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Abstract: In this study, we examined the cyclic stability of Prussian blue (PB) films in electrolytes
with acid. The cyclic stabilities of the PB films were investigated in K+ based electrolytes with
different values of solution pH. The acidified KCl solution can significantly improve the durability of
the film. Among the three pH values tested, the KCl solutions (pH = 2.15 and pH = 3.03) showed
better performance. Furthermore, we investigated the cyclic stabilities of the PB films in LiClO4/PC
electrolyte containing different acids. We found that the cyclic stability of PB film was significantly
improved when a small amount of acetic acid was dissolved in LiClO4/PC electrolyte. The PB film
exhibited stable optical modulation after up to 20,000 cycles in LiClO4/PC electrolyte containing
acetic acid—a much higher result than those of some literatures. This suggests that the addition
of acetic acid to LiClO4/PC electrolyte can promote the development of PB-based devices with
improved stability.
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1. Introduction

Electrochromism refers to the phenomenon that materials can switch their optical properties
reversibly by applying an external potential or current [1]. Recently, numerous electrochromic materials
have been investigated for their high optical modulation, great stability, and simple preparation, such as
WO3, NiO, and polyaniline [2–7]. These materials have been widely applied for various applications
such as switchable windows [8], electrochromic displays [9], rechargeable batteries [10], and optical
attenuators [11].

Fe complexes [12–15] also exhibit potential applications in the field of electrochromism.
Among these Fe complexes, Prussian blue (PB, an iron (II,III) hexacyanoferrate (II,III)) gains much
attention for its high redox reversibility and low threshold potential [16]. Prussian blue is a
coordination compound, which can change optical properties by intercalating or de-intercalating
ions. Many electrochromic devices (ECD) employ PB as the complementary electrochromic
material. Examples include PB/tungsten oxide [17,18], PB/poly (butyl viologen) [19], and PB/poly
(3,4-ethylenedioxythiophene) (PEDOT) [20]. However, the cycle life of the PB film is generally
only about 100 cycles. The poor durability of Prussian blue films restricts its applications in an
electrochromic field. Some researchers tried to solve this problem by improving the preparation
method. Qian et al. [21] reported that nanostructured PB films could be grown using a template-free
hydrothermal technique. The film possessed cycling stability after 150 cycles. Wang et al. [22]
synthesized PB film via an electrochemical post-treatment procedure. The resulting PB film exhibited
improved stability in neutral and alkaline solutions after 500 cycles. Meanwhile, some researchers
tried to synthesize a PB hybrid film. Cheng et al. [23] fabricated a nanocomposite Prussian blue (NPB)
film composed of the random packing of ITO nanoparticles. The NPB film exhibited a high optical
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modulation and slight charge density decay after 2000 cycles. Seelandt et al. [24] used a TiO2 thin
film possessing an ordered array of mesopores to support PB. The PB/TiO2 hybrid film had high
optical modulation (∆T = 65%) and fast switching speed (Tc = 3 s, Tb = 2 s) after 400 cycles. In addition,
some researchers tried to improve the electrolyte performance. Wang et al. [18] reported the synthesis
of a poly (methyl methacrylate)-succinonitrile composite polymer electrolyte which was then applied
to WO3/PB complementary electrochromic devices. The ∆T of this device lost 15% of its original value
after 2250 cycles. Nonetheless, the methods mentioned above do not significantly improve the cycle
life of the PB film, and the film generally exhibits obvious optical modulation decay after 2500 cycles.

In this work, the cyclic stabilities of PB films were investigated in K+-based electrolytes with
different values of solution pH. Meanwhile, we investigated the influence of adding different
acids (hydrochloric acid and acetic acid) to LiClO4/PC electrolyte on the cycle life of the PB films.
The cyclic stability of the PB films exhibited significant improvement when acetic acid was dissolved
in LiClO4/PC electrolyte.

2. Experimental

2.1. Materials

All the chemicals were used without further purification. Potassium ferricyanide, acetone, ethanol,
hydrochloric acid, acetic acid, iron (III) chloride, and potassium chloride were all obtained from Beijing
Chemical Works. Lithium perchlorate and propylene carbonate were purchased from Damao Chemical
Reagent Factory. Indium tin oxide (ITO) glasses (3 × 4 cm2 in size and sheet resistant Rs ≈ 20 Ω) were
used as the substrates. All experiments were performed at room temperature in air.

