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Time-series sewage metagenomics
distinguishes seasonal, human-derived and
environmental microbial communities
potentially allowing source-attributed
surveillance

A list of authors and their affiliations appears at the end of the paper

Sewage metagenomics has risen to prominence in urban population surveil-
lance of pathogens and antimicrobial resistance (AMR). Unknown species with
similarity to known genomes cause database bias in reference-based meta-
genomics. To improve surveillance, we seek to recover sewage genomes and
develop a quantification and correlationworkflow for these genomes andAMR
over time. We use longitudinal sewage sampling in seven treatment plants
from fivemajor European cities to explore the utility of catch-all sequencing of
these population-level samples. Using metagenomic assembly methods, we
recover 2332 metagenome-assembled genomes (MAGs) from prokaryotic
species, 1334 of which were previously undescribed. These genomes account
for ~69% of sequenced DNA and provide insight into sewage microbial
dynamics. Rotterdam (Netherlands) and Copenhagen (Denmark) show strong
seasonal microbial community shifts, while Bologna, Rome, (Italy) and Buda-
pest (Hungary) have occasional blooms of Pseudomonas-dominated commu-
nities, accounting for up to ~95% of sample DNA. Seasonal shifts and blooms
present challenges for effective sewage surveillance. We find that bacteria of
known shared origin, like human gut microbiota, form communities, sug-
gesting the potential for source-attributing novel species and their ARGs
through network community analysis. This could significantly improve AMR
tracking in urban environments.

Untreated sewage is increasingly becoming an important surveillance
matrix for anonymizedmonitoring of large urban populations and has
been used to monitor and quantify illegal drug consumption1, anti-
microbial resistance (AMR)2,3, the bacteriome4, virome5, human
population genetics6 and more recently SARS-CoV-27. Different meth-
odologies can be applied, but metagenomics has the advantage of
simultaneously generating data on diverse genomic contents of a

sample and thus provides an opportunity to simultaneously survey
bacteria, parasites, viruses, and AMR.

However, metagenomic data from untreated sewage are highly
complex, reflecting a broad diversity of microbes shed by humans, as
well as a high variability of sequences from plants, animals, and
unknown microbes, complicating the identification of relevant
pathogen signals. The composition in the sewage is also influenced by
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different types of household waste (food), waste from individuals and
external environmental sources (soil, groundwater) and microorgan-
ismsmultiplying in the sewer system. Human fecal-associated bacteria
account for 15–30%8,9 of the sewage-influent community, meaning
the majority of the sewage microbiome comes from other sources.
Many bacteria in sewage are more permanent residents of the sewer
system found in biofilms (Pseudomonas, Lactococcus, Longilinea, Tri-
chococcus, Acidovorax)10, on the sewer pipe wall and in sediments at
the bottom of the pipes (Acrobacter, Acinetobacter, Aeromonas,
Trichococcus)11.

Starting in 2025, the European Union is looking to implement
sewage-based surveillance in treatment plants serving 100,000 or
more residents12. To perform reliable sewage surveillance AMR of
human populations, it would be beneficial to first thoroughly identify
the diversity in such cities, including their novel species, and compo-
sition changes through time. Bydoing so,we can establish a baseline of
what is considered normal, which helps detect deviations that may
indicate the presence or emergence of AMR. Identifying novel micro-
bial species is also crucial as they may harbor unknown resistance
genes, potentially revealing new sources of AMR. Since environmental
bacteria inherently possess numerous AMR genes, distinguishing the
origins of these genes is vital for the focusedmonitoring of AMRgenes
associated with human activity.

Previous studies have shown that the microbial composition
within sewage can exhibit significant variability both temporally and
spatially within the same sewage system13. In addition, there may be
differences in the composition and seasonality of microbes across
different geographic regions2. These sources of variation occur on a
time scale spanning from weeks to months. Finally, in order to com-
pare sewage samples, many factors can be considered important,
including temperature9, rainwater inputs14 and the size of the human
population8 contributing to a specific sewage system community
composition.

