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Abstract: The reconstruction of bone defects remains challenging. The utilization of bone auto-
grafts, although quite promising, is limited by several drawbacks, especially substantial donor site
complications. Recently, strontium (Sr), a bioactive trace element with excellent osteoinductive,
osteoconductive, and pro-angiogenic properties, has emerged as a potential therapeutic agent for
bone repair. Herein, a strontium peroxide (SrO2)-loaded poly(lactic-co-glycolic acid) (PLGA)-gelatin
scaffold system was developed as an implantable bone substitute. Gelatin sponges serve as porous
osteoconductive scaffolds, while PLGA not only reinforces the mechanical strength of the gelatin
but also controls the rate of water infiltration. The encapsulated SrO2 can release Sr2+ in a sustained
manner upon exposure to water, thus effectively stimulating the proliferation of osteoblasts and
suppressing the formation of osteoclasts. Moreover, SrO2 can generate hydrogen peroxide and subse-
quent oxygen molecules to increase local oxygen tension, an essential niche factor for osteogenesis.
Collectively, the developed SrO2-loaded composite scaffold shows promise as a multifunctional
bioactive bone graft for bone tissue engineering.
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1. Introduction

The reconstruction of bone defects remains challenging. To repair the defect site, sur-
geons commonly harvest autogenous bone tissues that possess significant osteoinductive,
osteoconductive, and angiogenic potentials; these tissues are the gold standard clinical graft
material for bone regeneration [1–4]. However, the utilization of bone autografts remains
limited by several drawbacks, such as the creation of secondary surgical sites, limited
availability of graft tissue, and substantial donor site complications [2,5]. To address these
issues, researchers have made major efforts to develop biomaterial- and composite-based
bone grafts [6–12]. As native bone tissue is mainly composed of mineralized collagen
fibrils, collagen and its derivatives have been extensively investigated as bone substitutes
owing to their excellent biocompatibility and biodegradability [13]. Nevertheless, these
collagen-based grafts are unfortunately still far from ideal due to their inferior mechanical
strength and limited ability to promote bone regeneration [6,14,15], thus necessitating the
development of new grafting materials.

Recently, strontium (Sr), a bioactive trace element in the human body, has emerged as
a potential therapeutic owing to its dual role in regulating bone metabolism: enhancing
bone formation by stimulating osteoblasts and suppressing bone resorption by inhibiting
osteoclasts [16–21]. For example, strontium ranelate has been utilized as a therapeutic agent
to treat postmenopausal osteoporosis [20,22]. Sr-containing composites have also been
developed as efficient bone graft materials [16,18]. Moreover, studies have demonstrated
that Sr can induce angiogenesis [23,24], which is essential for bone regeneration. Although
these Sr-modified bone substitutes exhibit enhanced osteoinductive, osteoconductive, and
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pro-angiogenic properties, trauma- or surgery-induced vascular disruption may lead to
severe tissue hypoxia, delayed osteoblast differentiation, or even cell death, thus impairing
the ultimate efficiency of bone regeneration [25,26]. Hyperbaric oxygen therapy, which in-
volves administrating oxygen in a pressurized chamber, is a clinically available strategy for
increasing tissue oxygen tension [25,27]. Without intact vasculature, however, the improve-
ment of oxygenation in bone defect sites could be limited [28]. Moreover, patients cannot
be exposed to hyperbaric conditions for a prolonged period [28]. Therefore, engineering
bone grafts with a sustained oxygen evolving capacity to improve tissue oxygenation may
efficiently promote bone repair.

