietic Support
Several mechanisms have been described regarding the
supportive role of MSCs within the bone marrow niche,
however there is no golden standard technique to analyze this
Frontiers in Immunology | www.frontiersin.org 7
MSC characteristic. This is also reflected by the various methods
used in the studies which report on hematopoietic support (N=9)
(Table 9). Of these studies, 4/9 have used MSC with HSC/bone
marrow mononuclear cell (BMNC) co-cultures to test their
hypotheses (32, 36, 37, 51). In these studies, hematopoietic
support was analyzed by measuring hematopoietic colony
formation. Lu et al. (32) and Hamzic et al. (36) observed a
decreased colony forming potential of CD34+ cells when
cultured with AA-MSCs. In contrast, Bueno et al. (37) and
Bacigalupo et al. (47) found no difference in clonogenic
potential when both groups were compared. Different from
colony forming potential, Chao et al. (30) showed that PBMC
proliferation is reduced when co-cultured with AA-MSCs,
indicating that AA-MSCs provide less support. Five studies
have examined the expression of hematopoiesis-related factors
in MSCs, which was highly variable between studies (31–33, 39,
45). Michelozzi et al. (33) reported no difference in gene
expression of TGFB1, IL-6, and DDK1 between both groups.
Jiang et al. (39) reported a decreased expression of FGF-2 in AA-
MSCs, whereas Shipounova et al. (45) studied expression of
VCAM-1, ANG-1 and VGEF in adherent cells within long-term
bone marrow cultures. After three weeks of culture, the latter
study observed an altered gene expression pattern which
normalized after another three weeks. Moreover, Chaturvedi
et al. (31) stated that specific genes such as G-CSF were
significantly higher expressed by AA-MSCs while expression of
FIGURE 2 | Venn diagram shows the number of articles within this SR that have examined and compared one or more of the five cell characteristics within MSCs
from AA-patients vs. healthy controls (N=23).
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TABLE 3 | Summary of Modified Newcastle-Ottawa scores for included studies.
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Nr. of stars Nr. of stars

1 1 9
1 1 9
1 1 8

1 1 8

1 1 8
1 1 8
1 1 8
1 1 8
1 1 7

1 1 7

1 1 7
1 1 7

1 1 7

1 1 6

1 1 6

1 1 6

1 1 6

1 1 6

1 1 6

1 1 5

1 1 5

1 1 5

1 1 5
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Authors Selection Comparability

Is the case
definition
adequate?

Are cases
characterized
adequately?

Representativeness
of the cases

Selection
of

Controls

definition
of

controls

Control for
important
factor (age)

Control for addition
(substrate, media, grow

vitro, passage nu
Nr. of stars Nr. of stars Nr. of stars Nr. of

stars
Nr. of
stars

Nr. of stars Nr. of stars

Li, J et al. (43) 1 1 1 1 1 1 1
Li, S. et al. (28) 1 1 1 1 1 1 1
Bueno et al.
(37)

1 1 0 1 1 1 1

Chao et al.
(30)

1 1 1 0 1 1 1

Li, J et al. (42) 1 1 0 1 1 1 1
Lu et al. (32) 1 1 0 1 1 1 1
Wei et al. (34) 1 1 0 1 1 1 1
Xu et al. (46) 1 1 1 1 1 0 1
Chao et al.
(44)

1 0 1 0 1 1 1

Hamzic et al.
(36)

1 0 1 1 1 0 1

Huo et al. (29) 1 0 1 1 1 0 1
Michelozzi
et al. (33)

0 0 1 1 1 1 1

Shipounova
et al. (45)

0 0 1 1 1 1 1

Bacigalupo
et al. (47)

0 0 1 1 1 0 1

Chaturvedi
et al. (31)

1 0 0 0 1 1 1

Cheng et al.
(35)

0 0 0 1 1 1 1

El-Mahgoub
et al. (38)

0 1 0 0 1 1 1

Jiang et al.
(39)

1 0 0 0 1 1 1

Sharma et al.
(25)

1 0 0 1 1 0 1

Li, H. et al.
(27)

0 0 0 0 1 1 1

Li, H. et al.
(26)

0 0 0 0 1 1 1

Tripathy et al.
(40)