Traditional methods of studying microbes have relied on cultur-
ing them in laboratory settings and sequencing isolated cultures.
However, this approach is limited because a significant portion of the
bacteria in the environment cannot be cultured with traditional
techniques15. Consequently, the genomic sequences ofmany taxa have
not been discovered and are not represented in reference sequence
databases16. Reference-basedmetagenomic approaches rely heavily on
available references, posing challenges when analyzing samples con-
taining a high proportion of uncharacterized taxa.

Yet, with adequate depth of the metagenomic sequencing,
microbial genomes can be reconstructed directly frommetagenomes17.
Shotgun sequencing reads can be assembled to longer contigs, and
these canbegrouped into genomesusing shared characteristics such as
co-occurrence and the frequency of short kmers. This process, known
as genome binning, can yield draft or complete genomes, bringing to
light previously unknown microbial species without the need for
culture-based methods17. Without culturing, we use groups of 95%+
genome identity as proxies for species.

It is also important to consider that all metagenomic abundance
data are compositional in nature because they capture the relative
proportions of DNA fragments from various taxa instead of their
absolute numbers18. This characteristic stems from the fact that
modern shotgun sequencing operates with a fixed-capacity output,
meaning the detected abundance of one taxon is dependent on and
constrained by the collective abundance of all other taxa19.

With an increasing number of targets and epidemiological sig-
nals from mutations and flanking genes, metagenomics offers some
interesting benefits compared to qPCR, but there are also difficul-
ties. We here report on our efforts to retrieve and quantify thou-
sands of bacterial species’ genomes from sewage and relate the
results to the objective of AMR surveillance. We find huge spikes of
environmental bacteria that challenge metagenomics surveillance

only in some cities, but also find evidence that community detection
of metagenomics data could aid the source attribution of species
and AMR genes into human- and environmental-derived compo-
nents. The sewage was derived from five major European cities over
two years: Copenhagen, Denmark (Avedøre–RA, Damhusåen–RD,
Lynetten–RL); Rotterdam, The Netherlands; Bologna, Italy; Rome,
Italy; and Budapest, Hungary, encompassing seven different treat-
ment plants (referred to as sites).

Results
Abundance and diversity of recovered genomes
Metagenomic assemblies of all the individual samples resulted in
42,731,574 contigs with an average length of 2179 bp (N50: 2303) and
are in the following referred to as the single-sample assembly.
Metagenomic co-assemblies of time points from the same site
resulted in 25,120,037 contigs with an average length of 2333 bp
(N50: 2569).

A total of 23,082 bins were recovered from kmer/depth-binning
the individual metagenomic assemblies and 11,643 kmer/depth-co-
abundance binning of the metagenomic assemblies. In total, 2523 bins
were found with completeness >90% and contamination below <5%
and 12,687 bins with completeness >=50% and contamination <=10%,
according to CheckM220.

We aligned ~69% of the sequencing reads to the collection of
species-level genome collection. When exploring the genomes’
abundances, we observed that in some samples, the genus Pseudo-
monas_E (GTDB-tk splits the wide Pseudomonas into new genus-sized
genera) was highly abundant. This is primarily attributed to 12 dif-
ferent known Pseudomonas_E species (relative abundance >0.05),
including Pseudomonas_E bubulae, Pseudomonas_E lundensis and
Pseudomonas_E paraversuta. None of our recovered Pseudomonas
genomes belonged to the well-known opportunistic pathogen,
Pseudomonas aeruginosa.

Alpha diversity (Shannon index) remained relatively consistent
across Copenhagen and Rotterdam. However, notable alpha diversity
drops were seen in sites with occasional Pseudomonas_E dominance
(Fig. 1a). See Supplementary Fig. S1 for a more detailed timeline of
Pseudomonas_E blooms.

