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Abstract

The global population of 80 years and older is predicted to reach 437 million by 2050. As overall 

brain structure and function progressively degrades, older and younger adults show differences in 

sensorimotor performance and brain activity in the sensorimotor regions. Oral sensorimotor 

functions are an important area of focus in natural aging and Alzheimer’s Disease (AD) because 

oral health issues are commonly found in both elderly and AD populations. While human 

behavioral studies on changes in oral sensorimotor functions abound, very little is known about 

their neuronal correlates in normal and pathological aging.
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INTRODUCTION

Sensorimotor control of oral behaviors is complex and involves the integration of afferent 

information from and efferent commands to the tongue and jaw to effect functionally critical 

and highly coordinated movements of breathing, feeding and speech. Many age-related oral 

health problems, such as masticatory dysfunction, dysphagia, and tooth loss have been 

associated with Alzheimer’s Disease (AD) [1-12]. Diminished sensation, weakness of 

orofacial muscles, and impaired coordination, which accompany healthy aging, can cause 

difficulties in mastication and swallowing. With diminished sensation, the brain cannot sense 

the shape and position of the tongue relative to the teeth, information vital for detecting food 

properties when chewing and knowing when to swallow safely. How cortical and 

biomechanical (“neuromechanical”) changes in oromotor behavior contribute to the onset 

and progression of AD and age-related dementias (ARD) are widely unknown. This is 

largely because of a fundamental gap in understanding the neuromechanical processes at the 

level of large-scale activity of single neurons and neuronal networks that underlie healthy 
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aging. This represents an important problem because until they are understood the cortical 

mechanisms underlying pathological aging in AD will remain largely incomprehensible.

UNDERSTANDING THE BIOMECHANICS AND CORTICAL CONTROL OF 

OROFACIAL FUNCTIONS

Neurons in the primary motor (MIo) and somatosensory (SIo) areas of the orofacial cortex 

(a) modulate their activity during performance of orofacial tasks such as generating tongue 

protrusive force and bite force, (b) encode the direction and magnitude of tongue protrusive 

force, and (c) form coherent networks within and across these areas in a reciprocal manner, 

and (d) undergo learning-induced plasticity [13-16]. Currently, we are investigating the 

neural bases of oral somatosensation in the orofacial sensorimotor cortex in young non-

human primates (NHPs) to dissociate the cortical representations of touch and 

proprioception during natural feeding behavior by using an innovative sequence of nerve 

blocks to the sensory branches of the trigeminal nerve, together with multi-electrode array 

recordings and 3D tracking of tongue and jaw movements. During feeding, a rich array of 

oral sensations is used to monitor bite forces, teeth contact, and the tongue moving and 

touching other oral structures (e.g., palate, teeth, gingiva). Because the location of the tongue 

inside the oral cavity makes it difficult to measure tongue movements, so are the sensations 

naturally occurring with these movements. Consequently, very little is known about cortical 

representations of these stimuli in the context of natural oromotor behavior. Tactile and 

proprioceptive signals to the tongue provide information about food properties, such as 

texture (soft, sticky, hard or grainy) or bolus size to regulate bite force, to predict when to 

swallow safely, and to perceive where the tongue is relative to other oral structures. Unlike 

the rest of the body, proprioceptive and tactile inputs to the tongue are anatomically distinct, 

with the former served by the hypoglossal nerve and the latter by the lingual nerve. I 

leveraged this unique anatomy to cleanly dissociate their cortical representations; by using 

an innovative sequence of local anesthetic blocks of trigeminal nerve sensory branches, 

tactile inputs are silenced while preserving proprioceptive inputs during feeding behavior. 

Moreover, there is a big challenge of high-resolution tracking of a wide array of tongue 

movements inside the oral cavity simultaneously with probing dynamic processes involving 

large populations of neurons across connected regions in behaving NHPs. Our laboratory has 

overcome these difficulties by using high resolution (>200 Hz) biplanar videoradiography 

and the X-ray Reconstruction of Moving Morphology (XROMM) (https://www.xromm.org) 

for precise tracking of tongue and jaw kinematics in 3D [17,18] while recording from large 

populations of neurons from multiple cortical regions (areas 3a, 3b, 1, 2, rostral and caudal 

MIo) [19,20]. These newly developed methods will help us understand the effects of aging 

on the critical functions served by the orofacial system that are vulnerable to sensorimotor 

decline.