0 0 0 0 1 1 1

Zhao et al. (41) 0 1 0 0 1 0 1

Bold values indicate the total number after adding up all the scores for each individual question in each individual study.
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other genes (e.g., MIP-1a) was lower or did not differ (SCF, TGF-
b). The study by Lu et al. (32) was the only study that examined
angiogenesis as a well-known paracrine function of MSCs. This
was investigated by assessing expression of CD106 (VCAM-1) in
MSCs. Next, VEGF production and in vitro capillary tube-like
formation by MSCs was compared between patients with AA
and controls within unsorted MSCs or grouped by presence or
absence of the CD106 protein on the MSC. This study showed
that CD106+ MSCs had an increased potential for capillary tube-
like formation, higher VEGF production and increased
hematopoietic colony forming ability. However, expression of
CD106 was lower on AA-MSCs compared to healthy MSCs.
Consistent with this finding, VEGF production and vasculogenic
ability were also reduced in the AA-group. Interestingly, these
Frontiers in Immunology | www.frontiersin.org 9
differences were still present when only CD106+ MSCs were
compared between both groups.
DISCUSSION

The role of the bone marrow stroma in the pathophysiology of
AA is gaining more interest in scientific research. Nevertheless,
our study is the first to systematically review and summarize
existing literature on in vitro characteristics of MSCs of patients
with AA compared to healthy controls. In total 23 articles were
included in our final analysis. Despite a certain degree of
variability, these studies generally showed a decreased
proliferation potential in AA-MSCs in addition to alterations
TABLE 4 | Assessment of immunophenotyping.

Author Results Method of
assessment

Passage
number

Required surface markers assessed Other surface markers

CD105 CD73 CD90 CD34 CD45 CD14/
CD11b

CD79a/
CD19

HLA-
DR

Bacigalupo
et al. (47)

No
difference

Flow cytometry 3 • • • • • CD106, CD166, CD29, CD44

Bueno et al.
(37)

No
difference

Flow cytometry NR • • • • • •/- -/• • CD44

Chao et al.
(44)

No
difference

Flow cytometry 4 • • • • •/- CD44

Chaturvedi
et al. (31)

No
difference

Flow cytometry 3 • • • • • • CD166, CD13

Cheng et al.
(35)

ND Flow cytometry 3 • • •

El-Mahgoub
et al. (38)

No
difference

Flow cytometry 3 • • •

Hamzic et al.
(36)

No
difference

Flow cytometry 2 & 4 • • • CD29, CD44, CD166

Huo et al.
(29)

No
difference

Flow cytometry 3 • • • • • -/• •

Jiang et al.
(39)

ND Flow cytometry NR • • • •

Li, H. et al.
(26)

No
difference

Flow cytometry 3-6 • • • • CD29, CD44

Li, H. et al.
(27)

No
difference

Flow cytometry 3 • • • • CD29, CD44

Li, J. et al.
(42)

No
difference

Flow cytometry 3 • • • • • • CD29, CD166, CD44, CD49e,

Li, J. et al.
(43)

No
difference

Flow cytometry 3 • • • • • • CD29, CD166, CD44, CD49e, HLA-
ABC

Li, S. et al.
(28)

No
difference

Flow cytometry 3 • • • • • •

Lu, S et al.
(32)

No
difference

Flow cytometry 4 • • • • • •/• • CD13, CD29, CD44, CD49e, CD166,
CD31, CD40, HLA-ABC

Michelozzi
et al. (33)

No
difference

Flow cytometry NR • • • • • •/- • CD146, MHC I, MHC II

Sharma et al.
(25)

No
difference

Flow cytometry 3 • • • • • • CD29, HLA-ABC,

Tripathy
et al. (40)

No
difference

Flow cytometry 3 • • • • • •/-

Wei et al. (34) No
difference

Flow cytometry 3 • • • •/- • CD29, CD44

Xu et al. (46) No
difference

Flow cytometry 3 • • • • • •/- • CD13, CD44, CD29, CD106, CD166,

Zhao et al.
(41)

No
difference

Flow cytometry NR • • • • CD44
Mar
Presence of a bulletpoint means that this particular surface marker was studied. In case if two surface markers equally suffice according to the IST criteria and only one of them is studied in
an article, a bulletpoint is placed for the studied surface marker, and "–" for the marker that is not studied.NR, Not reported.
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in their differentiation capacity such as an increased tendency to
differentiate towards adipocytes and a decreased propensity
towards the osteogenic lineage. Furthermore, AA-MSCs
showed a reduced capacity of immunomodulation and
hematopoietic support in comparison to healthy controls. No
differences were observed between the two populations regarding
expression of MSC-specific surface markers as listed by the
ISCT (Table 10).

