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An Application of Machine Learning in 
Pharmacovigilance: Estimating Likely Patient 
Genotype From Phenotypical Manifestations  
of Fluoropyrimidine Toxicity
Luis Correia Pinheiro1,*, Julie Durand1 and Jean-Michel Dogné2,3

Dihydropyrimidine dehydrogenase (DPD)-deficient patients might only become aware of their genotype after 
exposure to dihydropyrimidines, if testing is performed. Case reports to pharmacovigilance databases might 
only contain phenotypical manifestations of DPD, without information on the genotype. This poses a difficulty in 
estimating the cases due to DPD. Auto machine learning models were developed to train patterns of phenotypical 
manifestations of toxicity, which were then used as a surrogate to estimate the number of cases of DPD-related 
toxicity. Results indicate that between 8,878 (7.0%) and 16,549 (13.1%) patients have a profile similar to DPD 
deficient status. Results of the analysis of variable importance match the known end-organ damage of DPD-related 
toxicity, however, accuracies in the range of 90% suggest presence of overfitting, thus, results need to be interpreted 
carefully. This study shows the potential for use of machine learning in the regulatory context but additional studies 
are required to better understand regulatory applicability.

Fluorouracil (5-FU) is a f luoropyrimidine anticancer drug that 
has been used in the treatment of solid tumors for decades.1 
About 10% of patients taking 5-FU undergoes renal excre-
tion, whereas over 80% are cleared by catabolic degradation. 
Dihydropyrimidine dehydrogenase (DPD) is the initial and 
rate-limiting enzyme in the catabolism of 5-FU.2 Many vari-
ants of the DPYD gene, which encodes for DPD, have been de-
scribed, however, only a few have been shown to lead to absent 
or reduced enzyme activity.3

Although most individuals with partial DPD deficiency unex-
posed to fluoropyrimidines do not exhibit obvious symptoms, in-
fants with severe DPD deficiency may have neurological problems, 
such as recurrent seizures, intellectual disability, microcephaly, 

hypertonia, and autistic behaviors, among others. All patients with 
DPD deficiency, regardless of whether they show any symptoms, 
are susceptible to serious, sometimes fatal adverse reactions, on ex-
posure to fluoropyrimidines. Fluoropyrimidine toxicity in partial 
DPD-deficient individuals may manifest as severe mucositis, neu-
tropenia, thrombocytopenia, hemorrhage, hand-foot syndrome, 
diarrhea, dyspnea, and alopecia.4,5 The prevalence of DPD defi-
ciency seems to be dependent on race and sex. African American 
women showed the highest prevalence of DPD deficiency com-
pared with African American men, white women, and white men 
(12.3%, 4.0%, 3.5%, and 1.9%, respectively).6

Low or absent DPD activity can lead to fluoropyrimidine-as-
sociated toxicity, which occurs in about 30% of treated patients 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE 
TOPIC?
 The true proportion of cases of dihydropyrimidine dehydro-
genase (DPD)-deficient individuals with adverse reactions to 
fluoropyrimidines reported to pharmacovigilance databases is 
not estimable using traditional methods.
WHAT QUESTION DID THIS STUDY ADDRESS?
 This study aimed at providing an estimate of the proportion of 
patients that might have susceptibility to fluoropyrimidine toxicity 
due to DPD deficiency. In essence, this is an imputation exercise, 
using machine learning models to classify likely DPD genotype.

WHAT DOES THIS STUDY ADD TO OUR KNOW- 
LEDGE?
 Machine learning models can assist in imputing likely geno-
type from phenotypical manifestations. The results allow a bet-
ter understanding of the influence of DPD deficiency in reports 
of adverse drug reactions.
HOW MIGHT THIS CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE?
 Machine learning models applied to large pharmacovigi-
lance databases can help answer certain research questions, 
which were difficult to address with more traditional methods.
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with 0.5–1% having fatal treatment-related toxicity.7,8 However, 
adverse drug reactions (ADRs) to 5-FU and related sub-
stances (capecitabine, tegafur, and flucytosine) can also occur in 
non-DPD-deficient patients.