Recently, calcium peroxide (CaO2)-based oxygen-generating biomaterials have been
designed to improve local oxygen tension and support cell survival under hypoxic con-
ditions [29–34]. The peroxide particles can react with water molecules, thus generating
hydrogen peroxide (H2O2) that can be decomposed into oxygen by using suitable cata-
lysts [28,33]. In one of our previous works, manganese dioxide (MnO2) was used as the
catalyst, and both CaO2 and MnO2 powders were encapsulated into poly(lactic-co-glycolic
acid) (PLGA) microparticles to control the reaction rate by limiting water infiltration [32].
The thus-developed injectable microparticles can serve as depots to release oxygen in
a sustained manner and relieve cellular hypoxia [32]. Without suitable porous scaffold
architecture and osteoconductivity, however, these microparticles may not effectively serve
as ideal bone grafting materials.

Herein, a multifunctional strontium peroxide (SrO2)-based oxygen-generating scaffold
was developed as an implantable bone substitute. Similar to CaO2, SrO2 can generate
H2O2 and the subsequent oxygen upon exposure to water. Moreover, we anticipate that the
release of Sr2+ could effectively enhance new bone formation and inhibit bone resorption.
To our knowledge, this is the first report of developing a strontium-based biomaterial
with oxygen evolution capacity. To fabricate the proposed multifunctional implantable
constructs, we immobilized SrO2 and MnO2 powders on gelatin sponges using PLGA. The
gelatin sponge serves as a porous osteoconductive scaffold, while PLGA not only reinforces
the mechanical strength of the gelatin but also controls the rate of oxygen generation by
limiting water infiltration. We anticipate that the developed SrO2-encapsulated oxygen-
generating scaffolds can be used to promote the formation of new bone tissues.

2. Materials and Methods
2.1. Materials

PLGA with a lactide:glycolide molar ratio of 75:25 and an inherent viscosity of
0.53 dL/g was purchased from Green Square Material (Taipei, Taiwan). Gelatin sponges
(SpongostanTM; MS0001) was acquired from Ferrosan Medical Devices (Søborg, Denmark).
SrO2, MnO2, dichloromethane (DCM), and acid phosphatase staining kits were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Mouse MC3T3-E1 preosteoblasts and RAW
264.7 macrophages were obtained from the Bioresource Collection and Research Cen-
ter, Food Industry Research and Development Institute (Hsinchu, Taiwan). Cell culture
reagents were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Receptor
activator of nuclear factor κB ligand (RANKL) was acquired from Peprotech (Rocky Hill,
NJ, USA). All other chemicals and reagents used were of analytical grade.

2.2. Preparation of SrO2 + MnO2@PLGA/Gelatin Scaffolds

PLGA solution was prepared by dissolving powder in DCM. After combination with
SrO2 and MnO2 powder, 100 µL of the acquired solution was transferred onto each piece of
the gelatin sponge with a volume of 5 × 5 × 0.5-mm3. The samples were incubated in a
hood overnight for solvent evaporation, and the resultant SrO2 + MnO2@PLGA/gelatin
scaffolds were collected for further use. The scaffolds were observed by scanning electron
microscopy (SEM; JSM-7610-F; JEOL, Tokyo, Japan).
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2.3. Oxygen and Sr2+ Release Profile of SrO2 + MnO2@PLGA/Gelatin Scaffolds

Two SrO2 + MnO2@PLGA/gelatin scaffolds were transferred into 5 mL of deoxy-
genated phosphate-buffered saline (PBS). The dissolved oxygen concentrations were mea-
sured with an InLab OptiOx DO sensor (Mettler Toledo, Greifensee, Switzerland) [32,35].
Furthermore, the pH value of the solution was detected with a pH meter (ST3100; OHAUS,
Parsippany, NJ, USA). For determination of the release profile of Sr2+, the PBS solutions
were analyzed with inductively coupled plasma-mass spectrometry (ICP-MS; Agilent
7500ce; Agilent, Santa Clara, CA, USA) [32].

