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Lewy Body Disorders (LBDs) lie within the spectrum of age-related neurodegenerative

diseases now frequently categorized as the synucleinopathies. LBDs are considered

to be among the second most common form of neurodegenerative dementias after

Alzheimer’s disease. They are progressive conditions with variable clinical symptoms

embodied within specific cognitive and behavioral disorders. There are currently no

effective treatments for LBDs. LBDs are histopathologically characterized by the

presence of abnormal neuronal inclusions commonly known as Lewy Bodies (LBs) and

extracellular Lewy Neurites (LNs). The inclusions predominantly comprise aggregates of

alpha-synuclein (aSyn). It has been proposed that post-translational modifications (PTMs)

such as aSyn phosphorylation, ubiquitination SUMOylation, Nitration, o-GlcNacylation,

and Truncation play important roles in the formation of toxic forms of the protein, which

consequently facilitates the formation of these inclusions. This review focuses on the

role of different PTMs in aSyn in the pathogenesis of LBDs. We highlight how these

PTMs interact with aSyn to promote misfolding and aggregation and interplay with cell

membranes leading to the potential functional and pathogenic consequences detected

so far, and their involvement in the development of LBDs.
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HIGHLIGHTS

- aSyn aggregation and transformation into LBs and LNs underlie progression of LBDs and
other synucleinopathies.

- The failure of proteostasis network is linked to maintain biologically active aSyn.
- Post-translational modifications (PTMs) contribute to aSyn pathogenicity.
- aSyn PTMs include ubiquitination, nitration, acetylation, SUMOylation, glutathionylation,

Glycosylation, and phosphorylation.
- PTMs interventions or modifications may reduce accumulation of LBs and prevent LBDs.
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INTRODUCTION

Lewy body dementias (LBDs) are progressive neurodegenerative
disorders characterized by the presence of abnormal intra-
neuronal deposits commonly called Lewy bodies (LBs) and
deposition of extracellular Lewy neurites (LNs) (Figure 1)
(McKeith et al., 2017; Outeiro et al., 2019). LBDs are
currently regarded to encompass dementia with Lewy Bodies
(DLB), Parkinson’s disease (PD), and Parkinson’s disease with
dementia (PDD). They are the second most prevalent types
of neurodegenerative dementia, after Alzheimer’s disease (AD),
accounting for ∼22% of all dementias in older people. The
incidence of LBDs is associated with advancing age as it
increasingly manifests in individuals over 65 years of age
(Spillantini et al., 1998; Braak et al., 1999; McKeith et al.,
2003, 2004, 2017; Yang et al., 2018; Outeiro et al., 2019).
The clinical and pathological profiles of the LBDs demonstrate
considerable overlap among the subtypes. Patients diagnosed
with DLB often present with parkinsonism associated with
brainstem and midbrain pathology and many PD cases present
with dementia owing to pathological involvement of the limbic
and cortical structures progressing to PDD (Figure 1) (Jellinger
and Korczyn, 2018). The differential diagnosis between PDD
and DLB is achieved using the temporal profile during onset
of disease such as the appearance of cognitive symptoms after
the presentation of Parkinsonian features. Thus, if the onset of
dementia occurs at least 1 year after the onset of initial PD
related symptoms, the diagnosis is consistent with PDD. In
contrast, if the onset of dementia begins within 1 year of the
development of parkinsonism, then the profile is consistent with
DLB (Spillantini et al., 1997, 1998; Gurd et al., 2000; McKeith,
2006; Goedert et al., 2013; McKeith et al., 2017). If dementia
develops in the context of established PD, then it is consistent
with PDD (McKeith et al., 2017). Generally, PDD develops after
∼10 years of the onset of PD (Aarsland et al., 2003; McKeith
et al., 2017). However, the neuropsychological profile of PDD is
not phenotypically very different compared with DLB (Aarsland
et al., 2003). Despite progress in our understanding and
identification of the variable symptoms, which may be indicative
of either PD or DLB disease progression, a definitive clinical
diagnosis remains difficult to achieve. At present, a confirmed
diagnosis is only provided through post-mortem examination
by the detection of intraneuronal inclusions, consistent with LB
pathology found in the neuronal soma and LN pathology within
the neuronal processes.

Upon light microscopy, LBs are characteristically seen
as neuronal inclusions usually eosinophilic round bodies
surrounded by a halo (Figure 1). LBs form in subsets of
large or long projection neurons which seem to be prone to

Abbreviations: DLB, Dementia with Lewy Bodies; LBDs, Lewy body disorders;
LBs, Lewy bodies; LNs, Lewy neurites; PD, Parkinson’s disease; PDD, Parkinson’s
disease dementia; ETC, electron transport chain; PTMs, post-translational
modifications; aSyn, Alpha-synuclein; AA, amino acid; CSP, α-Cysteine Stirring
Protein alpha; SNARE, Soluble NSF attachment receptor; UPS, Ubiquitin
proteasome system; VDAC, voltage-dependent anion channel; ROS, reactive
oxygen species; RNOS, reactive nitrogen species; MT, Microtubules; ER,
Endoplasmic reticulum; TLR2, Toll-like receptor2.

such accumulation particularly monoaminergic neurons in the
brainstem and midbrain (Halliday et al., 1990; Braak et al.,
2004). However, in the limbic system and the neocortical areas,
LBs are most frequently found in glutamatergic pyramidal
neurons; LBs have also been reported in cholinergic neurons
of the basal forebrain (Wakabayashi et al., 1995; Marui et al.,
2003; Dugger and Dickson, 2010; Bernstein et al., 2011). LBs
and LNs are not exclusive to LBDs, as they also occur in
other neurodegenerative diseases each defined by different
regional and cellular distributions and collectively termed as the
synucleinopathies (Spillantini et al., 1997, 1998; Mattila et al.,
2000; Goedert et al., 2013).

LBs and LNs were originally immunohistochemically
identified by antibodies to ubiquitin. However, it is now standard
to demonstrate them with antibodies to alpha-synuclein (aSyn)
(Yoshimoto et al., 1995; Spillantini et al., 1998). aSyn protein is
the most abundant constituent of the inclusions (Spillantini et al.,
1997, 1998; Baba et al., 1998). More recent studies have shown
that LBs and LNs also comprise many cellular components
including dysmorphic organelles, vesicular structures and
membranes (Spillantini et al., 1997, 1998; Braak et al., 1999;
Shults, 2006; Shahmoradian et al., 2018). aSyn protein was first
identified in 1988, as a small intracellular protein, and it was
named so because of its localization in the nuclear envelopes
and synaptic vesicles of the cells (Maroteaux et al., 1988). aSyn
belongs to a family of three homologous synuclein proteins,
which include β-synuclein and γ-synuclein (Nakajo et al.,
1990; Jakes et al., 1994; Buchman et al., 1998; Lavedan et al.,
1998; Wales et al., 2013). Subsequently, Saitoh and colleagues
discovered that aSyn was associated with amyloid plaques of
Alzheimer’s disease (AD) patients (Kalaria, 1997) and called it
the non-amyloid beta component (NAC) (Ueda et al., 1993).
aSyn further became a major focus in LBDs upon discovery
of point mutations in the aSyn gene in familial forms of PD
(Polymeropoulos et al., 1997; Nemani et al., 2010). Point
mutations within the aSyn encoding gene (SNCA) leading to
formation of LBs and LNs has largely confirmed its pathogenic
role in LBDs (Polymeropoulos et al., 1997; Bussell and Eliezer,
2001; Kruger et al., 2001; Zarranz et al., 2004; Lesage et al., 2013;
Proukakis et al., 2013; Pasanen et al., 2014).