The Bologna sewage microbiome exhibited notable changes over
time, with certain genera appearing and disappearing through time. In
Budapest the sewage microbiome was characterized by a consistent
set of bacterial genera, however their abundances exhibited sample-to-
sample fluctuations. In the Copenhagen sewage treatment plants,
variations over time were more pronounced. For instance, the genus
Aliorcobacter emerged in the second year of sampling in the RD andRL
plants but appeared to be absent in the RA plant. In the last few sam-
ples from Rotterdam, the genera Psychrobacter and Giesbergeria
became more abundant (Fig. 1b).

In the beta-diversity analysis using Bray–Curtis dissimilarity, the
first principal coordinate predominantly captured the extensive
diversity across the samples. Notably, it highlighted the samples pri-
marily composed from the genus Pseudomonas_E associated with low
diversity (Fig. 1c).

The application of the Aitchison distance instead (see methods)
highlighted the unique microbial signatures associated with each
European city (Fig. 1d). The three Copenhagen sites appear completely
superimposed on each other, demonstrating low intra-city variability.
To explore the variability of beta-diversity, we found that the site
explained ~42% of the variance, while the city explained ~38%
(P ≤0.001). This suggests that the specific treatment plant location has
a minor impact on the observed beta-diversity, with the broader geo-
graphic location accounting for a more substantial portion of the
variation, consistent with Fig. 1d.

Furthermore, there is a significant overlap observed between the
cities of Bologna and Budapest, highlighting a higher degree of
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similarity between these cities, than Bologna and its fellow italian
city Rome.

Co-assemblies especially boost recovery of rare and
undiscovered sewage taxa
Utilizing a combination of co-assembly and single-sample assembly
strategies, we successfully retrieved 2332 species of at least medium
quality according to the MIMAG criteria suggested by Bowers et al.21.
Many genomes lacked conserved RNAs but 56 were considered high
quality. MAGs recovered through single-sample assembly were gen-
erally more abundant (26% of the genomes exceeding 1% abundance),
whereas only about 2% ofMAGs recovered through co-assembly had at
least 1% abundance in any sample.

Among the diverse orders represented in the genomic collec-
tion, Burkholderiales stands out with 410 different species. It is fol-
lowed by the Pseudomonadales (148 species) and Bacteroidales
(121 species) (Fig. 2a). However, we were only able to assign species
annotation to 988 of the species suggesting a substantial number of
novel taxa.

Using the single-sample assembly approach, we managed to
recover genomes from 925 species (Fig. 2b). The addition of co-
assemblies significantly expanded the number of recovered species’
genomes with 1407, to 2332. Within this expansion, we identified 496
known species (Fig. 2b). Notably, some well-known species, like Lac-
tobacillus acidophilus appeared only through co-assembly. Nineteen
species could not be assigned to known orders, and intriguingly, 15 of
those were exclusively obtained through the co-assembly process,

indicating co-assembly can help recover substantially more novel
taxonomy from sewage.

Community detection in network graphs can assist source
attributing genomes and AMR
We probed the co-occurrence of microbial taxa using network theory
to identify their collective interactions. We analyzed the networks
derived from each treatment plant separately, where each node (ver-
tex) corresponds to a recovered genome and each edge (link) is a
statistically significant co-occurrence of two species (Fig. 3a).

Due to the absence of a ground truth and the numerous species
under investigation, including a significant proportion of unclassified
taxa, we opted to use straightforward correlations to construct the
network. While this simplification may overlook finer details22, we
specifically utilize correlation values deemed significant to assign
weights for the links in our network analysis. This includes both
positive and negative correlations, as detailed in the methods sec-
tion, providing a quantitative description of the collective
properties.