2.2. Sample Preparation

PB films were deposited on the ITO substrates that were cleaned in acetone, ethanol, and deionized
water successively using ultrasound. In a typical route, a plating solution of PB film was prepared,
consisting of 10 mM K3[Fe(CN)6], 10 mM FeCl3, and 0.1 M KCl with dilute HCl to adjust to the pH to 2.
ITO substrates, a Pt plate, and an Ag/AgCl electrode were used as the working electrode, the counter
electrode, and the reference electrode, respectively. The electroplating was carried out galvanostatically
for 15 min by applying cathodic current densities of 10 µA/cm2 at room temperature. After the
deposition, the samples were washed by distilled water and then dried in air before proceeding with
future experiments.

2.3. Characterization and Electrochemical Measurements

The morphologies of the films were measured by scanning electron microscope (SEM, FEI Quanta
650). The cyclic voltammetry (CV) and chronoamperometry measurements were carried out using
a Princeton VersaSTAT 4 electrochemical workstation in a three-electrode electrochemical cell with
Ag/AgCl as the reference electrode, PB as the work electrode, Pt plate as the counter electrode, and 1 M
KCl solution or 1 M LiClO4/propylene carbonate (PC) as the electrolyte. The in situ observation of the
optical transmittance of the PB films at 690 nm was measured using an ultraviolet-visible-near-infrared
spectrophotometer (Shimadzu UV-3101PC) combined with a square quartz groove (5.5 × 5.5 × 5 cm3)
during all electrochemical cycling.

3. Results and Discussion

Figure 1a–d show the CV curves of the PB film in neutral and acidified KCl solution. The applied
potential is set between −0.2 and 0.8 V relative to the Ag/AgCl reference electrode with the potential
sweep rate of 50 mV/s. As shown in Figure 1a, there are two redox peaks: one at 0.14 V (PB/Prussian
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white (PW)) and another at 0.8 V (PB/Prussian yellow (PY)). The two redox peaks are identified as PB
reducing to PW and as PB oxidizing to PY, as in the following reactions [25]:

KFe[Fe(CN)6] + K+ + e− ↔ K2Fe[Fe(CN)6] (1)

PB PW
KFe[Fe(CN)6]↔ Fe[Fe(CN)6] + K+ + e− (2)

PB PY
The PB film shows definite separations of voltammetric peaks for the reduction and oxidation,

which can be attributed to the resistivity of the ITO substrate layer [26]. In addition, the peak current
density of PB/PW is higher than that of PY/PB in the testing. On the one hand, the PB structure only
contains 3Fe2+ sites (involved in PB/PY) by each 4Fe3+ (involved in PB/PW), so not all oxidized Fe2+

may be balanced by cations [27]. On the other hand, the CV curves were measured in the potential
cycled from −0.2 to 0.8 V. The redox reaction of PB/PY is not sufficient in this range.
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Figure 1. Cyclic voltammograms of Prussian blue (PB) film in (a) neutral 1 M KCl solution, and KCl
aqueous solution with different values of solution pH: (b) 4.11, (c) 3.03, and (d) 2.15. (e) Inserted and
extracted charge densities versus cycle number derived from the cyclic voltammetry (CV) data.

As shown in Figure 1a, we failed to establish any long cycling stability of the PB film in neutral
KC1 solutions due to the strong interaction between ferric ions and hydroxide ions. However,
the remarkable durability of the film was observed in acidified KCl solutions, and these results
are consistent with those reported in some research works [28]. Figure 1b–d show the CV curves
of the PB films in acidified KCl solution with hydrochloric acid; the values of the solution pH are
4.11, 3.03, and 2.15, respectively. The PB films retained their CV shape without significant decay in
30 cycles compared to Figure 1a,e, which show the charge capacity, calculated by integrating the
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insertion/extraction parts of CV data, during 30 cycles. Our results show a slight difference between
inserted and extracted charges in the one cycle. This indicates that the partially inserted ions cannot
completely be extracted in one cycle. We attribute this phenomenon to the insufficiency of the PB/PY
reaction. The charge capacity of the 30th cycle was 72% of the initial value in neutral KCl solution.
The values tested in acidified KCl solution exceeded 90% and were clearly higher than those of the
neutral KCl solution. The results imply that the acidified KCl solution can significantly improve the
durability of the film, and the KCl solutions (pH = 2.15 and pH = 3.03) show better performance.