Within the included studies, the observed differences were
attributed to various hypotheses. Regarding the skewed
differentiation patterns observed in AA-MSCs, altered
expression of specific transcription factors in MSCs could play
an important role. For example, in one study it was seen that a
reduced expression of the transcription factor GATA-2 resulted
in an increased expression of peroxisome proliferator-activated
receptor-g (PPAR-g) in AA-MSCs, which strongly correlated
with adipogenic differentiation (46). Another suggested factor
associated with increased PPAR-g in MSC of AA patients is an
Frontiers in Immunology | www.frontiersin.org 10
increased expression of mammalian target of rapamycin
(mTOR). This hypothesis was supported by two studies
demonstrating that adipogenic differentiation can be inhibited
by blocking the mTOR signaling pathway (34, 52). Alterations in
differentiation behavior of AA-MSCs have also been attributed to
changes in expression of certain microRNA (miR), a class of
non-coding RNA sequences with post-transcriptional regulatory
functions. For instance, Li et al. (27) found an upregulation of
miR-146b-5p, which subsequently led to increased expression of
PPAR-g as a result of inhibited downregulation of this protein
through SIAH-2 mediated ubiquitination (27). As with
adipogenic differentiation, many theories have been proposed
to explain impairments in osteogenic differentiation in AA-
MSCs. In a more recent study by Li et al. (26), it was shown
that expression of MEG3, belonging to another class of
noncoding RNAs, was decreased through hypermethylation
processes in patients with AA. As a result, expression of
BMP4, a known osteogenic factor, was attenuated (26, 35, 53).
TABLE 5 | Assessment of proliferation potential.

Author Results Passage
number

Method of assessment

Chao et al.
(44)

• AA-MSC worse average population doubling at each passage
• AA-MSC worse cumulative population doubling

4-6 Population doublings

El-Mahgoub
et al. (38)

• AA-MSC worse average population doubling at each passage
• AA-MSC worse cumulative population doubling

1-4 Population doublings

Hamzic et al.
(36)

• No difference in population doubling per passage
• AA-MS worse cumulative population doubling

2-4 Population doublings

Huo et al.
(29)

• AA-MSC worse average population doubling at 48 hours
• AA-MSC worse proliferation after 4 and 5 days of culture

3 Population doublings, CCK8 assay (1, 2, 3, 4 and 5
days)

Jiang et al.
(39)

• No difference in proliferation at P0, P1 and P3
• AA-MSC worse proliferation after P8

0, 1, 3, 8 Cell count & growth curves (1-14 days for primary
culture, 1-9 days for other passages)

Li, J et al.
(43)

• AA-MSC worse proliferation after 4, 6 and 8 days of culture 3 BrdU Cell Proliferation ELISA Kit (0, 2, 4, 6, 8, 10
and 12 days)

Li, S. et al.
(28)

• AA-MSC worse proliferation after 8 and 10 days of culture 3 CCK8 assay (2, 4, 6, 8 and 10 days)

Michelozzi
et al. (33)

• No difference in cumulative population doubling 1-11 Population doublings

Sharma
et al. (25)

• No difference in proliferation potential 3-5 Population doubling time, MTT assay (1, 3, 5, 7 and
14 days)

Shipounova
et al. (45)

• No difference in incrementation time between passages
• No difference in cumulative cell production from P1-6, thereafter cessation of

growth in HD-MSC while continue of growth in AA-MSC

1-61-14 Time to each passage, Cumulative cell production
TABLE 6 | Colony forming unit-fibroblast ability (CFU-F).

Author Results Passage
number

Number of cells
per colony

Method of assessment

Bacigalupo
et al. (47)

• No difference in clonogenic potential 0 NR BMNC seeded in 35-mm wells for 2 weeks, medium change per
3 days, May-Grünwald/Giemsa stained, colonies counted

Hamzic
et al. (36)

• No significant difference in colony-forming potential
in BMNC

• AA-MSC worse colony-forming potential

0, 2 50 BMNC and MSC (P2) seeded in 6-well plates for 2 weeks,
medium change per 7 days, Wright’s Giemsa stained, colonies
counted

Li, J et al.
(43)

• AA-MSC worse colony-forming potential 1 50 MSC seeded in 6-well plates for 2 weeks, medium change per 3
days, Crystal Violet stained, colonies counted

Michelozzi
et al. (33)

• AA-MSC worse colony forming potential 0 100 MSC seeded in petri dish (size unknown) for 2 weeks, medium
change unknown, Giemsa stained, colonies counted

Shipounova
et al. (45)

• Larger size and higher concentration of AA-
MSC colonies vs. HD-MSC colonies

0 NR BMNC seeded in 25cm2
flask for 2 weeks, no medium change,

Crystal violet stained, colonies counted, and colony size estimated
based on digital images
NR, Not reported.
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TABLE 7 | Assessment of differentiation potential.