Our investigation unveiled striking disparities in network com-
positions and interactions, each manifesting a unique city-specific
signature. The networks not only varied in the nodes/species con-
stituents but also exhibited differing edge densities, as shown in
Supplementary Table S1. The number of distinct species remaining
after filtering low-abundance measurements exhibited substantial
variation, ranging from 546 species in Rome to 854 species in both
Budapest and Rotterdam (Supplementary Fig. S2). Even more rare are
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Fig. 1 | Abundance anddiversityof recoveredgenomes through time and space.
a Shannon alpha diversity index of each sample. Circled dots indicate high levels of
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the significant relationships common to all sites, with just 36 shared
links. Notably, these shared connections consistently belong to a
bacterial community, primarily composed of bacteria from the Pseu-
domonas_E genus (Supplementary Fig. S3). This Pseudomonas_E group,
consistently present in all the sewage samples, is what we refer to as
the PEH (Pseudomonas_E Heavy) community.

When we compare the sites in pairs, despite such variation, it
becomes easier to capture common trends. Specifically, the three
Copenhagen sites (RA, RD, and RL) displayed the highest degree of
similarity among themselves, as substantiated by the Jaccard index
computed on network edges (Fig. 4b). Equally intriguing was the
notable overlap observed between the network structures of Bologna
and Budapest, while Rotterdam exhibited a distinct profile distinct
from the other cities. These observations are consistent with the beta-
diversity analysis (Fig. 1c, d).

We observed that networks consistently manifest a clear graph
subdivision into distinct communities, as proved by their modularity
values that always exceed 0.5 (Supplementary Table S1). This network
partition can be seen in Fig. 4a, where bacteria cluster into discernible
communities with strong internal connections rooted in only sig-
nificant positive correlations.

Certain communities functioned independently with minimal
interconnections. Others displayed numerous external connections,
primarily negative, indicating competitive interactions. This enabled
us to cluster bacteria into distinct communities and investigate their
composition and temporal trends. Clear illustrations are the PEH
communities observed in Bologna_4, Budapest_5, Rome_2, Copenha-
gen_RL_3, Copenhagen_RA_4, Copenhagen_RD_3, and Rotterdam_5,
which are also the rare, yet significant relationships shared across all
sites (Supplementary Fig. S5).

Furthermore, examining the abundance trends of these commu-
nities reveals intriguing behaviors. Some communities exhibit clear
oscillations synchronized with the solar year, as we will delve into in

the next paragraph. Others display remarkable shifts in their relative
abundance and dominance within the sewage composition, transi-
tioning from low abundance to becoming predominant, as observed in
communities like Rotterdam_4.

In themost extreme instances, PEHcommunities account for ~95%
of the assigned reads.Wefind apowerful, inverse relationshipbetween
the abundance of those communities and the observations of anti-
microbial resistance genes (Fig. 5a). The ratio between those two
variables can vary by more than 1000, suggesting environmental
microbes can completely overpower surveillance targets in some
cities.

The threeCopenhagen PEHcommunities sharemost features, like
having noticeable Janthinobacterium tructae participation absent from
other communities (yellow).But they also showwithin-city differences,
like theCopenhagen_RA community uniquely being associatedwith an
unclassified Giesbergeria species (purple).

We correlated the AMRmeasures in samples with the abundance
of bacterial communities and found it strongly anti-correlated speci-
fically to the PEH communities in the three heavily affected
cities (Fig. 5b).

In an attempt to discover the drivers of Pseudomonas_E blooms,
we associated the proportion of Pseudomonas_E to pH and tempera-
ture in the affected sites (Supplementary Fig. S6). There were no clear
associations between those variables. The species-level beta-diversity
was partly explained by temperature (8%, P = 0.01) but not by pH
(1.4%, P = 0.175).

Metabolic collaboration does not explain the observed sewage
microbial communities
In an attempt to see if metabolic collaboration drove community for-
mation, we investigated the degree to which the communities (or
shuffled groups of the same size) encoded the proteome required for
metabolic functionality.