The potential steps of −0.05 and 0.5 V were applied for 10 s to investigate the cyclic stability of
the PB film in KCl (pH = 3.03). The corresponding in situ transmittance responses at 690 nm are shown
in Figure 2. There was no significant degradation of the PB film after 3000 cycles.

When the acidified KCl solution was employed as an electrolyte for the PB-based ECD, it was
difficult to seal the ECD completely to prevent solution leakage. Furthermore, we cannot neglect the
security issue of this ECD because the value of the KCl solution pH is 3. So, replacing the acidified KCl
solution with LiClO4/PC electrolyte is a promising option. In the following part, the cyclic stability of
the PB film in LiClO4/PC electrolyte is investigated. Meanwhile, we discuss the influence of adding
strong acid and weak acid to LiClO4/PC electrolyte on the cyclic stability of the PB film. The volume
ratio of LiClO4/PC to acetic acid was 200:1; the volume ratio of LiClO4/PC to hydrochloric acid was
the same as above.
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Figure 2. Evolution of optical transmittance spectra at 690 nm for Prussian blue (PB) film under a step
potential varied from −0.05 V to 0.5 V for 10 s in KCl (pH = 3.03) solution.

Figure 3 shows the CV curves of the PB film in LiClO4/PC electrolytes with different levels
of acid. Compared with Figure 1, the shift of anodic peaks and cathodic peaks shown in Figure 3
indicates that the redox reaction of the film is diffusion-limited [29]. The interfacial reaction kinetics
and transport rate all influence the cycle life of the film. The resistivity of Li+ transfer through the
interface between the solid electrode and the polymer electrolyte is different from the resistivity of
K+ transfer through solid/liquid interfaces [30]. The ionic radius of K+ and Li+ is different, so the
rate of ion insertion/extraction is different. Figure 3a shows the CV results of the PB film tested
in pure LiClO4/PC electrolyte. The peak current density of PB/PW becomes lower while the peak
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current density of PB/PY becomes higher in the cycling. In addition, the area of CV curves decreases
as the number of cycles increases. The results reveal that the redox reaction of PB/PW gradually
weakens after the 30th cycle. Figure 3b shows the CV curves of the film tested in LiClO4/PC electrolyte
containing hydrochloric acid (LiClO4/PC/HCl). The results are similar to the former and indicate that
the addition of hydrochloric acid has no significant effect on the stability of the PB film. Figure 3c shows
the results of the PB film tested in LiClO4/PC electrolyte containing acetic acid (LiClO4/PC/HAc).
The areas of CV curves and redox peaks of PB film exhibit no obvious difference between the first
and the 30th cycle. The evolution of the charge density of the films is shown in Figure 3d; it can be
clearly seen that the charge density of the film cycling in LiClO4/PC/HAc remains at 94.2% of the
original value, which is much higher than the two other experimental results. The results imply that
the addition of acetic acid can improve the durability of the PB film in LiClO4/PC electrolyte.
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Figure 3. The cyclic voltammetry (CV) evolutions of the Prussian blue (PB) film in LiClO4/PC
electrolytes with different acid: (a) LiClO4/PC, (b) LiClO4/PC/HCl, and (c) LiClO4/PC/HAc.
(d) Inserted and extracted charge densities versus cycle number derived from CV data.

Large optical modulation and long-term durability are the key prerequisites for the practical
implementation of electrochromic devices [31]. Here, we employed chronoamperometry and in situ
optical transmittance measurements to estimate the influence of different acids (hydrochloric acid and
acetic acid) on the cycle life of the PB film in LiClO4/PC electrolyte.