2.4. Cell Culture

MC3T3-E1 preosteoblasts and RAW 264.7 macrophages were purchased from the
Bioresource Collection and Research Center, Food Industry Research and Development In-
stitute, Hsinchu, Taiwan. MC3T3-E1 cells were maintained in ascorbic acid-free α minimum
essential medium containing 10% fetal bovine serum (FBS; GE Healthcare Bio-Sciences,
Pittsburgh, PA, USA), 100 U/mL penicillin, and 100 µg/mL streptomycin [32]. RAW
264.7 cells were cultured in Dulbecco’s modified minimum essential medium (DMEM)
supplemented with 10% FBS, 2 mM glutamine, 100 U/mL penicillin, and 100 µg/mL
streptomycin [36].

2.5. Biocompatibility of SrO2 + MnO2@PLGA/Gelatin Scaffolds

MC3T3-E1 cells were seeded in 48-well plates at a density of 2.5 × 104 cells per well
and incubated for 24 h before treatment with five SrO2 + MnO2@PLGA/gelatin scaffolds
for 24 h. A Cell Counting Kit-8 assay (CCK-8; IMT Formosa New Materials, Kaohsiung,
Taiwan) was used to quantify cell viability [37]. Wells that contained only culture medium
were used as blank wells. Alternatively, MC3T3-E1 cells were inoculated directly on the
surface of SrO2 + MnO2@PLGA/gelatin to assess their potential in serving as scaffolds.
After a seven-day incubation, the scaffolds were fixed using 4% paraformaldehyde, stained
with 4’,6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 488-conjugated phalloidin
(dilution ratio of 1:1000; Cat. No. A12379; Thermo Fisher Scientific) for visualization of
nuclei and F-actin, respectively, and observed using a confocal laser scanning microscope
(Carl Zeiss). The 3D rendering of the acquired fluorescent images was conducted using
ZEN Blue software (Carl Zeiss) [38].

2.6. Osteoclast Differentiation

For the induction of osteoclast differentiation, RAW 264.7 cells were treated with
50 ng/mL RANKL with or without the SrO2 + MnO2@PLGA/gelatin scaffolds for five
days [39]. The gene expression levels of Trap and Mmp9 were determined using real-time
quantitative polymerase chain reaction (qPCR) following MIQE guidelines [40]. Total
RNA of the test cells was extracted using TRIzol reagent and reverse-transcribed into
complementary DNA with a High Capacity Reverse Transcription Kit. Real-time qPCR was
conducted with Power SYBR Green PCR Master Mix in the StepOnePlus Real-Time PCR
System (Thermo Fisher Scientific) [41,42]. The primer sequences were as follows: Gapdh
forward 5′-CTGCCACCCAGAAGACTGTG-3′ and reverse 5′-GGTCCTCAGTGTAGCC
CAAG-3′ [43]; Mmp9 forward 5′-GAAGGCAAACCCTGTGTGTT-3′ and reverse 5′-AGAGT
ACTGCTTGCCCAGGA-3′ [44]; Trap forward 5′-TCCTGGCTCAAAAAGCAGTT-3′ and
reverse 5′-ACATAGCCCACACCGTTCTC-3′ [45]. The relative mRNA expression levels of
the target genes were quantified and normalized to the expression of the housekeeping gene
Gapdh. Furthermore, the experimental samples were stained with an acid phosphatase kit
(Cat. No. 387A; Sigma-Aldrich) to detect the activity of tartrate-resistant acid phosphatase
(TRAP) according to the manufacturer’s instructions.

2.7. Statistical Analysis

Statistical analyses were conducted using GraphPad Prism software (version 9.1; San
Diego, CA, USA). All data are presented as the mean ± standard deviation. A two-tailed
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Student’s t test was used for comparisons between two groups. One-way analysis of
variance (ANOVA) with Bonferroni correction was used for comparisons among groups. A
p value of less than 0.05 was considered significant.