Although the exact mechanism that triggers the aggregation
of aSyn and the consequent inclusion formation is not clearly
understood it is reported that the influence of mutations and
post-translational modifications (PTMs) add to the protein
pathogenicity. It is thought that the PTMs play important roles
in impairing the native state of the protein, which consequently
induces protein misfolding and aggregation (Villar-Pique et al.,
2016). Thus, it is important to assess the disease associated
PTMs of aSyn, as it may enable elucidation of potential processes
involved in its pathological aggregation (Jellinger and Korczyn,
2018; Moors et al., 2018). In addition, it may help to elucidate
the observed anatomical and distribution patterns of LBs seen
within the LBDs, as well as provide better insights in strategies
for treatments. This review outlines the involvement of different
PTMs of aSyn described in LBDs, with particular focus on
aSyn phosphorylation, ubiquitination SUMOylation, Nitration,
o-GlcNacylation, and Truncation (Figure 2). Our aim is to

Frontiers in Aging Neuroscience | www.frontiersin.org 2 June 2021 | Volume 13 | Article 690293

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Manzanza et al. α-SYN Modification in LBDs

FIGURE 1 | Coronal schematic of the brain, depicting normal structures and in LBD subjects. Shading shows the distribution of aSyn in LBs/LNs in cortical and

subcortical regions. Subcortical regions are associated with PD, and as the disease progresses to cortical regions it corresponds with DLB and PDD. (Right, A–D): LB

pathology (arrows) revealed in the amygdala of a patient with DLB with antibody to pSer129 aSyn (A), ubiquitin (B), and whole aSyn counterstained with haematoxylin.

(D), LB with a halo typically found in the substantia nigra. Magnification bar: 10µM.

provide insight into how the PTMs affect aSyn to misfold and
aggregate, leading to the potential functional and pathogenic
consequences so far detected, that lead to the development
of LBDs.

aSyn STRUCTURE

aSyn is ubiquitously expressed in the CNS comprising ∼1% of
total cytosolic neuronal protein (Kahle, 2008). It is a relatively
small protein with molecular weight of 14.5 kDa, nearly 4 times
as large as the amyloid-β peptide. Synucleins are predominantly
neuronal proteins, most abundant in presynaptic terminals
(Maroteaux et al., 1988; Ueda et al., 1993). aSyn is a product
of the synuclein alpha (SNCA) gene, located at position 21 of
the long arm of chromosome 4. The gene encodes 140 highly
charged amino acid (aa) residues, which do not adopt a defined
structure in an aqueous solution (Polymeropoulos et al., 1997;
Wales et al., 2013). aSyn consists of three distinct domains: The

N-terminal, the Central and C terminal domains (Figure 2). The
N-terminal domain or the amino terminus, (aa 1-60) contains four
11-dimer repeats that contain a KTKEGV consensus sequence.
This region is predisposed to fold into alpha helices and has been
hypothesized to be linked with the lipid binding capacity of the
protein (Polymeropoulos et al., 1997; Marui et al., 2004; Wales
et al., 2013). The Central domain, also called the NAC (aa 61-
95) is particularly hydrophobic and amyloidogenic (Maroteaux
et al., 1988; Ueda et al., 1993). Studies have reported that this
domain is associated with aSyn aggregation when it adopts a beta-
sheet structure. Moreover, identified mutations that are linked
with synucleinopathies are also found in this region (Figure 2)
(Polymeropoulos et al., 1997; Lesage et al., 2013; Proukakis et al.,
2013). Finally, the C terminal domain or the carboxyl terminus
(aa 96-140), provides flexibility to the polypeptide, because of
its abundance in proline residues, that are known to affect the
secondary structure of the region (Maroteaux et al., 1988; Ueda
et al., 1993). In addition, this region is highly acidic, intrinsically
unstructured and is thought to be the target of diverse PTMs
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FIGURE 2 | A representation of aSyn structure and main sites of mutations and post-translational modifications (PTMs).

(Figure 2) (Davidson et al., 1998; Bussell and Eliezer, 2001,
2003). Furthermore, this region is also involved in protein-
protein interactions, polyamine binding, protection from protein
aggregation and modulation of membrane binding properties of
aSyn (Crowther et al., 1998; Nielsen et al., 2001; Park et al., 2002;
Fernandez et al., 2004; Brown, 2007; Bodner et al., 2009; Oueslati
et al., 2010; Sevcsik et al., 2011).

aSyn FUNCTION

The precise function of aSyn remains the focus of intense debate
and research. The predominant cytoplasmic expression of aSyn
and its specific transport to presynaptic terminals, suggests a
regulatory functionwithin the synapse (Burre, 2015).Modulation
of aSyn expression by either overexpression, knock-down or
knockout, alters synaptic vesicle trafficking, and maintenance, as
well as neurotransmitter compartmentalisation, storage, release,
recycling, and changes in synaptic activity and plasticity (Lashuel
et al., 2012; Burre et al., 2013; Allen Reish and Standaert, 2015).
Given the extensive nature of the synaptic parameters affected, it
is plausible that aSyn may act as an accessory/adaptor protein for
these processes. aSyn is thought to empower a number of better-
defined synaptic proteins. aSyn supports N-ethylmaleimide-
sensitive factor attachment protein receptor (SNARE) proteins
in their role, potentially acting with some level of functional
redundancy with Cysteine Stirring Protein alpha (CSP-α) 1-
(Goda, 1997; Gerst, 1999; Burre et al., 2010; Lautenschlager et al.,
2017; Lou et al., 2017; Hawk et al., 2019; Agliardi et al., 2021).
aSyn is thought to assist in the formation of SNARE complexes
via the direct binding of synaptobrevin 2. Such facilitation of
SNARE complex formation ultimately influences the dynamics of
synaptic vesicle cycling during neurotransmitter release (Table 1)
(Burre et al., 2010). An interesting study by Fortin et al. (2005),
supports this, as it demonstrated that during neural activity,
fluorescently labeled aSyn retracts from synaptic vesicles and

then returns progressively to the vesicles (Fortin et al., 2005).
Nevertheless, despite these research efforts the full extent of aSyn
function(s) remains poorly understood.

aSyn AGGREGATION AND ITS ROLE IN
CELLULAR DYSFUNCTION

aSyn aggregates are also the main constituents of LBs and LNs.
Aggregates are also present in mixed neuropathological cases
where both LB pathology and atypical AD with amyloid-β and
Tau pathology are present (Spillantini et al., 1997, 1998). Multiple
lines of evidence shows that unstructured soluble monomers of
aSyn are transformed into oligomers, which then aggregate to
form mature insoluble fibrils and form LBs (Harper et al., 1997;
Walsh et al., 1997; Lambert et al., 1998; Miake et al., 2002). In
vitro studies demonstrated that the aggregation process occurs
in three different stages, named the lag, elongation and stationary
phases (Buell et al., 2014). In the lag phase, the aggregation occurs
through key structural changes within the protein resulting in the
formation of misfolded monomers and aggregation, culminating
in the formation of oligomers. In the elongation phase, an
exponential growth of oligomers takes place, to form non-soluble
fibrils achieved by the continual addition of monomers. In the
stationary phase, the consumption of monomeric aggregates
culminates into reduction of the fibril growth rate and formation
of LBs (Invernizzi et al., 2012; Buell et al., 2014). However, this
sequence of events appears to be much more complex in vivo
as different oligomeric forms may be involved in the process
(Fairfoul et al., 2016; Shahnawaz et al., 2017).