As shown in Figure 4a, the in situ optical transmittance at 690 nm and chronoamperometric
responses of the PB films on cycling were synchronously recorded. An upward transmittance curve
and negative current responses were recorded when the negative potential was applied; the reduction
of FeIII to FeII led to the bleaching of the PB film. A downward transmittance curve and positive
current responses were recorded when the positive potential was applied; the oxidation of FeII to
FeIII led to the coloration of the film. Figure 4b shows the chronoamperometric curves of the PB
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film in LiClO4/PC. The peak current densities of the oxidation and reduction reaction reached a
maximum at the first cycle and then decreased gradually upon cycling. This indicates that the PB
film gradually loses its electrochromic activity in the cycling. Figure 4c shows the curves of the
PB film tested in LiClO4/PC/HCl. The results of the chronoamperometric evolution are similar
to Figure 4b, which illustrates that hydrochloric acid cannot improve the durability of PB film in
LiClO4/PC electrolyte. Figure 4d shows the results of the PB film tested in LiClO4/PC/HAc. The peak
current densities exhibited no obvious changes upon switching. The cycle life of the PB film tested
in Li+-based electrolyte exceed 20,000 cycles, which is much higher than the results reported in some
research works. The results indicate that the PB film tested in LiClO4/PC/HAc possesses stable
electrochromic activity. Figure 4e–h show the photographs of the as-electrodeposited PB film and the
film after testing in LiClO4/PC electrolyte containing different acids. Distinct color fading of the film
was observed after 100 cycles in LiClO4/PC electrolyte and LiClO4/PC/HCl. However, the PB film
after 20,000 cycles in LiClO4/PC/HAc showed no obvious color change compared to the as-deposited
PB film. These results imply that suitable acidic environments can inhibit the decomposition of PB film
in LiClO4/PC electrolyte and are consistent with the data from the chronoamperometric tests.
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Figure 4. (a) In situ observation of the transmittance at λ = 690 nm at the potential steps of −0.05
V and 0.5 V. Chronoamperometric curve evolution of the Prussian blue (PB) film in (b) LiClO4/PC,
(c) LiClO4/PC/HCl, and (d) LiClO4/PC/HAc. (e) The photograph of the as-electrodeposited PB film.
The photographs of the PB film after (f) 100 cycles in LiClO4/PC, (g) 100 cycles in LiClO4/PC/HCl,
and (h) 20,000 cycles in LiClO4/PC/HAc.

Figure 5a shows the evolution of optical transmittance spectra at λ = 690 nm of the PB film
cycling in LiClO4/PC electrolyte. The initial optical transmittance of the PB film in the bleaching
and coloration states was 83.2% and 22.3%, respectively; hence, the optical modulation was 60.9%.
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However, both the bleaching and coloration curves decayed rapidly with the cycling. The optical
modulation was only 20.0% at the 100th cycle, which is 32.8% of the initial cycle. Figure 5b shows
the results of the PB film tested in LiClO4/PC/HCl. The decay tendency of the optical modulation is
similar to that in Figure 5a. In detail, the decreased speed of coloration state is slightly lower in the
first 25 cycles than that in Figure 5a. Figure 5c shows the evolution of optical transmittance spectra
of the PB film cycling in LiClO4/PC/HAc. There was no obvious degradation of the electrochromic
properties after 20,000 cycles. The optical modulation of the PB film at the 20,000th cycle was 60.8%,
which is slightly higher than the 57.5% of the first cycle.
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The switching speed at 690 nm measured from the time dependence of transmittance responses is
shown in Figure 6. The switching speed time is defined as the 90% interval between the bleaching
state and coloration state. The coloration time of the film in the three electrolytes is almost the same
(3.5 s), while the bleaching time in LiClO4/PC/HAc is 7.1 s, which is obviously larger than the 4 s of
the other two cases. These results indicate that the addition of acetic acid can greatly improve the cycle
life of the PB film, but it reduces the bleaching speed of the film.
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Figure 6. The transmittance response at 690 nm with switching potential between −0.05 V and 0.5 V
for 10 s.