Assembly Method
COASS
SSA

Classification
Classified
Unknown

Order
o__Acidaminococcales
o__Acidimicrobiales
o__Actinomycetales
o__Anaerolineales
o__Bacteroidales
o__Burkholderiales
o__Campylobacterales
o__Caulobacterales
o__Chitinophagales
o__Christensenellales
o__Desulfovibrionales

o__Enterobacterales
o__Flavobacteriales
o__Lachnospirales
o__Lactobacillales
o__LD1−PB3
o__Micavibrionales
o__Moranbacterales
o__Mycobacteriales
o__Oscillospirales
o__Peptostreptococcales
o__Propionibacteriales

o__Pseudomonadales
o__Rhizobiales
o__Rhodobacterales
o__Saccharimonadales
o__Sphingomonadales
o__Synergistales
o__Veillonellales
o__Xanthomonadales
Others

988

1344

496

911

142
146 350

287

0

500

1000

1500

2000

dRep COASS SSA SHARED

Classify
FALSE

TRUE

a

b

Fig. 2 | Thousands of species’ genomes recovered de novo from sewage.
aPhylogenyof all highest-scoringmembers of species-levelMAGclusters. From the
inner to the outer ring, they show genome-assigned taxonomic order, the assembly
method employed and whether a genome was classifiable at the species level.

bA bar chart showing the number of classified and unclassified species fromone or
both assemblymethods. The SHARED category refers toMAGs thatwere recovered
using both the single-sample assembly (SSA) and the co-assembly approach
(COASS). Classify refers to whether GTDB-tk assigned a species-level classification.

Article https://doi.org/10.1038/s41467-024-51957-8

Nature Communications |         (2024) 15:7551 4

www.nature.com/naturecommunications


Metabolism of most amino acids and central carbon metabolism,
was common among all communities (including original and shuffled)
and sites, while others, like plant pathogenicity or sterol biosynthesis,
were completely absent. Sulfur biosynthesis, and nitrogenmetabolism
were more prevalent in some communities while absent in others,
including shuffled ones, suggesting that these traits might be specific
to a few bacteria rather than a collaborative effort among bacteria in
the community.

As the community size grows, differentmetabolic categories tend
to be more complete. However, there are some exceptions. For
instance, Copenhagen_RL_15, the smallest community in Copenha-
gen_RL with only two bacteria, still has complete histidine metabolism

and sulfur metabolism. One of these bacteria, the Thiotrix unzii is well-
documented for its involvement in sulfur metabolism23. In case of
nitrogenmetabolism, Rotterdam_7 is theonly onewhich seems tohave
all nitrogen metabolism modules. This community consists of 22
bacteria most of them are not classified at the species level. Among
them, one MAG is classified as the genus Nitrospira_F, which is known
for its nitrification capabilities24. For a breakdown of community
metabolic differentiation, see Supplementary Fig. S7.

Human gut microbiota cluster into fecal communities
Yet another explanation could come from the fact that sewage
is a mixed environment with multiple input sources. When

Fig. 3 | Diverse patterns emerge in the co-abundance networks of bacterial
speciesacross cities. a Each vertex corresponds to a species’genome, and the links
represent significant positive (blue) and negative (red) correlations. The size of the
vertices is proportional to the mean CLR-transformed depth of coverage, and the
shapes encode variance level. Vertex colors are used to highlight the community
membership. For the vertex placement, we used the Fruchterman-Reingold layout
algorithm on the subgraph composed from only positive edges. Following this

representation, many of the blue/positive links are covered by the circles, even if
there are more positive links overall, see Supplementary Table S1). b Heatmap of
the Jaccard similarity (J) with the hierarchical clustering of the Jaccard dissimilarity
(1-J). The index J is defined as the ratio of the intersection of the links shared
between two networks with respect to the union. See Supplementary Fig. S4 for an
analogous version with nodes colored by taxonomy.