Whilst it remains unclear whether the end-stage products of
aggregation (LBs and LNs) are the most disease relevant toxic
forms of aSyn, it is widely assumed that the process of aggregation
is critical and perhaps its intermediates such as prefibrils or
fibrillary oligomers formed during such a process are the toxic
elements (Periquet et al., 2007). This is supported by the fact
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TABLE 1 | Summary of aSyn function, targets, action, and effects.

aSyn Function Target Action Effects References

Chaperone activity Presynaptic membrane

Heat shock proteins

Maintenance of SNARE complex

Helping protein to obtain

correct conformations

SNARE complex assembly

Efficient neurotransmitter release

Burre et al., 2010; Burré

et al., 2014; Choi et al.,

2013

Antioxidation Cytochrome c oxidase

JNK-interacting protein

Inhibition of Caspases activation

Inhibition of JNK pathway

Neuroprotection Hashimoto et al., 2002; Zhu

et al., 2006

Maintenance of PUFA

Levels

Acyl-coA synthetase Regulation of lipid synthesis Synthesis of brain vital fatty acids Ruipérez et al., 2010

Neuronal differentiation Rab3a ERK/MAPK pathway activation Gene transcription Ostrerova et al., 1999; Chen

et al., 2013

Regulation of

Calmodulin activity

CaM Activation of CaM Modulation of G-protein-coupled

receptor kinase

Martinez et al., 2003

Regulation of glucose

levels

G-protein-coupled receptor

Pancreatic β-cell

KATP channel

Insulin inhibition Susceptibility to diabetes Geng et al., 2011;

Rodriguez-Araujo et al.,

2015; Sharma et al., 2015

Regulation of DA

biosynthesis

Protein phosphatase 2A Inhibition of tyrosine Hydroxylase Regulation of DA levels Peng et al., 2005; Yang

et al., 2013

Suppression of

apoptosis

Protein C Kinase Deactivation of NFkB Neuroprotection Jin et al., 2011

SNARE, sensitive factor attachment protein receptor; PUFA, polyunsaturated fatty acid; MAPK, Mitogen-activated protein kinase; JNK, cJun N-terminal kinase; NFkB, nuclear factor

kB; CaM, Calmodulin; DA, dopamine.

that, aSyn and β-synuclein fragments which do not contain the
NAC domain, were found to be resistant to aggregation (Periquet
et al., 2007). Moreover, aSyn oligomers and aggregated fibrils
were found to exhibit toxicity even before forming LBs/LNs,
and these aggregation precursors have been associated with
progressivemotor impairments and neuronal cell death (Periquet
et al., 2007). Cell culture and in vivo studies in animal models
have shown that aggregated fibrils cause further aggregation of
aSyn monomers that consequently translocate between cells in
prion-like manner (Wood et al., 1999; Desplats et al., 2009;
Hansen et al., 2011). This finding indicates that aSyn pathogenic
cascade, may begin even before LBs are formed, causing
functional alterations before the structural changes are evident.
Furthermore, aggregated aSyn was shown to affect various
cellular pathways, impairing the adaptation of the neurons to
endoplasmic reticulum (ER) stress, inducing dysfunction of
the proteasome degradation process, mitochondria functioning,
and leading to membrane damage as well as loss of synapses
(Figure 3) (Wood et al., 1999; Desplats et al., 2009; Hansen et al.,
2011).

Dysfunction of the Ubiquitin-Dependent
Proteasome Degradation System
It is expected that in the course of time, large quantities of
misfolded aSyn aggregates, and accumulates within the neurons,
consequently leading to inclusion formation. In physiological
conditions as other proteins, aSyn should be eliminated before
forming aggregates. This process normally occurs via different
proteolytic pathways within cellular compartments, such as
the lysosomal pathway or the ubiquitin dependent proteasome
degradation system also known as the ubiquitin proteasome
system (UPS), which is a major protein degradation pathway
targeting misfolded and unwanted proteins (Hyttinen et al.,

2014). UPS is mediated by a tri-enzymatic reaction that leads
to the mono-ubiquitination or poly-ubiquitination of the target
protein on lysine residues. Poly-ubiquitination is associated with
protein degradation by the 29S proteasome and require substrate
recognition by 19S proteasome subunit prior to degradation by
the proteolytic core of the 20S proteasome complex (Tanaka and
Chiba, 1998; Tanaka, 2009).

aSyn is found to be highly ubiquitinated in LBs (Lindersson
et al., 2004). It has been indicated that, the accumulation of
these proteins marks aSyn for degradation. Major components
of the proteolytic 20S proteasome are widely present in LBs/LNs
(Lindersson et al., 2004). Thus, it can be considered that these
proteins have been sequestered from their physiological role to
be degraded and/or eliminated. In addition or even preceding
the incorporation of the 20S proteasomes into LBs/LNs, its
degradation capacity may be impaired as result of the direct
binding of aSyn oligomers (Nielsen et al., 2001; Tanaka, 2009;
Emmanouilidou et al., 2010). This was proven in a study which
showed that, aSyn oligomers prominently impair proteasomal
activity in PC12 cells expressing mutant A53T (Zondler et al.,
2017). Thus, supporting the notion that in pathologic cellular
environments aSyn cannot be degraded by the proteasome
system, and thus contributing to selective vulnerability of cells
incorporating LBD pathology. The selective vulnerability of
the substantia nigra to proteasome inhibition in PD patients,
is thought to occur as a result of proteasomal inhibition by
the oligomeric species of aSyn (McNaught and Jenner, 2001;
McNaught et al., 2001; Olanow and McNaught, 2006). On
the other hand, when proteasomal activity is enhanced, as it
was demonstrated with a potent proteasome activator such as
Tetramethylpyrazine Analog T-006, aSyn is efficiently degraded
not only by the UPS but also in autophagy independent manner
(Zhou et al., 2019). Other studies have demonstrated that the
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FIGURE 3 | Schematic representation of potential mechanisms by which aSyn form aggregates, leads to toxicity and causes cell death. Monomeric aSyn assembles

to form oligomers and producing mature fibrils. (1) LBs and LNs formation: fibrillary forms of aSyn are segregated into protein inclusions, which contain dysmorphic

organelles, vesicular structures and various other cellular proteins, depleting cells of these vital components. (2) Mitochondrial impairment: Altered aSyn translocate to

(Continued)
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FIGURE 3 | the mitochondria, causing oxidative stress by increasing production of reactive oxygen and nitrogen species with consequent impairment of energy

production. Damage to mitochondria leads to release of Cytochrome C. This is in turn activates caspases, which translocate to the nucleus to initiate an apoptotic

response. (3) ER dysfunction and protein trafficking inhibition: depletion of ATP due to mitochondrial dysfunction, causes ER overactivity leading to increased release

of calcium. This further causes blockage of protein trafficking from ER to Golgi, leading to Golgi fragmentation. (4) Membrane pore formation: putative toxic forms of

aSyn may penetrate cellular membranes, altering its permeability, causing excess of calcium and other ions within the cytosol. (5) Impaired autophagy: adhesion of

aSyn to the membrane of lysosomes alters autophagy mediated by chaperones, resulting in aggregation of substrates and impairment of the proteasome system. (6)

Release of toxic aSyn and other cellular components into extracellular space: toxic aSyn may be passively released in the extracellular space by dying neurons and

consequently taken by adjacent neurons, resulting in seeding aggregation and synaptic impairments. (7) Defects in axonal transport: toxic aSyn causes Tau hyper

phosphorylation, which inhibit the modulation of microtubule assembly, with consequent detrimental effects on cellular transport, increasing aggregation of toxic

substances in the cytosol. (8) Synaptic terminal dysfunction: toxic aSyn alters distribution of proteins in the synaptic terminal, reduces synaptic vesicle release, which

leads to changes of the synaptic protein composition and hyperexcitability. (9) Impairment in dopamine (DA) metabolism: aggregation of aSyn impairs metabolism of

DA, which induces ROS. Figure was constructed using several references (Hampton, 2000; Lindersson et al., 2004; Danzer et al., 2007; Li W. et al., 2007; Prots et al.,

2013; Shahmoradian et al., 2018).

inhibition of UPS by aSyn was reversed with the supplementation
of Congo red, which is an aSyn oligomerization inhibitor
(Emmanouilidou et al., 2010). Thus, the selective vulnerability
of aSyn to form aggregates is greatly enhanced by the failures of
ubiquitin dependent clearance mechanisms.