3. Results and Discussion
3.1. SrO2 + MnO2@PLGA/Gelatin Scaffolds Releases Oxygen and Strontium Ion

For preparation of the scaffolds, SrO2 and MnO2 powder was dispersed in PLGA
solution and transferred onto a gelatin sponge. As revealed in the SEM images in Figure 1A,
the porous structure of the gelatin sponge was filled by PLGA. We first optimized the
amount of SrO2 loaded in the scaffolds. Solid SrO2 particles are known to react with water
and generate H2O2 and strontium hydroxide (Sr(OH)2), which can result in an increase
in the environmental pH value and thus may lead to harmful effects on the surrounding
tissue [46]. To prevent alkaline-induced cytotoxicity, we monitored the changes in the
pH value of the PBS solution that was used to incubate the SrO2 + MnO2@PLGA/gelatin
scaffolds. When prepared using 20% (wt/v) PLGA, the scaffolds that contained 200 or
400 µg/mL SrO2 powder resulted in an elevation of the pH value (Figure 1B), suggest-
ing the accumulation of strontium hydroxide. Conversely, the samples that contained
100 µg/mL SrO2 powder did not result in a significant increase in pH value (Figure 1B).
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Figure 1. Fabrication and optimization of the SrO2 + MnO2@PLGA/gelatin scaffolds. (A) SEM
images of the surface of the gelatin sponge and the prepared scaffolds. (B,C) The pH values of
phosphate-buffered saline (PBS) following incubation with the developed scaffolds prepared with
various parameters (n = 4). Data are the mean ± s.d.

We next attempted to optimize the PLGA concentration for scaffold fabrication. As
indicated in the profile of pH value in Figure 1C, the scaffolds that were prepared with
10% or 15% PLGA led to remarkable elevation of pH compared to that prepared with 20%
or 30% PLGA, which can be attributed to their higher hydrophobicity. Compared with
our previous publication, in which 15% PLGA was used to encapsulate CaO2 powder [32],
the incorporation of a gelatin sponge in the present study appears to promote water
infiltration. Therefore, PLGA at a higher concentration was required to effectively control
the dissolution rate of SrO2. Although scaffolds fabricated with an increased PLGA content
were expected to have enhanced mechanical properties, immunological responses and
the foreign body reaction may also be elicited after scaffold implantation [47]. Based on
the aforementioned results, scaffolds that were prepared using 20% PLGA and embedded
100 µg/mL SrO2 powder were used for subsequent studies.
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In addition to Sr(OH)2, the dissolution of SrO2 also produces H2O2, which can be
efficiently converted to oxygen in the presence of catalysts. As shown in the oxygen release
profiles in Figure 2A, the concentration of dissolved oxygen in PBS solution increased
gradually within the investigated period, suggesting that the SrO2 + MnO2@PLGA/gelatin
scaffolds evolved the oxygen in a sustained manner. It was reported that direct use of solid
peroxides, such as SrO2 and CaO2, in aqueous environments or tissues, leads to a burst re-
lease behavior of oxygen, which is considered to be harmful for the surrounding tissues [48].
Furthermore, the accompanying rapid exhaustion of peroxides indicates that only a short
oxygen release period can be achieved [48]. In the present study, we successfully offset
these adverse effects by tuning the PLGA/gelatin scaffolds, thus controlling the dissolution
rate and the oxygen release behavior of SrO2. To determine the release kinetics of strontium,
we collected the experimental PBS solution and analyzed it using ICP-MS. Similar to the
release behavior of oxygen, the concentration of strontium increased gradually as time
progressed, demonstrating the potential of the developed SrO2 + MnO2@PLGA/gelatin
scaffolds to serve as an efficient depot for the sustained release of strontium (Figure 2B).
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Figure 2. SrO2 + MnO2@PLGA/gelatin scaffolds release oxygen and strontium ions. The release
kinetics of (A) oxygen (n = 4) and (B) strontium (n = 7) from the SrO2 + MnO2@PLGA/gelatin
scaffolds incubated in PBS. * p < 0.05; ** p < 0.01. Data are the mean ± s.d.