Article https://doi.org/10.1038/s41467-024-51957-8

Nature Communications |         (2024) 15:7551 5

www.nature.com/naturecommunications


these vary in relative contribution, all organisms from the
same source will co-occur also leading to groups of genomes
co-occurring through time. In essence, our communities would
then be multi-genome bins, exploiting differential abundance in the
same way as genome binning tools can, but with weaker
associations.

If e.g., the amount of environmental bacterial contribution varies
significantly through time, we would expect those genomes to group
together and differently from human microbes.

By comparing our classified species to known human gut micro-
biota species. Out of 998 MAGs classified at the species-level 241
potentially originated from the human gut. We observed that these
MAGs tend to form communities, Fig. 5a. We noted that certain sam-
pling sites exhibited communities dominated by gutmicrobes, such as
communities 5 and 6 in Bologna, community 4 in Budapest, commu-
nity 5 at Copenhagen RA, and community 2 in Rotterdam. Interest-
ingly, in Rome, gut microbes are rare in the communities. Most sites
have a single community with more than 2/3 MAGs being recognized
as human fecal microbiota.

To further confirm this finding, we used crAssphage as an indi-
cator for human fecal contamination (see Methods). With the excep-
tion of Rome, which exhibited low levels (corresponding with a lower
count of human gut microbiota species within the communities), all
cities showed similarly highmedianabundances of crAssphage, Fig. 5b.
By quantifying its abundance, a pronounced correlation emerged
between crAssphage levels and the dominance of fecal bacteria within
communities, Fig. 5c. This is particularly evident in Bologna commu-
nities 5 and 6 (with Spearman’s correlation of 0.81 and 0.45), com-
munity 5 in Budapest (0.66), community 5 in Copenhagen RA (0.49),
and community 2 in Rotterdam (0.76).

In addition, we quantified human mitochondria and used those
numbers to confirm that crAssphage abundance was highly corre-
lated with human-associated DNA (Supplementary Fig. S8). Since
crAssphage is an established fecal indicator with more aligned
reads than mitochondria, it was expected to be associated with less
stochastic sampling noise, and we chose to use it further in our
analyses.

Community detection for assigning AMR to sources
Looking at Fig. 4b, we saw several communities that are strongly
positively correlated with AMR. However, these were not necessarily
the fecal communities. We therefore sought to include the ARGs in the
per-site network analysis and recomputed the networkswith both ARG
and MAG features included and correlated. While correlation alone
might be too uncertain to ascertain the source genome, an overall
origin based on community might be feasible.

Using such an approach, Bologna, Budapest, and Rotterdam
formeda fecal community eachwithARGs and at least 70%of classified
species being known human gut species.

The Rotterdam fecal community was associated with 10 ARGs,
mostly tet(W)/(O)/(32) alleles which are known to recombine, aph(3’)-
III,blaACI and cfr(C). TheBologna fecal community contained 18 genes
with many recognized Proteobacteria ARGs like sul(1), sul(2), qnrS,
tet(X), tet(W), and aadA alleles. Lastly, the Budapest fecal community
included 22 ARGs, overlapping with some of the others, but also with
unique inclusions like mph(N), tet(44), and erm(B).

In the Copenhagen sites, there was a tendency of large ARG-only
communities forming, not associated with any species in particular
(Supplementary Fig. S9). Whether this is due to plasmid carriage or
other sources remains to be explored.

Some bacterial communities closely follow the solar year
To better visualize and understand the dynamics between the com-
munities, we explored the temporal trends of microbial communities
across multiple sites (Fig. 6). As anticipated, the network structures
unveiled complex interrelationships among these communities,
reflecting significant changes in sewage composition over time.
Notably, we identified communities characterized by strong periodic
trends that exhibited clear negative correlations with other commu-
nities. In contrast, certain communities experienced a notable longer-
term abundance change, going from the least to the most abundant
community in a >1 year sampling period, or reversely, changing from
dominant to insignificant.