Mitochondrial Dysfunction and Membrane
Damage
Although, aSyn is abundant in the cytosol, accumulating
evidence suggests the presence of endogenous or overexpressed
aSyn within mitochondria (Li W. W. et al., 2007; Nakamura
et al., 2008; Liu et al., 2009; Loeb et al., 2010). This is thought
to lead to aSyn related mitochondrial toxicity. Some studies
proposed that aSyn binds to and inhibits the function of a
subunit of the mitochondrial protein import system, such as
TOM20 (Wiedemann et al., 2004; Wurm et al., 2011; Di Maio
et al., 2016). On the other hand, mitochondrial damage can
lead to oligomerization and aggregation of aSyn, thus revealing
bidirectional toxicity (Betarbet et al., 2000; Cannon et al., 2009).

Moreover, aSyn shows high affinity with voltage-dependent
anion channel (VDAC), which is an outer mitochondrial
membrane channel that regulates flux of small hydrophilic
molecules and calcium in and out of the mitochondria (Lu et al.,
2013). Rostovtseva et al. (2015) showed that, aSyn monomers
reversibly inhibit VDAC in a voltage dependent manner, creating
a high influx of calcium into the mitochondria (Rostovtseva
et al., 2015). The high influx of calcium into the mitochondria is
thought to be facilitated by aSyn oligomers, which consequently
propels mitochondrial swelling, that occurs as a result of
depolarisation, and retention of exogenous calcium inside the
mitochondrial matrix (Luth et al., 2014). Another study revealed
that, overexpression and subsequent oligomerization of aSyn led
to mitochondrial fragmentation in dopaminergic SH-SY5Y cell
line (Plotegher et al., 2014). Mitochondrial fragmentation was
also found to be induced by mutant forms of aSyn, and this is
thought to be associated with excessive mitophagy within cells
(Choubey et al., 2011; Nakamura et al., 2011). In addition, toxic
aSyn species are thought to cause downregulation of complex I
in the electron transport chain of mitochondria (Nakamura et al.,
2008; Loeb et al., 2010). The effects of aSyn on mitochondria,
particularly the inhibition of complex I, induces the production
of reactive oxygen species (ROS) and oxidative stress which leads

to the impairments of mitochondrial function, with consequent
upregulation of apoptotic signals within the cell (Figure 3) (Hsu
et al., 2000; Ryan et al., 2015). This suggests loss of mitochondria
functions as a key part of a pathogenic process of LBDs.

Cell stability relies on the integrity of its membranes which
function as a barrier between intracellular and extracellular
environments, controlling the movement of the metabolites.
When incubated with natural and synthetic phospholipids or
other lipid bilayer membranes in vitro, aSyn rapidly formed
aggregates and oligomeric species (Haque et al., 2010; Grey et al.,
2011). In similitude to the mitochondria membrane, extracellular
oligomeric aSyn species were shown to form pores on the cell
membranes. This is thought to facilitate the influx of excessive
exogenous calcium within the cytosol, which is a process that
often precedes cellular disruption and death (Danzer et al., 2007).
In addition, unfolded monomeric and oligomeric species of
aSyn are thought to cause calcium dysregulation by interacting
with the calcium membrane signaling in a site-specific manner
(Angelova et al., 2016). Interestingly, only oligomeric species
are capable of inducing cell death. It would be interesting to
study if other pre-aggregated and/or aggregated forms have the
same effects. Contrastingly, protecting the membrane with new
compounds such as NPT100-18A, which can displace aSyn from
the lipid bilayer membrane, reduces toxicity of oligomeric aSyn
(Wrasidlo et al., 2016). Supporting this, endosulfine-alpha, a
compound that selectively binds to membrane-associated aSyn,
was found to block the formation of toxic aggregated forms
within the cell and reduce the death of dopaminergic neurons in
PD (Ysselstein et al., 2017). Thus, demonstrating that abnormal
interaction between toxic aSynwith themembranes is linkedwith
the impairment of the cellular membrane function in LBDs.

aSyn and Synaptic Membrane Dysfunction
Synaptic dysfunction is an early event in the evolution of
LBDs, as well as in other neurodegenerative diseases (Schulz-
Schaeffer, 2010). Considering the physiological role of aSyn at
the synapse, it is plausible that overexpressed and aggregated
aSyn induces synaptic dysfunction and neurotoxicity. In contrast
to physiological aSyn, which facilitates formation of the SNARE
complex, and control movement of synaptic vesicles and release
of neurotransmitters, oligomeric aSyn, acting via an association
with synaptobrevin, inhibits SNARE complex formation. Thus
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preventing the fusion of synaptic vesicles with the plasma
membranes and the subsequent release of neurotransmitters
(Choi et al., 2013, 2018; Burré et al., 2018; Masaracchia et al.,
2018; Man et al., 2021). Moreover, in COS-7 cells, aSyn
overexpression was shown to cause disruption of the Golgi
apparatus, the site of synaptic vesicle formation, and thus led
to synaptic dysfunction by the depletion of synaptic vesicles
(Gosavi et al., 2002). In addition, oligomeric species of aSyn were
found to cause reduction in neurotransmitter release by inducing
premature intracellular rupture of synaptic vesicles (Danzer et al.,
2007). In a similar manner, aSyn oligomers promote increased
calcium influx due to cell membrane permeabilization with
consequent result of increased neuronal excitotoxicity (Danzer
et al., 2007) (Figure 3). Furthermore, aSyn oligomers decreased
the stability of microtubules (MT), which are fundamental for
axonal transport and the regulation of neuronal homeostasis
(Goldstein et al., 2008; Prots et al., 2013).

In vitro studies demonstrated that the interaction of aSyn
with 3,4-dihydroxyphenylacetaldehyde (DOPA), a toxic product
of dopamine degradation, promotes aSyn oligomerization
(Burke, 2003). The consequence of this interaction is the
permeabilization of cholesterol-rich lipid membranes, including
synaptic vesicles (Burke, 2003). Altogether, these studies suggest
a synergistic effect of DOPA formation and aSyn toxicity and
may explain the selective vulnerability of dopaminergic neurons
to the rupture of synaptic vesicles (Burke, 2003; Plotegher et al.,
2017; Lima et al., 2019). Overall, the main effects of aggregated
and oligomeric forms of aSyn are mediated by the reduction of
neurotransmitter release, inhibition of synaptic vesicle recycling,
enlargement of synaptic vesicle, loss of presynaptic proteins,
and redistribution of the SNARE proteins (Chung et al., 2009;
Garcia-Reitbock et al., 2010; Nemani et al., 2010). These are key
pathogenic features that may underlie the synaptic impairment
observed in LBDs.

Endoplasmic Reticulum Stress and
Membranes
Endoplasmic reticulum (ER) is the cellular site of protein
synthesis, folding, modification, and release to the secretory
pathway. Perturbation at any stage of ER-mediated proteostasis
leads to ER stress (Hampton, 2000). ER stress is thought to occur
early in the development of aSyn pathology. This hypothesis
was tested in a study using A53T aSyn mutant expressing PC12
cell lines, which reported a lower effect of aSyn neurotoxicity
in cells treated with Salubrinal, a pharmacological inhibitor
of ER stress (Smith et al., 2005). In support of this, a study
using SH-SY5Y cells showed that ER stress was linked with
overexpressed aSyn (Castillo-Carranza et al., 2012). Oligomeric
species of aSyn are also associated with increased levels of chronic
ER stress transgenic mouse models of synucleinopathy (Colla
et al., 2012; Colla, 2019). Moreover, Rab1, which is a protein that
regulates the membrane trafficking, was found to be associated
with cytoplasmic aSyn inclusions. Its role in aSyn-mediated
neurotoxicity was demonstrated by a study using a yeast model
of synucleinopathy by showed showing its synergic effects in

blocking ER-Golgi vesicular trafficking (Cooper et al., 2006).
Thus, the ER may be a primary target of aSyn toxicity.