Author Results Passage number Method of assessment

Bacigalupo et al. (47) ND NR • Incubation with chondrogenic medium for 14 days;
Immunohistochemical and alcian blue staining

• Incubation with osteogenic medium for 14 days; Alkaline phosphatase
activity staining and calcium deposition

• Incubation with adipogenic medium for 21 days; Oil-Red O staining
Bueno et al. (37) • No difference in differentiation potential 3-5 • Incubation with osteogenic medium for 14 days; Alizarin red staining

and RT-qPCR (osteocalcin, alkaline phosphatase, osterix)
• Incubation with adipogenic medium for 14 days; Oil-red O staining and

RT-qPCR (PPAR, CEBPa)
Chao et al. (44) • AA-MSC lower osteogenic potential

- less intense von Kossa stain and lower
ALP activity

- lower Cbfa1 expression
• AA-MSC lower adipogenic potential
- lower Oil-Red O activity
- lower LPL expression

3 • Incubation with osteogenic medium for 21 days; Alkaline phosphatase
activity and von Kossa staining, quantification of alkaline phosphatase
activity by spectrophotometry and RT-qPCR (Cbfa1)

• Incubation with adipogenic medium for 14 days; Oil-red O staining,
quantification by spectrophotometry and RT-qPCR (LPL)

Chaturvedi et al. (31) • AA-MSC lower osteogenic potential
- less alizarin red staining

• AA-MSC higher adipogenic potential
- higher density and larger size of lipid

droplets/vesicles

3 • Incubation with osteogenic medium for 21 days; Alizarin red staining
• Incubation with adipogenic medium for 18 days; Oil-red O staining

Cheng et al. (35) • AA-MSC lower osteogenic potential
- less alizarin red staining
- ALPL expression decreased to 68%

in AA-patients
• AA-MSC higher adipogenic potential
- higher density and larger size of lipid

droplets/vesicles
- Higher PPARg expression

3 • Incubation with osteogenic medium for 21 days; Alizarin red staining,
quantification by spectrophotometry and RT-qPCR (BMP2, BMP4,
BMP6, BMP7, ALPL)

• Incubation with adipogenic medium for 21 days; Oil-red O staining,
quantification by spectrophotometry and RT-qPCR (PPARg)

El-Mahgoub et al.
(38)

• AA-MSC lower osteogenic potential
- less mineralization and von-Kossa

staining
• AA-MSC lower adipogenic potential
- less lipid-containing cells and smaller size

of lipid droplets

3 • Incubation with osteogenic medium for 21 days; von Kossa staining
• Incubation with adipogenic medium for 14 days; Oil-red O staining

Huo et al. (29) • AA-MSC lower chondrogenic potential
- less alcian blue staining
- lower ACAN and SOX9 expression

• AA-MSC lower osteogenic potential
- less alizarin red staining
- lower RUNX2 and BGLAP expression

• AA-MSC higher adipogenic potential
- more lipid droplets
- higher ADIPOQ and PPARg

expression

3 • Incubation with chondrogenic medium for 14 days; Alcian blue staining
and RT-qPCR (ACAN, SOX9)

• Incubation with osteogenic medium for 14 days; Alizarin red S staining
and RT-qPCR (RUNX2, BGLAP)

• Incubation with adipogenic medium for 14 days; Oil-Red O staining
and RT-qPCR (PPARg, ADIPOQ)

Jiang et al. (39) ND NR • Incubation with osteogenic medium; von Kossa staining and colony
forming unit-osteoblast ability (CFU-O)

• Incubation with adipogenic medium; Oil red O staining and colony
forming unit-adipocyte ability (CFU-Ad)

Li, H. et al. (26) • AA-MSC lower osteogenic potential
- less alizarin red staining
- higher DNMT1 expression, lower
MEG3 expression,
lower BMP4 expression

3-6 • Incubation with osteogenic medium for 21 days; Alizarin red staining
and quantification with spectrophotometry, RT-qPCR/western blot
analysis (DNMT1, MEG3, BMP4) and methylation of MEG3 promoter