In March 2019, the French regulatory authority (ANSM) notified 
the European Medicines Agency’s (EMA) Pharmacovigilance Risk 
Assessment Committee of a referral under Article 31 of Directive 
2001/83/EC.9 The referral involved a review of available data on 
screening methods to detect DPD deficiency with the aim of recom-
mending changes to ensure the safe use of 5-FU and related drugs.

In the context of this referral, an analysis of data in the 
EudraVigilance (EV) database was performed to estimate the num-
ber (or proportion) of individual case safety reports (ICSRs) to flu-
orouracil and related substances that might have been due to DPD 
deficiency.

EV is the system for collecting, managing, and analyzing suspected 
ADRs to medicines authorized in the European Economic Area 
(EEA). By the end of 2017, the EV held a total of 7,948,873 individ-
ual cases. Of the cases submitted in a postauthorization setting, 64% 
were submitted from outside the EEA and 36% from EEA countries. 
Thus, the EV provides a rich dataset with global representation.10

The traditional approach to estimating counts of an ADR 
is to develop a case definition using the Medical Dictionary for 
Regulatory Activities (MedDRA).11 MedDRA (version 21.1) 
has a preferred term for “Dihydropyrimidine dehydrogenase defi-
ciency.” However, it is anticipated that it would only be used in pa-
tients with known DPD deficiency at the time of reporting, which 
is not always the case. A standardized MedDRA query would have 
been helpful to extract information and act as a de facto case defi-
nition,12 however, there is none for DPD-related toxicities.

A potential alternative to developing a time-consuming con-
sensus-based case definition is to use machine learning models. 
Supervised classification machine learning models can help iden-
tify complex relationships in the variables (or features) and assign a 
probabilistic classification to each observation.13

By using the phenotypical manifestations (i.e., the adverse 
events associated with 5-FU and derivatives) we hypothesize that 
we might be able to classify the likely genotype of the patient. To 
the best of our knowledge, this is a novel approach to classifying 
cases in pharmacovigilance databases, but the use of novel meth-
ods to build bespoke case definitions has been attempted before.14

In this study, multivariable prediction models were developed 
and validated. The resulting models were applied to case reports of 
5-FU and derivatives. With all patients classified it became possi-
ble to estimate the number of ADRs where the patients are likely 
DPD deficient.

METHODS
Data
The data were sourced from the European Union’s central database of 
reports of suspected ADRs, EV. The period of interest was from the start 
of data collection to March 15, 2019.

Exposure
The exposure was defined as use of fluorouracil and fluorouracil-related 
substances, namely capecitabine, fluorouracil, tegafur, and flucytosine 
containing medicinal products.

Classification in the training set
This study was a two-class classification problem, where cases were classi-
fied as likely DPD deficient (true positives) and likely not DPD deficient 
(true negatives). Cases were classified as DPD deficient (true positives) 
where the MedDRA term “dihydropyrimidine dehydrogenase defi-
ciency” was reported as a reaction, or medical history, or a test result was 
reported, suggestive of DPD deficiency.

There were very few cases of individuals where normal DPD activity 
is reported as such in the database (i.e., DPD laboratory testing reported 
in the case did not suggest deficiency). Thus, likely non-DPD-deficient 
cases were defined as case reports of medicinal products used in similar 
indications as fluorouracil and fluorouracil-related substances, but which 
do not have a DPD interaction. Trastuzumab, pembrolizumab, docetaxel, 
and irinotecan were used. Non-DPD-deficient cases were randomly se-
lected on a 1:4 relation. This means that for each DPD-deficient case, four 
non-DPD-deficient cases were assigned.

Non-DPD-deficient cases that also reported exposure to fluorouracil or 
related products were removed from the sample, except if they were known 
to be DPD deficient (i.e., it was reported in the case).

Considering that the sample defined the distribution of the classes is 
imbalanced (i.e., 20% DPD-deficient and 80% non-DPD-deficient), the 
classes were balanced in the machine learning model. The auto machine 
learning model does this algorithmically, and includes a blend of under-
sampling the majority class and resampling the minority class.

Training, validation, and testing set
The data were partitioned in a 75% training set and a 25% test set. Five-
fold cross-validation was performed in the training set.