The sensorimotor changes found in healthy elderly population include difficulties in 

mastication and swallowing, diminished sensation, weakness of orofacial muscles, slowness 

of movement, and impaired coordination [21-28]. Neuroimaging studies found effects of 

aging on brain activation and functional connectivity in sensorimotor regions at resting state 

[29] and related to chewing and swallowing [30-33]. With diminished sensation, the brain 
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cannot sense the position of the tongue relative to the jaw or teeth nor the force applied to 

the teeth when chewing. Similarly, the encoding of the amount and direction of bite force is 

impaired following tooth loss owing to the removal of mechanoreceptors in the periodontal 

ligament [34,35]. Indeed, edentulous older patients with dentures show limited activation of 

brain regions typically associated with teeth clenching [28]. Preliminary findings from our 

laboratory are consistent with dysfunctions in mastication and swallowing found in the 

elderly (Figure 1); we found marked differences in tongue and jaw kinematics around chews 

and swallows in young vs. old NHPs during feeding [36]. The complex control of chewing 

and swallowing involves multiple cortical and subcortical regions, including limbic and 

prefrontal regions of the cortex [30-33]. Cortical regions that may exert cognitive-affective 

influences on oral sensorimotor functions may underlie the potential association with oral 

dysfunctions found in AD/ARD.

How do these neuromechanical changes found in healthy aging differ from those found in 

pathological aging such as in AD? A better understanding of cortical processes underlying 

sensorimotor decline in healthy and pathological aging will require investigating the 

dynamic processes involving large populations of neurons across connected regions (e.g., 

prefrontal, parietal, and sensorimotor) in behaving animal models. Specifically, by 

contrasting neuromechanical changes related to healthy-aging with those found in 

individuals with AD, we may be able to identify individuals at risk for developing AD or 

those who may be in the prodromal stage of the disease. Understanding how these 

biomarkers may serve as early signatures of AD could be helpful in providing early 

diagnosis and intervention, thus delaying AD progression and reducing the severity of 

debilitating oromotor dysfunctions prevalent in AD/ARDs. Indeed, the early intervention 

MEND™ protocol demonstrated reversal of memory loss in prodromal AD patients by 

avoiding risk factors [37]. In addition, a diagnostic tool similar to the one used for motoric 

cognitive risk syndrome [38] could include oromotor deficits to identify individuals at higher 

risk of dementia.

THE LINK BETWEEN AGE-RELATED OROMOTOR DYSFUNCTION AND AD

While the pathophysiological link between oromotor dysfunction and AD is still unknown, 

there are strong indications from the literature that the two may be related, but do not 

suggest a causal relationship: (1) Oral health and memory may influence each other (see 

reviews by [6,9,39,40]). Decrease in masticatory activity, due to a soft diet or loss of teeth, 

causes memory loss and neuronal degeneration in mice [41,42]. Mastication improves 

cerebral blood flow, which in turn improves memory functions in humans [30,43]. In elderly 

people with full dentures, but not in those with full natural teeth, 22% of executive functions 

were predicted by complaints of the masticatory system and 19% of episodic memory was 

predicted by masticatory performance [44]. It has been suggested that the relationship 

between mastication and memory becomes more prominent when mastication is reduced due 

to tooth loss or oral pain. On the other hand, one should also consider the person’s ability to 

adapt mastication to changes in dental status [45] and whether this is impaired in AD/ARD. 

Currently, evidence supporting the association between tooth loss, masticatory performance, 

and dementia is still lacking [46,47]. (2) AD and oromotor dysfunctions share common risk 
factors: aging, diet/nutrition, and socio-economic status [7]. Several longitudinal studies 
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showed the prevalence of oromotor dysfunction, especially dysphagia, in patients with 

AD/ARD [4,9,11,40]. Early-stage AD patients without overt signs of dysphagia already 

showed lower BOLD response in the swallowing cortical network [48]. More importantly, 

participants with the fewest teeth had the highest risk of prevalence and incidence of 

dementia [10]. (3) Porphyromonas gingivalis and gingipains in chronic periodontitis (gum 

disease) were identified in the brain of AD patients, and levels of gingipains were correlated 

with tau and ubiquitin pathology [2]. In severe periodontal disease, periodontal tissues, 

including alveolar bone and periodontal ligament, are destroyed and lead to the loosening 

and loss of teeth, which in turn may cause masticatory dysfunctions. Periodontal disease has 

been found to be associated with poor cognitive performance [49-51].

CONCLUSIONS

In the advanced stage, AD’s devastating effects on the quality of patient’s life and the 

burden on the caregiver are further heightened. It is therefore expedient to identify potential 

contributing factors to the onset and progression of AD/ARD. Determining whether 

oromotor dysfunction could be identified as a risk factor to the development of the sporadic 

form of AD and/or serve as an early diagnostic tool. Thus, the early identification of 

individuals with chronic oral health issues at risk for developing AD and the development of 

effective interventions to enhance oral health outcomes in this group may aid in preventing 

the onset or allay the progression of AD/ARD in these populations.
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Figure 1. 
Age-related changes in tongue kinematics during swallows. (A) Anterior tongue trajectories 

±0.5 s around swallows were stereotypical and cyclic in the young NHP (left) but not in the 

old NHP (right). Swallows occurring around minimum gape (red circles) were more tightly 

clustered in the young NHP. Blue and cyan circles denote start and end of tongue 

trajectories. Blue and cyan dots denote tongue trajectories 0.5 s before and after swallows, 

respectively. (B) As in (A), shown for trajectories of the posterior region of the tongue in the 

young vs old NHP.
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