We quantified the time periods of the “periodic” bacterial com-
munities. Given that our sampling campaign lengths frequently
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covered only a single oscillation per community, we opted to simply
estimate the frequency by fitting sine functions. Notably, we identified
a subset of communities, especially in Copenhagen, Bologna, and
Rotterdam, which displayed periodic behaviors closely aligned with
the solar year (Supplementary Fig. S10). The community most closely
following the solar year was Copenhagen_RA_2 (364,77 + /− 9.48 days).
This community contains Acidovorax defluvii, Trichococcus flocculi-
formis and 145 other species, most of which have not been described
before.

Intriguingly, in Rotterdamand across the three Copenhagen sites,
we discovered two annual communities that weremarkedly negatively
correlated with each other. These are visually represented by dashed
lines in Fig. 6. In addition, Supplementary Fig. S11 provides another
perspective by showing the trends in beta-diversity per site over time.
We observed a notable divergence in the bacterial composition of
sewage at sampling sites over time, with samples becoming increas-
ingly dissimilar, following the time between collection dates (Δ days)
(Supplementary Fig. S11b). Budapest, though, emerged as anexception

as its sewage composition exhibited relative stability over the course
of a year. In half of the sampling sites, there is a detectable decrease in
beta-diversity after one year. This particular phenomenon was absent
in Bologna and in Rome (Supplementary Fig. S11a). Excluding the
dominating Pseudomonas_E taxon made little difference, demonstrat-
ing that the seasonal findings are separate (Supplementary Fig. S11c).
Although some sampling sites exhibited periodic patterns alignedwith
the solar year, others did not; the diagrams at the community level
revealmore nuanced patterns within each site, distinguishing between
communities with seasonal behaviors from those without.

Discussion
We managed to uncover a large number of novel taxa, representing a
wide phylogenetic span, from the sewage samples in five European
cities. Many novel taxa, including orders, we could only recover by the
combination of deep co-assemblies and co-abundance genome bin-
ning. It would seem that using single-sample pipelines only recovers a
relatively small fraction of abundant taxa in sewage, and other tactics

Fig. 5 | Human gut microbiome species form communities and correlate with
crAssphage abundance. a Certain sampling sites show communities dominated
by gut microbes. Light blue indicates the number of MAGs classified as human gut
microbes, dark blue represents the number of MAGs not identified at the species
level, and light green represents the number of other species in each community.
Communities with fewer than 10 members were excluded from the analysis.
The percentage values indicate the proportion of human gut microbes within

each community. b Relative abundance of crAssphage (BK010471), an indicator
of human fecal contamination shows low median level of fecal contamination
in Rome but similarly high level of median abundance at other sites. The boxplot
hinges represent the 25th and 75th percentiles, with the median indicated by a
line inside the box. The whiskers extend to 1.5 times the IQR. c Spearman’s ρ
between sample crAssphage depth and CLR-transformed depths of bacterial
communities.
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are required to discover the majority of new life. Downsides of single-
sample binning were also highlighted in a recent investigation that
identified large degrees of contamination of public MAGs generated
with such approaches25. The large added depths of co-assemblies
resulted in many contigs that had too low depth of coverage in the
individual samples. Only ~2%of specieswe recoveredwith co-assembly
had at least 1% abundance in any of the samples, while species recov-
ered with single-sample assembly were more abundant in general,
highlighting the added sensitivity. A downsize was the extensive
compute requirements with some jobs running for many weeks and
needing a lot of memory. The many new taxa recovered here by
reference-free metagenomics improve public collections and will
potentiate future reference-based metagenomics and sewage
monitoring.