Li, H. et al. (27) • AA-MSC higher adipogenic potential
- more lipid droplets
- higher miR-146b-5p expression, lower
SIAH2 expression, higher PPARg

expression

3 • Incubation with adipogenic medium for; Oil red O staining, RT-qPCR/
western blot analysis (miR-146b-5p, SIAH2, PPARg)

Li, J et al. (42) • AA-MSC lower osteogenic potential
- less von Kossa, alizarin red and
alkaline phosphatase activity staining

4 • Incubation with osteogenic medium; von Kossa, alizarin red and
alkaline phosphatase activity staining

• Incubation with adipogenic medium; Oil red O staining

(Continued)
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TABLE 7 | Continued

Author Results Passage number Method of assessment

• AA-MSC higher adipogenic potential
- more Oil red O staining

Li, J et al. (43) • AA-MSC lower osteogenic potential
- less von Kossa, alizarin red and

alkaline phosphatase
activity staining

• AA-MSC higher adipogenic potential
- more Oil red O staining

4 • Incubation with osteogenic medium; von Kossa, alizarin red and
alkaline phosphatase activity staining

• Incubation with adipogenic medium; Oil red O staining

Li, S. et al. (28) • AA-MSC lower osteogenic potential
- less alkaline phosphatase activity

staining
• AA-MSC higher adipogenic potential
- more Oil red O staining

3 • Incubation with osteogenic medium for 21 days; Alkaline phosphatase
activity staining

• Incubation with adipogenic medium for 14 days; Oil red O staining

Michelozzi et al. (33) • No difference in differentiation potential 3 • Incubation with chondrogenic medium for 21 days; Histological
analysis, RT-qPCR (COL2A1, COL10A1, SOX9, ACAN)

• Incubation with osteogenic medium for 21 days; Alizarin red S staining,
RT-qPCR (SPP1, SPARC, ALPL, COL1A2)

• Incubation with adipogenic medium for 21 days; Oil red O staining, RT-
qPCR (FABP4, LPL, PPARg)

Sharma et al. (25) • No difference in differentiation potential 3 • Incubation with chondrogenic medium for 14 days; Alcian blue staining
• Incubation with osteogenic medium for 28 days; Alizarin Red S staining
• Incubation with adipogenic medium for 21 days; Oil red O staining

Shipounova et al. (45) • AA-MSC lower osteogenic potential
- Among patient MSCs that failed

osteogenic differentiation, 80% had
SAA

• AA-MSC lower adipogenic potential
- 1 patient without differentiation, 2

patients changed morphology of
MSCs
without lipid droplet formation, 3
patients with lipid droplet formation
without changed morphology

NR • Incubation with osteogenic medium; Alizarin red staining
• Incubation with adipogenic medium; Oil red O staining

Tripathy et al. (40) • No difference in osteogenic potential
• AA-MSC higher adipogenic potential
- higher density and larger size of lipid

droplets/vesicles
- higher expression of adiponectin

and FABP4

3 • Incubation with osteogenic medium for 21 days; Alizarin Red S
staining, RT-qPCR/western blot analysis (osteopontin)

• Incubation with adipogenic medium for 18 days; Oil red O staining, RT-
qPCR/western blot analysis (adiponectin, FABP4)

Wei et al. (34) • AA-MSC higher adipogenic potential
- higher density and larger size of lipid

droplets/vesicles at every time point
of differentiation

- higher FABP4, mTOR, PPARg, S6K1
and p-S6K1 expression at every time
point of differentiation

- higher p-mTOR expression

3 • Incubation with adipogenic medium for 7, 14 and 21 days; Oil red O
staining, western blot analysis/RT-qPCR/immunofluorescence analysis
(PPAR-g, mTOR, p-mTOR, S6K1, p-S6K1, FABP4)

Xu et al. (46) • No difference in osteogenic potential
• AA-MSC higher adipogenic potential
- no difference in Oil red O staining
- lower GATA-2 expression
- higher PPARg expression

3 • Incubation with osteogenic medium for 21 days; Silver nitrate staining
• Incubation with adipogenic medium for 21 days; Oil red O staining, RT-

qPCR/western blot analysis (GATA-2, PPARg)

Zhao et al. (41) • AA-MSC lower osteogenic potential
- fewer and smaller mineralized nodes
- lower Runx2 expression (P < 0.05)

• AA-MSC higher adipogenic potential
- more and larger lipid droplets
- higher LPL, PPARg and miR-204

expression

3 • Incubation with osteogenic medium for 21 days, Alizarin red staining
and quantification with spectrophotometry, RT-qPCR (Runx2)

• Incubation with adipogenic medium for 21 days, Oil red O staining and
quantification with spectrophotometry, RT-qPCR/western blot analysis
(LPL, PPARg, miR-204)
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Increased expression of miRNA-204 and miRNA-144-3p in AA,
which are negative regulators of osteogenic factors, Runt-related
transcription factor (RUNX) and Tet methylcytosine
dioxygenase 2 (TET2), respectively, are also thought to be
associated with impaired osteogenesis (41, 54). This is
supported by the observation that their silencing rescues MSCs
from the impairments in osteogenic differentiation.