3.2. SrO2 + MnO2@PLGA/Gelatin Scaffolds Promote Proliferation of Preosteoblasts

Next, to evaluate scaffold biocompatibility, we cultured MC3T3-E1 cells in the presence
or absence of Transwell inserts that contained the prepared scaffolds. As revealed in the
phase-contrast images and the corresponding results of the CCK-8 assay, cells that received
plain gelatin sponges or PLGA/gelatin scaffolds exhibited comparable viability to that of
the untreated cells (Figure 3A,B), suggesting that the compositions of the scaffolds did not
affect the grown cells. However, treating cells with SrO2 + MnO2@PLGA/gelatin scaffolds
that contained 25 µg/mL SrO2 resulted in a 37.1% increase in cell viability (p < 0.001
compared to the untreated control; Figure 3B). It has been reported that supplementation
with Sr2+ can promote the proliferation of osteoblasts [9,19]. Hence, the Sr2+ released
during SrO2 dissolution may enhance the proliferation of the MC3T3-E1 cells. Furthermore,
although the bulk pH value was not changed significantly, the hydroxide ions released
together with Sr2+ might establish mild local alkaline conditions, which have been reported
to be beneficial for the proliferation of osteoblasts [49]. Nevertheless, as more SrO2 was
encapsulated into the scaffold, the viability of the cells decreased dramatically (Figure 3A,B),
probably owing to the accumulation of H2O2 and thus oxidative stress [27]. Although MnO2
was loaded into the scaffolds as a catalyst, if a high concentration of H2O2 is generated in a
short period, the H2O2 molecules might diffuse out before being decomposed into oxygen
and water [27]. As a result, the scaffolds that contained 25 µg/mL SrO2 without significant
cytotoxicity were chosen for subsequent investigations.
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Figure 3. SrO2 + MnO2@PLGA/gelatin scaffolds promote the proliferation of preosteoblasts.
(A) Representative phase contrast photomicrographs of MC3T3-E1 preosteoblasts that received
various treatments and (B) the corresponding cell viability determined using a CCK-8 assay (n = 6).
Scale bars, 200 µm. * p < 0.05; *** p < 0.005; **** p < 0.001; ns, not significant. Data are the mean ± s.d.
(C) Representative orthogonal projection and 3D rendering of MC3T3-E1 cells grown on the scaffolds
and incubated for two or seven days. Scale bars, 200 µm.

To evaluate whether SrO2 + MnO2@PLGA/gelatin could serve as an efficient scaffold
and provide physical support for preosteoblasts, we seeded MC3T3-E1 cells directly onto
the surface of the prepared scaffolds. The confocal images indicated that the inoculated cells
could adhere and proliferate on the surface of SrO2 + MnO2@PLGA/gelatin (Figure 3C),
demonstrating its potential to function as a biocompatible scaffold system that can enhance
the proliferation of preosteoblasts. Although PLGA is a synthetic polymer that has been
extensively used as a tissue engineering scaffold, its cell adhesive capacity is considered to
be not optimal [50,51]. Conversely, the potential of gelatin sponges to promote cell adhesion
has been well documented, especially with osteoblasts [7,52]. By taking advantage of these
materials, our data showed that the PLGA/gelatin composite scaffolds could be used as
ideal tissue engineering scaffolds to support the adhesion and proliferation of the grown
cells, which is in agreement with the literature [53–55].