Features
The features (or variables) used were age, sex, and adverse reaction re-
ported at high level term. The high level term with the preferred term 
“Dihydropyrimidine dehydrogenase deficiency” was excluded as it is 
highly correlated with DPD deficiency.

Analytics
Auto machine learning was applied using H2O for R. Distributed ran-
dom forests, gradient boosting machines, and generalized linear models 
(GLMs) were included. H2O is an open source lightweight in-memory 
machine learning platform written in Java.15

RESULTS
As of March 15, 2019, there were a total of 126,890 ICSRs in EV 
with capecitabine, fluorouracil, tegafur, or flucytosine containing 
medicinal products reported as suspect, interacting, or concomitant. 
DPD deficiency could be ascertained in 260 cases: 184 had infor-
mation in the medical history, 76 in the reaction field, and 3 in the 
laboratory tests fields (some cases fulfilled more than one criterion).

The models were trained in a data frame containing 1,185 ob-
servations and 434 features. The five most accurate trained mod-
els had an accuracy that ranged between 0.8855 and 0.9192. The 
model with the best accuracy had a precision of 0.9331 and a spec-
ificity of 0.6792 (Table 1).

When the models were applied to the 126,630 cases without es-
tablished DPD deficiency, the estimate of cases possibly due to DPD 
deficiency ranged from 8,878 (7.0%) to 16,549 (13.1%) (Table 2).

Gradient boosting machine (GBM) models, contrary to ensem-
ble or GLMs, provide information on the relative importance of 
the features. Eight of the top 10 most important features in the 2 
GBM models are the same (Table 3).
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DISCUSSION
The auto machine learning models suggest that between 7% and 
13% of the cases of toxicity with 5-FU and derivatives in the EV 
database might be due to DPD deficiency. This estimate is very 
close to the 2–12% estimate of the general population that may 
be vulnerable to toxic reactions to fluoropyrimidine drugs due to 
DPD deficiency 4.

Furthermore, the features of highest importance, as highlighted 
by the gradient boosting machine models, are closely related to 
the typical manifestations of DPD-related toxicity, namely mu-
cosal problems, diarrhea, thrombocytopenia, and skin reactions. 
Furthermore, sex appears in one model as an important feature, 
which is in line with the known sex imbalance in DPD defi-
ciency  (i.e., female sex seems to have higher prevalence of DPD 
deficiency).

This result could be read as the models identifying correctly the 
main manifestations of DPD-related toxicity. It is reassuring regard-
ing the wider validity of the models, as the important features of the 
models are not at odds with the known pattern for the disease.

Of note, descriptive analyses run in parallel using an ad hoc case 
definition aimed at capturing all reactions within the spectrum of 
possible DPD-related toxicity yielded an estimate of 33.9% of cases 
(data not shown).

As this was a novel application of machine learning models to 
reach an overall estimate of counts of cases, the use of auto machine 
learning models, whereby the iterative model building and hyper-
parameter tuning is automated—was considered sufficient. The 
best performing models were stacked ensemble models (i.e., mod-
els based on a combination of machine learning models). These 
are known to have better predictive abilities than individual mod-
els and the results support that. However, these models come at a 
cost of interpretation; GBM models provide information on vari-
able importance and GLMs provide the variable coefficients but 
stacked ensembles do not provide easily interpretable information 
on variable importance. In this study, having insights into variable 
importance is useful in understanding the validity of the models.

Machine learning models learn patterns (or correlations), there-
fore, it is not adequate to assume causal relationships from these 
results. Models identify patterns even in the sample error space—
also known as overfitting. The feature age, for instance, may solely 
indicate a higher risk of having a malignant disease or general phar-
macokinetic changes and not a specific DPD relationship.

Furthermore, considering the simplicity of the features used and 
complexity of the prediction problem, the performance metrics, 
with accuracies around 90%, might suggest some overfitting. To im-
prove validity of the models, a set of oncology drugs—two biolog-
icals and two small molecule products—which do not have a DPD 
metabolic pathway were chosen. It is possible that the safety profiles 
of these are so distinct from that of fluoropyrimidines that it leads 
to overfitting.