An important question is whether the implications of the
aberrant cellular characteristics observed in vitro can be
translated to the in vivo situation of patients with AA. In the
normal situation MSCs are known to support long-term
maintenance and differentiation of hematopoietic progenitor
cells by promoting production of cytokines, growth factors,
and extracellular matrix proteins in addition to processes
maintained through direct cell-to-cell interaction (55–59).
Studies have shown that adipogenic and osteogenic
differentiation have a reciprocal relationship and when in a
balanced state maintain HSCs in homeostasis (60–62).
However, an increase in adipogenesis and a decrease in
osteogenesis in the bone marrow microenvironment, negatively
affects hematopoiesis (63–68). Thus, the findings in this
systematic review in terms of aberrant differentiation of MSCs
could very likely contribute to the pathophysiology of AA.
However, in the aforementioned studies there is no indication
that the negative effect of the shifted balance between
osteogenesis and adipogenesis on reduced support for
hematopoiesis is immune-mediated. Yet, AA is often
considered as an immune-mediated BM failure syndrome
leading to destruction of HSCs. In line with this hypothesis, it
has been demonstrated that MSCs from patients with AA show a
reduced capacity of immunomodulation, accompanied by higher
T-cell numbers and increased levels of pro-inflammatory
cytokines (e.g., TNF-a, IFN-g) in AA-MSC co-cultures, hence
a decreased suppression of T-cell proliferation and
corresponding paracrine functions. While it is generally
Frontiers in Immunology | www.frontiersin.org 13
believed that the underlying cause in AA is primarily
immunological, the sequence of events is still largely unknown.
Does a dysfunctional bone marrow micro-environment lead to
auto-reactivity of T-cells or are immune cells causing
abnormalities in MSC functioning? Studies included in this
review provide clues for both scenarios. Bacigalupo et al. (47)
studied clonality of MSCs of seven patients with AA, however
they did not detect the presence of any abnormal MSC clone. In
addition, the same study showed recovery of T-cell suppressor
function in four AA-patients, 1-10 years after hematopoietic
stem cell transplantation (HSCT). Both findings support normal
MSC function and thereby suggesting a primary problem of
patients’ immune system. Nevertheless, the majority of patients
with AA do not respond to IST (69) suggesting also different
pathophysiological mechanisms or irreversible damage.
Considering that MSCs exert influence at multiple levels within
the bone marrow, we hypothesize that AA results from a
combination of causes involving aberrant stroma failing
hematopoietic support as well as promoting a balanced
immunological response to damaged stroma. Therefore, it is
important to characterize individual cellular abnormalities within
stromal cells and their interaction with other local cell types within
the bone marrow environment to unravel AA pathogenesis.

Limitations
Our systematic review encountered certain limitations. Most
studies had relatively small sample sizes. In addition, there was
a substantial degree of heterogeneity among different studies.
This was due to study populations that were not completely
similar in severity of AA, sex, and age distribution. As an
example, of the 324 patients with AA included in this study,
69 (21,3%) had a non-severe form, 147 (45,4%) were diagnosed
with SAA and for the remaining group no information was
provided. Moreover, in five of the twenty-three studies, a
proportion of the patients had already received treatment by
FIGURE 3 | Venn diagram shows the number of articles within this SR that have examined one or more MSC-specific differentiation lineages (N=20).
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TABLE 8 | Assessment of immunomodulatory ability.