Neurons may also release toxic aSyn species into the
extracellular space (Qiao et al., 2012). These could be taken up
by microglia (Figure 4) to prevent further ER stress and toxicity
(Park et al., 2008). aSyn synergistically interacts with Toll-like
receptor2 (TLR2), which is a potent microglia activator (Qiao
et al., 2012; Kim et al., 2013; Stivers et al., 2017).

POST-TRANSLATIONAL MODIFICATIONS
OF aSyn

It is likely that loss of the dynamic equilibrium between the
soluble, membrane-associated and aggregated forms of aSyn
leads to aSyn toxicity and LBD pathology. Exactly how this
phenomenon occurs, remains to be determined, and to address
this, it is important to know first, what occurs before aSyn
forms aggregates. We posit that the remarkable number of
PTMs that is reported to occur in aSyn may underlie such
disequilibrium. For a relatively small molecule, a large number
of PTMs are reported to occur in the protein (Figure 2). PTMs
are chemical modifications of amino acid residues that carry
a potential to modify protein structure and regulate protein
localization, activity, binding affinity, and degradation (Beck-
Sickinger and Mörl, 2006; Prabakaran et al., 2012; Schmid et al.,
2013). aSyn PTMs, such as ubiquitination, nitration (Oueslati
et al., 2010), acetylation (Fauvet et al., 2012; Maltsev et al., 2012;
Theillet et al., 2016), truncation (Li et al., 2005; Beyer and Ariza,
2013), SUMOylation (Dorval and Fraser, 2006; Wilkinson and
Henley, 2010; Krumova et al., 2011), glutathionylation (Kim
et al., 2012; Zhang et al., 2018), Glycosylation (Spiro, 2002),
fatty acid acylation (Robinson et al., 1970; Resh, 2016), and
phosphorylation, have been reported to occur in aSyn, and more
will probably come in the future. To date, these PTMs have
been studied in isolation and of all them, the most studied is
aSyn phosphorylation at serine 129 (pSer129) (Oueslati et al.,
2010). Nevertheless, the precise roles of these PTMs in LBD
pathogenesis are the focus of much research, as this is still not
well-understood (see Table 2).

aSyn Phosphorylation
Phosphorylation is a form of reversible PTM that plays an
essential role in the regulation of physiological and pathological
functions of proteins involved in pathways including but not
limited to differentiation, cellular metabolism, gene expression,
cell cycle progression, intercellular communication, cellular
motility, migration, and cytoskeletal arrangements (Manning
et al., 2002a,b). Under physiological conditions, the level of aSyn
phosphorylation is very low, and the presence of phosphorylated
residues such as tyrosine (pY39,125) and serine (pSer87) are almost
absent (Okochi et al., 2000; Fujiwara et al., 2002; Anderson et al.,
2012). In contrast, phosphorylation of threonine (pT125,133,135),
serine (pSer87, pSer129), and tyrosine (pY125,133,136) was detected
in pathologically aggregated aSyn. Most of the phosphorylated
residues are localized in C terminus of the protein, which is
believed to be involved in aSyn pathology, except pSer87 (Chen
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FIGURE 4 | Possible mechanisms involved in activation of phagocytosis and inflammatory responses. LBs may be passively secreted in the extracellular environment

following cell death by cell-to-cell transfer. Inclusions and their toxic intermediates may activate astrocytes and glia cells surrounding neurons, resulting in the release

of pro-inflammatory cytokines and ROS, which could damage neighboring neurons.

TABLE 2 | Known post-translational modifications in αSyn, sites, enzymes, and effects.

Known PTMs aSyn Residue Enzymes Cytotoxicity References

Phosphorylation Y39, Y126, S129

Y133, Y136

CKII

GRK2

PLK2

SIAH

Aggregation

Oligomerization

Degradation

Aggregation

Okochi et al., 2000; Fujiwara et al., 2002; Arawaka et al.,

2006; Waxman and Giasson, 2008; Oueslati et al., 2010;

Paleologou et al., 2010; Mahul-Mellier et al., 2014

Ubiquitination M1, K6, K10, K12, K21, K23

K32, K34, K43

K45, K96, K102

SIAH

CHIP

Aggregation

Degradation

Shin et al., 2005; Lee et al., 2008; Rott et al., 2008;

Tetzlaff et al., 2008

Nitration Y39, Y125, S129

Y133, Y136

– Aggregation Hodara et al., 2004

Truncation K58, V74, K80

G84, A89, K97

E110, K102

P120, Y125

Calpain I

Neurosin

Aggregation

Polymerization

Degradation

Mishizen-Eberz et al., 2005; Kasai et al., 2008

SUMOylation K96

K102

PIAS2 Aggregation Rott et al., 2017

o-GlcNAcylation T33, T59, T64

T72, T75, T81

S87

OGT Aggregation Lewis et al., 2017; Levine et al., 2019

N-Acetylation – – No difference in aggregation

or membrane binding

Runfola et al., 2020

For sites of aSyn residue refer to Figure 2. PIAS, protein inhibitor of activated STAT; CK II, casein kinase II; GRK2, G protein coupled receptor kinases; PLK2, polo like kinases 2; SIAH,

seven in absentia homolog; CHIP, carboxyl terminus of Hsp 7-interacting; PIAS2, protein inhibitor of activated STAT 2; OGT, o-linked N-acetylglucosamine (GlcNAc) transferase.

et al., 2009, 2010; Venda et al., 2010; Xu et al., 2015). The
most abundant phosphorylation PTM occurs at pSer129, which
is now considered an important marker for synucleinopathies
(Figure 2) (Okochi et al., 2000; Fujiwara et al., 2002; Takahashi

et al., 2003; Anderson et al., 2006). In addition, this type of
aSyn phosphorylation is found to be widespread within the LBs
and LNs in corresponding regions of the brain affected in LBDs
(Takahashi et al., 2003; Zhou et al., 2011; Walker et al., 2013).

Frontiers in Aging Neuroscience | www.frontiersin.org 9 June 2021 | Volume 13 | Article 690293

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Manzanza et al. α-SYN Modification in LBDs

aSyn phosphorylation is also linked to the formation of
the toxic species of aSyn, leading to the rapid formation LBs
(Kahle et al., 2000a,b; Okochi et al., 2000; Fujiwara et al., 2002;
Anderson et al., 2006). In PD, over 90% of endogenous aSyn
is found to be phosphorylated at Ser129; in direct contrast to
only 4% aSyn phosphorylation detected in healthy individuals
(Kahle et al., 2000b; Fujiwara et al., 2002). Similarly, pSer129

was found in post-mortem brain in LBDs subjects and in SH-
SY5Y cells that overexpress wild-type aSyn (Swirski et al., 2014).
A recent study demonstrated behavioral deficits associated to
widespread pSer129 aSyn in brains of wild-type d transgenic mice
that overexpress aSyn under Thy1-promoter (Gabrielyan et al.,
2021), as pSer129 phospho-memetic reported slower/inhibited
aggregation kinetic than wild-type aSyn, despite its prominence
in LBs and the preferential phosphorylation of fibrillar aSyn.
It has been, suggested that pSer129 is a late-stage event in
aggregation leading to the fibrillization of aSyn, and pSer129 is
deemed to be crucial for the regulation of disease progression
(Paleologou et al., 2010; Waxman and Giasson, 2011; Wales et al.,
2013). Other studies suggest different forms of phosphorylation
upregulate each other. For instance, both pSer87 and pSer129 were
found to be present in LBs aggregates and enhance aSyn toxic
membrane interactions in synucleinopathies (Paleologou et al.,
2010). Moreover, the binding of pSer129 with vesicular trafficking,
cytoskeletal proteins and other phosphorylated linked enzymes,
is thought to reinforce the important interrelationships among
these pathways in the pathogenesis of LBDs, by interfering with
functions of these proteins as well as utilizing such proteins as
co-aggregates (McFarland et al., 2009). In addition, proteasomal
inhibition (previously described to be a result of aSyn toxicity),
was reported to increase the toxicity of aSyn pSer129, as well as
its toxicity in dopaminergic neurons in PD. This suggests there
is more rapid degradation mechanism of phosphorylated aSyn
under physiological conditions (Chau et al., 2009; Oueslati et al.,
2013; Mahul-Mellier et al., 2014; Arawaka et al., 2017). Hence,
it can be surmised that phosphorylation of aSyn, particularly at
residue 129, may be a key factor in the formation of LBs and the
development of LBD.