In addition, although a selection of a 1:4 ratio of DPD deficient 
to non-DPD deficient case reports was made, the models chosen 

Table 1 Performance metrics, at a probabilistic threshold of 50%, for the validation (i.e., test set) for the top five models, 
ranked by accuracy

Model identification Accuracy Precision Recall Specificity

Stacked ensemble best of family 0.9192 0.9331 0.9713 0.6792

Stacked ensemble all models 0.9125 0.9325 0.9631 0.6792

GBM grid 1 model 12 0.8990 0.9385 0.9385 0.7170

GBM grid 1 model 13 0.8956 0.9019 0.9795 0.5094

GLM grid 1 model 1 0.8855 0.9038 0.9631 0.5283

GBM, gradient boosting machine; GLM, generalized linear model.

Table 2 Estimate of the number of cases likely to be related 
to DPD deficiency, for the top five models, ranked by model 
accuracy

Model identification
Estimate of cases

N (%)

Stacked ensemble all models 8,878 (7.0)

Stacked ensemble best of family 16,549 (13.1)

GBM grid 1 model 12 14,604 (11.5)

GBM grid 1 model 13 10,944 (8.6)

GLM grid 1 model 1 11,432 (9.0)

DPD, dihydropyrimidine dehydrogenase; GBM, gradient boosting machine; 
GLM, generalized linear model.

Table 3 Variable importance for the GBM models, showing 
top 10 most important features

Model identification Features

GBM grid 1 model 12 HLT Mucosal findings abnormal
Age
HLT Poisoning and toxicity
HLT Marrow depression and hypoplastic 
anemias
HLT Stomatitis and ulceration
Sex
HLT Thrombocytopenias
HLT Diarrhea (excluding infective)
HLT Neutropenias
HLT Dermatitis ascribed to specific agent

GBM grid 1 model 13 HLT Mucosal findings abnormal
HLT Poisoning and toxicity
HLT Diarrhea (excluding infective)
Age
HLT Marrow depression and hypoplastic 
anemias
HLT Leukopenias
HLT Thrombocytopenias
HLT Dermatitis ascribed to specific agent
HLT Stomatitis and ulceration
HLT Neutropenias

GBM, gradient boosting machine; HLT, high level term.
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balanced the classes by oversampling from the minority class and 
undersampling from the majority class.

Estimating the number of patients likely to be DPD deficient 
but otherwise asymptomatic is a particularly difficult topic regard-
less of the methodology chosen. The pathological mechanism is 
through reduced clearance of fluoropyrimidines and, thus, mani-
festations are similar in DPD-deficient and nondeficient patients. 
In addition, they also overlap with the adverse reaction profile of 
other oncologic products.

The hypothesis for this study was that a pattern or combina-
tion of manifestations could potentially be characteristic of DPD-
related toxicity. A cautious interpretation is that machine learning 
models indicate that 7–13% of all case reports to fluoropyrimi-
dines have an adverse reaction profile similar to that reported in 
DPD-deficient patients. This frequency is within the range of 
prevalence of DPD deficiency and the variable importance follows 
the expected profile of the reaction and sex imbalances.

From a regulatory point of view, this study provides a good  
example in one of the key areas of the EMA’s regulatory strategy 
of exploiting artificial intelligence in regulatory decision making 
16and is the first time that machine learning is used as a pharma-
covigilance approach in estimating the number and proportion of 
ICSRs with a drug that might have been due to a genotype defi-
ciency, notably in the absence of information on the DPD status 
in the narrative. This will surely help the scientific assessors in es-
timating the level of the risk and identify proportional risk min-
imizations strategies of toxicity with 5-FU and derivatives. It is 
anticipated that such a method will be validated with other exam-
ples in the EV database and may be used to provide rapid and re-
liable estimates as part of other safety procedures, including signal 
management and continuous monitoring of drug safety.

The European regulatory system is scientifically robust, and 
coordination of pharmacovigilance activities by the EMA is deter-
minant for safety monitoring of medicines across Europe. While ex-
isting methods are well established, this study illustrates how, taking 
into account their limitations, the use of machine learning models 
for case definition in pharmacovigilance may provide additional in-
sights that strengthen the evidence base for decision making.
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