3.3. SrO2 + MnO2@PLGA/Gelatin Scaffolds Inhibit Osteoclast Differentiation

In addition to promoting osteogenesis, strontium was reported to inhibit bone re-
sorption by suppressing the differentiation and maturation of osteoclasts [56–58]. Herein,
murine RAW 264.7 macrophages were stimulated with RANKL to induce osteoclasto-
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genesis in the presence or absence of SrO2 + MnO2@PLGA/gelatin scaffolds. As indi-
cated by the qPCR results in Figure 4A, significantly enhanced expression of the Trap
(22.3-fold increase vs. control; p < 0.001) and Mmp9 genes (15.1-fold increase vs. control;
p < 0.001) was detected in the RANKL-treated cells, suggesting their differentiation to-
ward osteoclasts. Conversely, in the group that received the developed scaffolds, the
mRNA levels of Trap and Mmp9 exhibited 55.7% and 46.1% reductions, respectively, com-
pared to those of the RANKL-stimulated group (Figure 4A; p < 0.01), suggesting that the
SrO2 + MnO2@PLGA/gelatin scaffolds could effectively inhibit osteoclastogenesis.
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arrows indicate the (B) actin ring or (C) TRAP-positive cells. The yellow boxes show the regions
outlined by dotted lines with higher magnification. Scale bars, 200 µm. Scale bars in insert, 50 µm.

As the formation of a thick-band actin ring in osteoclasts is required for their bone re-
sorption activity [59,60], we next investigated whether the introduction of the
SrO2 + MnO2@PLGA/gelatin scaffolds could affect the organization of the actin ring.
As revealed by the fluorescence images of phalloidin staining in Figure 4B, RANKL treat-
ment induced actin ring formation in RAW 264.7 cells. In the presence of the developed
scaffolds, however, a disrupted actin ring was observed, suggesting the ability of the
SrO2 + MnO2@PLGA/gelatin scaffold to suppress osteoclast activity. Furthermore, the
formation of osteoclasts in the experimental samples was analyzed via TRAP staining. As
revealed in Figure 4C, the number of TRAP-positive multinuclear cells in the RANKL-
treated group increased significantly, while co-treatment with the scaffolds developed in the
present study efficiently reduced the number of TRAP-positive cells. The abovementioned
results demonstrated that the SrO2 + MnO2@PLGA/gelatin scaffolds could effectively in-
hibit osteoclastogenesis and reduce osteoclast activity and thus might suppress subsequent
bone resorption.

Despite our success in fabricating composite scaffolds with the dual functions of oxygen
and Sr2+ release, several limitations remain to be addressed prior to future translational applica-
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tions. First, the present study only investigated the capacity of the SrO2 + MnO2@PLGA/gelatin
scaffolds to modulate the behaviors of osteoblasts and osteoclasts under normal oxygen
tension. It was reported that under hypoxic conditions (e.g., 1% oxygen concentration),
the proliferation and differentiation potential of osteoblasts is remarkably inhibited [61,62].
Furthermore, the hypoxic niche contributes significantly to the activation of osteoclasts
for bone resorption [63,64]. Therefore, further investigations of the synergistic effects of
oxygen and Sr2+ released by the developed scaffold system are warranted in terms of
promoting osteoblast proliferation/differentiation and suppressing osteoclast formation
to further highlight the potential benefits of SrO2 + MnO2@PLGA/gelatin. Second, the
present study only analyzed cellular behaviors in a short-term culture. As the release of
oxygen and Sr2+ in a sustained manner by the developed SrO2 + MnO2@PLGA/gelatin has
been verified, in vitro investigation with a prolonged cultivation period can help validate
the advantages of incorporating a controlled release platform into the scaffold system.
Furthermore, protein-based analyses of the effects of SrO2 + MnO2@PLGA/gelatin on
osteogenesis and osteoclastogenesis are necessary to demonstrate the functionality of the
scaffold system. Finally, animal investigations with a nonunion bone fracture model are
needed to verify the in vivo therapeutic potential.

4. Conclusions

In summary, the present study demonstrated the potential of SrO2 + MnO2@PLGA/gelatin
as a scaffold system for bone tissue engineering. By releasing oxygen and Sr2+, the devel-
oped scaffolds could increase local oxygen tension and modulate the behavior of osteoblasts
and osteoclasts, respectively. Despite several limitations, the results obtained in the present
study establish an important proof-of-concept for the future application of SrO2-based
biomaterials for bone tissue engineering.
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