Kinases Involved in aSyn Phosphorylation
In all cellular environments, including the extracellular matrix,
phosphorylation process is enzymatically balanced by protein
kinases and phosphatases (Bononi et al., 2011; Datta and
Ganapathy, 2017). Several kinases are known to be involved
in aSyn Ser129 phosphorylation, including casein kinases (CK1,
CK2) (Okochi et al., 2000; Ishii et al., 2007; Takahashi et al.,
2007; Waxman and Giasson, 2008, 2011), polo like kinase 2
(PLK2, also known as serum inducible kinase (SNK) (Inglis
et al., 2009), and G protein-coupled receptor kinases (GRK1,
GRK2, GRK5, and GRK6) (Pronin et al., 2000; Arawaka et al.,
2006; Sakamoto et al., 2009). The co-localization of GRK5 and
aSyn was observed in LBs/LNs inclusions in post-mortem brains
of PD patients (Arawaka et al., 2006). However, this was not
corroborated in DLB (Arawaka et al., 2006). Moreover, GRK5
knockdown in SH-SY5Y cells failed to completely suppress
aSyn phosphorylation (Liu et al., 2010). On the other hand,
CK1 and CK2 were found to induce aSyn phosphorylation in

mammalian cells, in a yeast model and in rat primary cortical
neurons (Okochi et al., 2000; Ishii et al., 2007; Waxman and
Giasson, 2008; Zabrocki et al., 2008). Furthermore, oxidative
stress increases aSyn phosphorylation mediated by CK2 and
its autologues, resulting in an intensification in the formation
of LBs/LNs inclusions in SH-SY5Y cells (Pronin et al., 2000).
Similarly, PLKs, a family of kinases known to be essential for
cellular response to carcinogenesis, stress response, and cell cycle
regulation (Ng et al., 2006), were found to participate in aSyn
Pser129 (Inglis et al., 2009; Mbefo et al., 2010). Although yet to
be confirmed by others, Leucine-rich repeat kinase 2 (LRRK2),
an enzyme involved in the pathogenesis of PD, was reported to
directly interact with and phosphorylate aSyn (Table 2) (Qing
et al., 2009).

aSyn Phosphorylation and Oxidative Stress
Increasing evidence indicates an association between aSyn
aggregation and oxidative stress. It has been suggested that the
latter has a direct causal relationship with aSyn phosphorylation
(Chau et al., 2009). In SH-SY5Y cell line, treatment with
low doses of rotenone, an electron transport chain complex
I inhibitor that causes an increase in reactive oxygen species
(ROS) production, led to increased levels of aSyn pSer129 (Sugeno
et al., 2008). Similarly, an in vitro study of a synucleinopathy
model demonstrated that aSyn phosphorylation increases when
exposed to rotenone and ferrous iron (Perfeito et al., 2014).
The increase in aSyn phosphorylation was also observed
in SH-SY5Y cells exposed to exogenous toxins such as 6-
hydroxidopamine, epoxomicin (a proteasome inhibitor), and
paraquat (an environmental toxin that causes oxidative stress)
(Chau et al., 2009; Ganapathy et al., 2016). Perfeito et al.
(2014), hypothesized that stimuli that promote mitochondrial
dysfunction and the formation of ROS are associated withmutant
A53T aSyn pSer129. They found correlation between rotenone
and aSyn pSer129 in the formation of reactive oxygen species
which may underlie neuronal degeneration in LBDs (Perfeito
et al., 2014). Thus, biochemical changes linked with LBDs
pathogenesis such as oxidative stress, mitochondrial complex
I dysfunction, and proteasome impairments, could underlie
changes in aSyn phosphorylation (Lee and Trojanowski, 2006;
Lashuel et al., 2012; Robson et al., 2018).

Subcellular Distribution of Phosphorylated aSyn
aSyn is a predominantly cytosolic protein but is also found
in subcellular organelles such as mitochondria. Whether
aSyn localizes within the nucleus is still under debate.
Notwithstanding, studies performed in rat and mouse models
of synucleinopathy showed that phosphorylated aSyn localized
in the nucleus of DA neurons in hydroxydopamine treated rats
(Yamada et al., 2004; Wakamatsu et al., 2007). Moreover, pSer129
was shown to modulate the interchange of aSyn between the
nucleus and cytoplasm in human neuroglioma cells (Outeiro
et al., 2008). This is supported the finding that the translocation
dynamics of aSyn between the cytosol and the nucleus was altered
upon co-expression of aSyn with various kinases (reviewed in
Goncalves and Outeiro, 2013). Correspondingly, cytoplasmic
and nuclear shuttling of aSyn was also found to be modulated
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by GRK5, PLK2, and PLK3 (Table 2) (Monti et al., 2010). In
addition, the phospho-mimicking Ser129A and Ser129D were
found to localize in the nucleus and increase cellular toxicity
(Ganapathy et al., 2016). Pathological insults such as oxidative
stress that induce increased aSyn phosphorylation have shown to
promote nuclear aSyn localization (Monti et al., 2010; Siddiqui
et al., 2012; Ganapathy et al., 2016). Although, we still do
not know the exact function of aSyn within the nucleus, it is
believed that once aSyn translocates to the nucleus, it acts as a
transcriptional regulator via interacting with PGC-1alpha and
histones, thus enhancing the toxicity of aSyn in the nucleus
(Goers et al., 2003; Kontopoulos et al., 2006; Vasquez et al., 2017;
Schaser et al., 2019).

Phosphorylated aSyn as Biomarker in

Synucleinopathies
The efficiency of phosphorylated aSyn as a potential biomarker is
being widely explored in the diagnosis of LBDs. Quantification of
total aSyn in the cerebrospinal fluid (CSF) in patients diagnosed
with synucleinopathies and related disorders was proposed as
a potential biomarker particularly in differentiating early stages
of other related pathologies (Mollenhauer et al., 2008; Hong
et al., 2010). However, recent study reported that in LBDs, aSyn
pSer129 was found present in the human plasma but not in
the CSF (Cariulo et al., 2019). Nevertheless, according to recent
discoveries phosphorylated aSyn, improves the performance of
aSyn as biomarker on other tissues. For instance, aSyn pSer129 in
the retina was proposed as a biomarker for PD, as it was found
to accumulate in parallel with aSyn pSer129 in the brain (Ortuño-
Lizarán et al., 2018). Moreover, skin biopsies performed in PD
subjects, has proven to be a reliable tool for the detection of aSyn
pSer129 to discriminate LBDs from controls (Tang et al., 2020).
Another important diagnostic test that could also be used for
LBDs is the detection of phosphorylated aSyn in the peripheral
nervous system, which revealed aggregation of phosphorylated
aSyn in large and small fibers (Wang et al., 2012; Doppler
et al., 2014; Stewart et al., 2015). Furthermore, aggregation of
phosphorylated aSyn was detected in the gastrointestinal tract of
PD subjects (Pouclet et al., 2012; Hilton et al., 2014). Although,
Foulds et al. (2013), showed that the total number of aSyn in the
blood plasma of PD patients were similar to the findings in non-
PD controls. The levels of aSyn pSer129 were remarkably higher
in PD patients compared to non-PD controls (Foulds et al., 2013;
Cariulo et al., 2019). A more recent study has reported aSyn
pSer129 in red blood cells, could be used as a potential biomarker,
as it was found to be higher in patients with synucleinopathy
(Xu et al., 2015; Cariulo et al., 2019; Li et al., 2020). Thus,
phosphsphorylated aSyn is perhaps a more applicable candidate
for the development of biomarkers for the diagnosis of LBDs.