Method of assessment
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Author Results

Bacigalupo et al. (47) • Less suppression of T-cell proliferation by
AA-MSCs and AA-MSC CM

• Higher T-cell mediated inhibition of
hematopoietic colony formation in AA-
MSCs co-cultures

• Less suppression of CD38, CD25, CD69,
HLA-DR expression
on PHA-primed T-cells by AA-MSCs and
AA-MSC CM

• Less suppression of INF-g production in
co-culture with AA-MSCs

• Mixed lymphocyte reaction; T-cell proliferation
• MSC (CM) co-culture with T-cells (PHA); T-cell prolife

(ELISA), hematopoietic colony formation

Bueno et al. (37) • No difference in immunomodulatory effects • Mixed lymphocyte reaction; T-cell proliferation, IL-2/T
• MSC co-culture with TNF-a/LPS stimulated synovial

type I collagenase, MMP2 gelatinase, type IV collage
Chao et al. (30) • More suppression of PBMC proliferation by

AA-MSCs (P = 0.016) and AA-MSC CM
• Higher levels of IL-6, IFN-g, TNF-a and IL-

1b in CM of AA-MSCs
• No difference in levels of IL-4, IL-10, IL-17

• MSC (CM) co-culture with PBMCs (PHA); PBMC pro
• IL-6, IFN-g, TNF-a, IL-1b, IL-4, IL-10, IL-17 productio

Huo et al. (29) • Less suppression of T-cell activation and
differentiation towards Th1,
Th17 and Tc1 cells by AA-MSCs

• MSC co-culture with T-cells; T-cell activation (CD25,

Li, J. et al. (43) • PHA-cultures:
– Less suppression of T-cell proliferation
by AA-MSCs

– Less suppression of INF-g and TNF-a
production in co-cultures with AA-MSCs

– No difference in production of IL-4, IL-
10, IL-17 in co-culture with
AA-MSCs

• MSC single culture:
– Lower levels of PGE-2 in CM of AA-
MSCs

• rhIL-2 cultures:
– Lower levels of TGF-b in co-cultures
with AA-MSCs

– Less promotion of Treg differentiation by
AA-MSCs

• MSC co-culture with CD4+ T-cells (PHA); T-cell proli
• PGE2 production by MSCs (ELISA)
• MSC co-culture with CD4+ T-cells (rhIL-2); differentia

Sharma et al. (25) • No difference in immunomodulatory effects • MSC-co-culture with PBMCs (PHA); PBMC proliferat
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IST or HSCT (n=69). Whether a patient is in remission,
refractory to treatment, or in remission might have
additionally influenced the results within studies. Similarly,
studies also differed in the quality of patient population
characterization and exclusion of alternative diagnoses. Apart
from heterogeneity in the population of interest, there were also
methodological inconsistencies across studies, with variability in
cell numbers, materials used and/or differences between, as well
as within, techniques used to measure a certain outcome. Finally,
it is also important to point out that studies varied in the quality
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and documentation of the statistical analyses. The limitations
mentioned above regarding small sample size, methodological
and patient heterogeneity resulted in the fact that a meta-analysis
was not possible. This also can explain some conflicting results
between different studies or why certain differences were found
not to be statistically significant.

The heterogeneity between studies can be explained in part by
the unclear disease classification and confusing terminology in
AA. As an example, the terms AA and BMF are often used
interchangeably, thereby disregarding the hierarchical
TABLE 9 | Assessment of hematopoietic supporting activity.

Author Results Method of assessment

Bacigalupo
et al. (47)

• No difference • MSC long term co-culture with BMNC (LTC-IC)

Bueno et al.
(37)

• No difference • MSC co-cultures with UCB-CD34+ cells; proliferation rate, apoptosis
frequency,

cell cycle analysis and CFU-assay
Chao et al.
(30)

• Less proliferation of PBMCs in AA-MSCs co-cultures,
however no difference when cultured only with AA-MSC
CM

• SC co-culture with PBMC; PBMC proliferation

Chaturvedi
et al. (31)

• RT-qPCR (after LPS stimulation):
– Higher expression of TNF-a, G-CSF and SDF-1a

expression in AA-MSCs
– Lower MIP-1a expression in AA-MSCs
– No difference in SCF and TGF-b expression

• Measurement in culture supernatant: similar as RT-qPCR,
however also no difference in SDF-1a

• RT-qPCR and ELISA; MIP-1a, TNF-a, G-CSF, SDF-1a, SCF, and TGF-
expression in LPS induced MSCs

Hamzic et al.
(36)

• Worse ability to form adherent stromal layers by
AA-MSCs at 5
and 6 weeks

• Worse colony-forming and proliferation potential of
normal CD34+ cells in AA-MSC cross cultures at
6 weeks

• Adherent stromal layer formation
• MSC cross-cultures between BM-CD34+ cells (AA/normal) and MSCs (AA/
normal; hematopoietic colony formation, non-adherent cell proliferation

Jiang et al.
(39)