Figure 7a shows the SEM image of the as-electrodeposited PB film. Some particle-like clusters
were observed, which can be attributed to the formation of agglomerates during the film deposition.
Besides, the film had some cracks between particle-like clusters. Figure 7b shows the SEM image of
the film after 100 cycles in LiClO4/PC electrolyte. The cracks of the film became wider and longer.
The SEM result of the PB film after 100 cycles in LiClO4/PC/HCl is shown in Figure 7c, which is similar
to the feature of Figure 7b. Figure 7d shows the surface morphology of the PB film after 20,000 cycles in
LiClO4/PC/HAc. There is no significant difference in the surface morphology of the film after testing
compared with that of the as-deposited PB film. The results indicate that the structure of the film was
stable during the Li+ insertion and extraction processes. The suitable acidic environment can inhibit
the destruction of the PB film upon cycling.
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The reversibility of the film is expressed as the ratio of the extracted charges (Qex) to inserted
charges (Qin) during the bleaching and coloration processes as follows [32]:
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Reversibility =
Qex

Qin
× 100% (3)

Figure 8a shows the evolution of the reversibility of the PB film in the three electrolytes. The films
cycling in the three electrolytes all exhibited impressive reversibility (more than 91%), and a slight
increase of the reversibility was observed in the cycling. The results imply that most of the inserted
charges can be extracted in the following oxidation step. Figure 8b shows the evolution of inserted
charge capacities of the PB films in the three electrolytes. The inserted charge capacity of the PB film
tested in LiClO4/PC electrolyte was about 1.9 mC/cm2 at 100th cycle, which is only 23.6% of the initial
cycle. This implies that the charge capacity of the film was greatly reduced after 100 cycles, which led
to the decrease of the electrochromic activity of the film. The PB film, KFe[Fe(CN)6], generally contains
an indeterminate amount of water in the interstices of the cubic lattice structure [33]. Meanwhile,
the LiClO4/PC electrolyte contains a small amount of water molecules. This suggests that the strong
interaction between ferric ions and hydroxide ions forms Fe(OH)3, resulting in the destruction of the
Fe-CN-Fe bond and in the solubilization of the PB film [34]. The reaction can be written as follows [35]:

From the above results we can see that a cycle lifetime in excess of 20,000 was achieved in
LiClO4/PC electrolyte containing acetic acid and was much higher than the results of some previously
reported works. This suggests that a suitable acidic environment can inhibit the reaction between Fe3+

and OH− to form Fe(OH)3, and that the structure of the film is stable during the Li+ insertion and
extraction processes. However, the inserted charge capacity of the PB film tested in LiClO4/PC/HCl
obviously decreased as the cycle number increased, indicating that the hydrochloric acid cannot
prevent the decomposition of PB film in LiClO4/PC electrolyte. This suggests that H+ ions can inhibit
the reaction between Fe3+ and OH- to form Fe(OH)3, but excess H+ ions in hydrochloric acid will
participate in the redox reaction of the PB film together with Li+ ions, which can destroy the lattice
structure of the film [36]. The reaction can be written as follows:

XFe[Fe(CN)6] + X+ + e− ↔ X2Fe[Fe(CN)6] (5)

where X represents Li+ and H+ ions.
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4. Conclusions

In summary, the electrochromic performances of the PB films in K+-based electrolytes with
different solution pH values were investigated. Acidified KCl solutions can significantly improve the
durability of the PB film, and the KCl solutions (pH = 2.15 and pH = 3.03) showed better performance.
Furthermore, we investigated the cycle stabilities of PB films in LiClO4/PC electrolyte containing
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different acids. The cyclic stability of the PB film did not significantly improve when the hydrochloric
acid was dissolved in LiClO4/PC electrolyte. Hydrochloric acid partly prevents the film from
decomposing during the cycling. However, it may be involved in the redox reaction of PB and
could destroy the lattice structure of the film. The film cycling in LiClO4/PC with acetic acid electrolyte
exhibited no obvious transmittance fade after 20,000 cycles and had a much greater cycle life than
some previously demonstrated PB films. This suggested that the method of adding acetic acid to the
electrolyte provided an effective way to improve the cyclic stability of the PB film in LiClO4/PC.
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