aSyn Ubiquitination
Intraneuronal compartments are highly specialized to facilitate
many operations such as cell cycle, transcription, transduction,
antigen presentation, protein degradation, and apoptosis
(Hershko and Ciechanover, 1998). Many of these processes
require ubiquitin, which is a small protein with 76 amino acid
residue that is ubiquitously expressed in the nervous system

(Varshavsky, 2001). Ubiquitination, is a PTMs that regulates
protein abundance inside the neurons, in a process by which
ubiquitin is covalently conjugated to a substrate protein, in the
presence of ubiquitin activating enzyme (E1-UBA), ubiquitin
conjugating enzyme (E2-UBC) and a ubiquitin ligase (E3-UBL)
(Stone, 2016). The process terminates with the formation of an
amide bond between ubiquitin and lysine or in other instances
with cysteine, serine or threonine residues of the substrate
protein (Wang et al., 2007; Vosper et al., 2009). When the
conjugation culminates with the single molecule of ubiquitin
attached to the residue protein, the process is referred to as
mono-ubiquitination. If the process is repeated, the addition
of several ubiquitin molecules leads to the formation of a
poly-ubiquitin chain. Poly-ubiquitination leads to protein
degradation, primarily by the UPS, and it sometimes uses macro-
autophagy as an alternative pathway linked to degradation
of long-lived ubiquitinated proteins, protein aggregates and
organelles (Wang and Pickart, 2005; Hochstrasser, 2006; Li W.
et al., 2007; Deshaies and Joazeiro, 2009; Maspero et al., 2011).

Ubiquitinated aSyn is often present in the LBs and LNs
inclusions. In fact, multiple lines of evidence have reported the
presence of mono-ubiquitinated aSyn as a predominant species
in LBs and LNs (Lowe et al., 1990; Wakabayashi et al., 2000;
Hasegawa et al., 2002; Tofaris et al., 2003; Anderson et al., 2006).
Although, mono-ubiquitination mechanisms that underlie the
modulation of aSyn aggregation are still unknown, a study on
isolated LBs and LNs from PD patients detected the presence
of the seven in absentia homolog (SIAH), an E3 ubiquitin ligase
enzyme, previously reported to interact with and ubiquitinated
aSyn (Liani et al., 2004; Engelender, 2008; Lee et al., 2008). De
facto, lysine 12, 21, and 23 residues, the common targets of aSyn
mono ubiquitination, are also ubiquitinated by SIAH (Anderson
et al., 2006). This suggests SIAH is involved in the ubiquitination
of aSyn, contributing to LBD pathology. However, this remains to
be confirmed because some studies have found that only a small
fraction of aSyn is ubiquitinated in LBs and LNs (Hasegawa et al.,
2002).

In LBDs, neurons are heavily laden with proteasome subunits
and ubiquitinated structures, suggesting their involvement
and impairments in their degradation (Kuzuhara et al.,
1988; Bentea et al., 2017; Lehtonen et al., 2019). Although
UPS and the autophagy-lysosomal pathways constitute two
major degradation pathways which manage the elimination of
misfolded, aggregated, and damaged neuronal proteins (Seglen
et al., 1996; Ciechanover and Kwon, 2015; Bustamante et al.,
2018; Blasiak et al., 2019), the UPS, chaperone-mediated
autophagy (CMA), andmacroautophagy all appear to be involved
in the proteolytic degradation of aSyn. CMA is proposed to be the
main mechanism involved in aSyn clearance (Bennett et al., 1999;
Paxinou et al., 2001; Webb et al., 2003).

aSyn SUMOylation
aSyn SUMOylation occurs when a lysine residue of aSyn is
covalently linked with a small ubiquitin-like modifier (SUMO)
protein. SUMO proteins share structural and mechanistic
similarity with ubiquitin (Jentsch and Pyrowolakis, 2000;
Dohmen, 2004). Like ubiquitin, SUMO forms covalent links
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with its substrates through isopeptide bonds between glycine
and lysine residues, using similar enzymes to those that mediate
the conjugation of ubiquitin (Jentsch and Pyrowolakis, 2000;
Dohmen, 2004). This process is believed to be associated with
the pathological formation of proteinaceous inclusions within
neurons (Dohmen, 2004). In fact, abnormal aSyn SUMOylation
was detected in many neurodegenerative diseases such as
LBDs, Huntington’s disease, AD, amyotrophic lateral sclerosis
(Figure 4) (Fei et al., 2006; Kim et al., 2011; Krumova et al.,
2011; O’Rourke et al., 2013; Luo et al., 2014; Ochaba et al.,
2016). aSyn is conjugated to SUMO at lysine residues (K6,
K10, K12, K21, K23, K34, K45, K60, K80, K96, and K102)
(Dorval and Fraser, 2006; Kim et al., 2011; Krumova et al.,
2011; Coelho-Silva et al., 2017; Iyer and Claessens, 2019).
Two studies have demonstrated that aSyn SUMOylation is a
signal for its proteasome-mediated degradation and proteasome
inhibition led to aggregation of SUMOylated aSyn (Table 2) (Kim
et al., 2011; Oh et al., 2011). Additionally, aSyn SUMOylation
levels were increased in LBs/LNs in LBD cases (Rott et al.,
2017).

It has been demonstrated that E3 SUMO-protein ligase
Protein inhibitor of activated STATS (PIAS2) SUMOylates aSyn,
thus promoting aSyn aggregation, and an increase in the levels of
extracellular aSyn, preceding the formation of the proteinaceous
inclusions (Kunadt et al., 2015). It is believed that the increase of
extracellular aSyn is a consequence of SUMOylation build up in
the endosomal complex, which is linked with aSyn efflux (Kunadt
et al., 2015). This process was also demonstrated to occur in
the absence of proteasome inhibitors (Kunadt et al., 2015; Rott
et al., 2017). SUMOylation is thought to impair the process of
mono/poly ubiquitination of aSyn mediated by SIAH and Nedd4
(Liani et al., 2004; Rott et al., 2008, 2017). Two ligases found to
be involved in aSyn are SUMOylation, E3 SUMO-protein ligase
PIAS, and E3 SUMO-protein ligase PIAS2, as their increase was
markedly detected in PD brains (Rott et al., 2017). It is thought
that PIAS2 promotes SUMOylation of aSyn, thus inhibiting
the action of SIAH and Nedd4 ubiquitin ligases, leading to a
decrease of aSyn Ubiquitination, causing aSyn aggregation and
LBs formation (Rott et al., 2017). Therefore, it is suggested that
these enzymes upregulate aSyn SUMOylation, which promotes
overexpression of the protein, thus increasing its aggregation
and toxicity.

aSyn Nitration
Protein nitration is a nitrosative stress related PTM that affects
the tyrosine (Tyr) residues (Radi, 2004; Bartesaghi and Radi,
2018). aSyn is nitrated at its C terminal in residues Y125, Y133,
Y136, and at N terminal residue Y39 (Figure 2) (Giasson et al.,
2000; Souza et al., 2000). These Tyrosine residues are found to
be necessary for aSyn aggregation, especially under oxidative
stress conditions (Souza et al., 2000). Indeed, it is believed that
aSyn exposure to nitrating agents leads to the formation of
covalently stable oligomers through the oxidation of tyrosine
to o,o’-dityrosine (Souza et al., 2000). Although, high rates of
oligomerization were observed upon Tyr39 nitration, studies have
shown that Tyr125 is more relevant to aSyn dimer formation
(Takahashi et al., 2002; Olteanu and Pielak, 2004; Yu et al., 2004;