• Lower FGF-2 gene expression in AA-MSCs
• Lower FGF-2 levels in BM of AA-patients

• RT-qPCR and ELISA; FGF-2 expression and levels in BM plasma

Lu, S et al.
(32)

• Lower CD106 and NF-kB expression in AA-MSCs
• Lower vasculogenesis ability AA-MSCs
• Lower VEGF levels in CM of AA-MSCs
• Lower levels of CD34+, CD41+ and CD61+ cells in AA- MSC

co-cultures
• Less CFU-GM and CFU-mixed cell colonies in AA-MSC co-

cultures
• Less and smaller CFU-MK colonies in AA-MSC co- cultures

• Illumina sequencing, RT-qPCR, western blot analysis, NanoPro analysis;
CD106
and NF-kB expression

• Matrigel plug assay; in vitro capillary tube-like formation
• ELISA; VEGF production by MSCs
• MSC co-culture with UCB-CD34+ cells; CFU and CFU-MK assay

Shipounova
et al. (45)

• Lower expression of ANG-1 and VCAM-1 & higher expression
of VEGF after 3 weeks

• Normalization of gene expression after 6 weeks

• RT-qPCR; ANG-1, VCAM-1, VEGF in adherent cells of long-term bone marrow
cultures

Michelozzi
et al. (33)

• No difference • RT-qPCR; TGFB1, IL-6, DDK1
TABLE 10 | Summary of results for AA-MSCs per outcome of interest.

Outcomes of interest Increased (↑) Decreased (↓) No difference (=) Not determinable (ND)

Proliferation (N=11) 1 7 3 -
Differentiation (N=20)
• Adipogenic (N=19) 11 4 2 2
• Osteogenic (N=18) 0 12 4 2
• Chondrogenic (N=4) 1 0 2 1
Surface marker expression (N=21) - - 19 2
Immunomodulation (N=6) 1 3 2 ‐

Hematopoietic support (N=9) - 6 3 -
March 2022 | Vo
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relationship between these terms. In contrast, in many cases AA
is seen as part of a broader collective which is BMF. Thereby,
many researchers employ the subsequent distinction between
twomain categories of AA, namely congenital and acquiredAA. The
problem with this categorization becomes immediately apparent
when known and reliable sources of information provide
conflicting information. As an example, the WHO ICD-11
classification makes the distinction between congenital and
acquired AA (70). Herein no reference is made to the term BMF.
In contrast, UpToDate, uses a different classification inwhichBMF is
divided into the inherited bone marrow failure syndromes (IBMFS)
and acquired causes of bone marrow failure of which the latter
includes AA (71). Not only do these examples demonstrate the
profound obscurity of these commonly used definitions, but in
addition they are based on assumptions that are not fully
supported by an empiric foundation or that may be considered
somewhat outdated as developments in the field progress. It would
improve the consistency, homogeneity, and ultimately the internal
validity of research if standardized terminology were used in the
future with a clear description of the definitions used. Therefore, we
underline the essence of a protocolized in-depth diagnostic approach
at centers of expertise applying extensive genetic analysis
complemented with functional analyses (including telomere length
determination) for all patients with suspected BMF as genetic causes
are not limited to patients with typical (syndromal) clinical
characteristics beyond cytopenia. A higher detection rate of genetic
causes for BMFandpre-malignant disorders such asMDS,will result
to a better homogenous group of AA for further molecular and
cellular analysis to unravel the role of the bone marrow niche for the
pathogenesis.Moreover, stratificationof thedata into IST responders
and non-responders will provide more insights regarding the
involvement of the immune system in the pathogenesis of AA.

Another important obstacle of investigating bone marrow
from BMF patients in general, is that the local disease site is
mostly severely affected by the disease, causing destruction at the
time of diagnosis so that bone marrow aspirates might not be
entirely representative of the bone marrow state but merely
represent blood. Thus, it could also provide much relevant
information in the future by performing in-depth bone
marrow tissue analyses in patients with AA.
CONCLUSION

Based on the literature reviewed in this study we can conclude that
MSCs from patients with AA are phenotypically similar to those of
Frontiers in Immunology | www.frontiersin.org 16
unaffected individuals, but show fairly consistent differences in
terms of proliferation, differentiation, immunomodulation and
hematopoietic support. However, the quality of current literature
is lacking largely due to the heterogeneity of the selected patient
population necessitating caution on the role of MSCs in AA.
Future research in which patients suspected for BMF are more
thoroughly described and characterized is necessary to identify a
uniform population of AA.
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