Danielson et al., 2011). Moreover, fibril formation is increased
by both monomeric and dimeric-nitrated aSyn (Hodara et al.,
2004).

aSyn Nitration-Mediated Interaction With
Membranes and Oxidative Stress
The association of aSyn with membranes is thought to lead
to peroxidation of polyunsaturated fatty acids, as membrane
lipid peroxidation can be triggered by ROS and RNOS.
aSyn incubation with 4-hydroxy-2-nonenal (4HNE), a lipid
peroxidation marker, leads to the formation of aSyn-HNE
adducts (Trostchansky et al., 2006; Qin et al., 2007). Some studies
have suggested that the interaction of aSyn with membrane
phospholipids and polyunsaturated fatty acids is necessary for the
formation of aSyn oligomers (Perrin et al., 2001; Assayag et al.,
2007; Beyer and Ariza, 2013).

aSyn also promotes nitric oxides (NO) activity at the
plasma membrane, which leads to NOS production. This excess
of NOS is thought to inhibit the electron transport chain,
thus increasing the production of superoxide (Lashuel et al.,
2002). This creates a vicious cycle that facilitates nitration
and oxidation that potentiate cellular dysfunction and loss of
viability (Radi et al., 2002; Radi, 2004). Likewise, aSyn oxidation
and nitration impedes the autophagy-mediated degradation,
therefore inhibiting the degradation of nitrated aSyn (Martinez-
Vicente et al., 2008). This resistance to degradation of nitrated
aSyn promotes its intracellular increase in half life and
consequently its concentration, which boosts the toxicity of
the protein, stimulating neuronal degeneration (Chavarria and
Souza, 2013).

aSyn o-GlcNAcylation
O-beta-N-acetyl-D-glucosaminyl transferase (O-GlcNAc/ OGT)
is an enzyme that catalyzes the glycosylation of the serine and
threonine aa residues in a dynamic that is opposed by O-
GlcNAcase (OGA) (Hart et al., 2007). O-GlcNAc of aSyn was
detected on multiple threonine residues (33, 34, 54, 59, 64,
72, 75, 81, and 87) of aSyn extracted from human tissues of
individuals with LBD and mouse models of synucleinopathies
(Wang et al., 2009, 2010, 2017; Alfaro et al., 2012; Morris
et al., 2015). Although, glycation exerts a large inhibitory
effect on unmodified aSyn, it was, however, found to promote
aggregation of pathological aSyn and increase the toxicity of
the protein (Levine et al., 2019). Moreover, in vivo and in
vitro studies performed in Drosophila and in A53T mouse
model have shown that glycation potentiates the toxicity
of aSyn by affecting its N-terminal domain, impairing the
clearance of aSyn. This is thought to decrease the membrane
binding properties of aSyn and enhancing the aggregation of
its oligomeric species, altogether resulting in the impairment
of synaptic transmission (Table 2) (Vicente Miranda et al.,
2017). In DLB, aSyn o-GlcNAcylation was found to induce the
formation and aggregation of its oligomeric forms (Zhang et al.,
2017). Conversely, other studies revealed that, use of glycation
inhibitors decreased aSyn aggregation, restored aSyn clearance,
and abated clinical phenotype of the disease (Vicente Miranda
et al., 2017).
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aSyn Truncation
Truncated forms of aSyn are ubiquitous in LBs inclusions. This
is thought to be associated with abnormal proteolysis of aSyn
at the C terminus of the protein (Tofaris et al., 2003, 2006;
Periquet et al., 2007). aSyn C-terminal truncation is thought to
occur through the lysosomal-associated pathways (Murray et al.,
2003; Sevlever et al., 2008; Tsujimura et al., 2015; Sorrentino
et al., 2018). Nevertheless, the mechanism by which truncated
aSyn contributes to the formation of LBs and LNs inclusions
remains to be elucidated. However, it is believed, that the amount
of truncated aSyn species represents about 15% of all aSyn in
LBs/LNs inclusions, and they may act as seeds that enhance the
aggregation of aSyn to form the LBs/LNs under physiological pH
(van der Wateren et al., 2018; Zhang et al., 2019). In vivo studies
using transgenic mice andDrosophila that overexpress αSyn, also
demonstrated that truncated aSyn is associated with increased
aggregation of aSyn and neurotoxicity (Tofaris et al., 2003, 2006;
Periquet et al., 2007). Interestingly, truncated aSyn was found
to be important for the prion-like propagation property of toxic
aSyn, which is believed to be at the root of the phenotypic
diversity of the synucleinopathies (Terada et al., 2018). Indeed,
in brains of DLB subjects the full-length as well as truncated and
insoluble aggregates of aSyn are evident in LBs and LNs (Baba
et al., 1998).

Furthermore, enzymes such as calpin1, cathepsin D, matrix
metalloproteinase 3, and neurosin are involved in aSyn
truncation (Table 2) (Iwata et al., 2003; Mishizen-Eberz et al.,
2003; Dufty et al., 2007; Sevlever et al., 2008; Choi et al., 2011;
Weber et al., 2019). aSyn is thought to be a substrate of calpain 1,
a neural calcium-activated protease. Calpain 1 cleaves wild-type
aSyn at amino acids 57 and 73, 74, and 83 located within theNAC
region. This process promotes aggregation, therefore calpain 1 is
thought to generate aggregation-prone forms of aSyn promoting
fibril formation (Mishizen-Eberz et al., 2003). Similarly, neurosin,
a protease that is ubiquitously expressed in brain cells and
cleaves aSyn after aa 80 also increases the propensity of aSyn
to form aggregates (Iwata et al., 2003; Kasai et al., 2008). These
observations strongly support the involvement of truncated aSyn
in the formation LBs/LNs and selective neuronal degeneration
seen in DLB.

CONCLUSIONS

aSyn aggregation and transformation into LBs and LNs underlie
the onset and progression of LBDs and related synucleinopathies.
It represents a failure in proteostasis network directly linked to
maintain biologically active aSyn and reduce toxic forms of the
protein. Multiple lines of evidence suggest PTMs are key in aSyn
aggregation and toxicity across the synucleinopathies. The most
studied PTMs associated with the LBDs are phosphorylation,
ubiquitination SUMOylation, Nitration, o-GlcNacylation, and
truncation. Under normal physiological conditions PTMs are
known regulators of protein biology which is important for
localization and function. However, recent findings demonstrate
that they are associated with toxic species of aSyn with the

consequent formation of LBs and LNs, disrupting cellular
homeostasis leading to neuronal cell death.

Further understanding of the exact role of PTMs in LBDs
is warranted. To date, few reports have largely focused on
PD. Most studies reported thus far, are concentrated on non-
acetylated aSyn, which needs more validation. It is therefore
difficult to assess the full modulation of PTMs with the existing
models of PTMs. Studies on specific PTMs using purified forms
of aSyn are also essential, as this would permit more detailed
study of each PTM to uncover the mechanisms of how PTMs
modify aggregation and form LBDs. It is still unclear what
role aSyn PTMs play in the propagation of LBD pathology.
Nonetheless, the reports so far of the biological relevance of
aSyn PTMs, has highlighted their importance in the pathogenesis
of disease. This could lead to development of interventions
aimed at reducing the accumulation of LBs and slowing or
preventing LBDs. PTMs represent a more selective potential
therapeutic target that addresses LB accumulation and therefore
more specific for DLB, rather than simply be duplicative of AD
or PD directed treatments.
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