We found that sewage microbiomes drift apart over time so
samples that are temporally close, also have lower beta-diversity

confirming expectations and previous findings13,26. Surprisingly
though, we found striking differences in the impact of seasonality
on the surveyed cities. Some cities like Rotterdam and Copenhagen
showed large effects with samples taken a year apart being
much more similar. Other cities, like Bologna, however had almost
no seasonal effects, with a more stable microbiome throughout
the year. This result has great implications for current and
future sewage surveillance and how those campaigns are designed.
If we want passive low-frequency surveillance of e.g., AMR in
sewage, like previously proposed, we need to ensure this is taken
into account2,3. Perhaps the exact timing of sampling for a
health snapshot is unimportant in one city, whereas it is paramount
in another. As sewage surveillance of pathogens and AMR is
increasingly used and soon mandated in the EU, these findings are
important to take into account, especially if using a metagenomic
approach12.
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Fig. 6 | Time abundance of principal bacterial communities at each site.
The figure shows the smoothed (LOESS) trends of the CLR-transformed depths of
bacterial communities, colored as in Fig. 3. The horizontal black dashed lines
indicate where CLR-transformed depths are zero, highlighting the geometric

means of the samples serving as the reference in CLR space. Only the communities
composed of 30 or more bacterial species/MAG are included in the figures.
Communities displaying periodic behavior aligned with the solar year are marked
with dashed lines.
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Network analyses reveal a separation of bacteria in distinct com-
munities, that correspond to e.g., different sources of origin or sea-
sonality/temperature. Cities with distinct seasonality exhibited large
bacterial communities interconnected by negative correlations. These
intercommunity relationships display strong seasonal fluctuations,
which likely contribute to the observed beta-diversity. Also interesting
is the existence of bacterial communities that drastically change and
consistently increase or decrease over the entire sampling period. This
wasparticularly pronounced in Bologna andRotterdam,where initially
marginal communities assumed dominance, and vice versa. This
underscores the fluid nature of microbial community dynamics. Our
findings allude to a multifaceted microbial ecology in urban sewage
systems, where community dynamics are shaped by a multitude of
factors.

Furthermore, the finding that a great abundance of polymicrobial
Pseudomonas_E-rich communities occasionally dominate sewage
samples (>90% reads) should inform future surveillance efforts.
Although a high abundance of Pseudomonas is not unprecedented in
the literature27, the noteworthy occurrence of extreme blooming,
quick fluctuations and multispecies nature stands out.

Potential factors driving these blooms include rainwater inputs,
temperature and pH fluctuations, occasional nutritional starvation,
and the role of these species in both the formation and detachment of
biofilms. We found no connection between temperature or pH fluc-
tuations and the occurrence of these blooms. As many Pseudomonas
species frequently engage in biofilm formation, onemight suspect that
PEH corresponds to biofilm lining surfaces in the sewage system.
Physical connectedness in a biofilm matrix would also appear to
explain why specifically these communities are much closer knit (high
co-occurrence) compared to other detected communities. If so, this
type of analysis could be used to profile individual sources.

It would appear that one could source-attribute many novel
species through network analyses and inferring physical proximity/
multicellular behavior. Indeed, we also see that known human gut
microbiota, human mitochondria and crAssphage correlate. If further
refined, one could imagine a system where simply point sampling at
the treatment plant through time can provide the data to differentiate
changes occurring inside the human guts, rat guts, sewer biofilms and
other input sources.While further examination of these factors should
be a future focus, the domination of Pseudomonas_E species also has
important implications in a surveillance context.

First of all, compositional data analysis (CODA) will be essential in
any surveillance efforts to avoid spurious correlations. As previously
demonstrated by Gloor et al., microbiomes are compositional, and the
issues of non-CODA approaches become particularly obvious when a
few actors, like our Pseudomonas_E species, dominate the samples19.
The foundation ofCODA lies in considering the ratio between features,
rather than their absolute values. Considering the sample dominated
by Pseudomonas_E communities, the relative abundances of other
components are compressed to increasingly lower values, making it
challenging to discern their specific characteristics. However, when
focusing exclusively on the ratio between bacterial species, they
remain unaffected by this phenomenon. This is highlighted by the
differences in Fig. 1c, d, where the former is primarily driven by Pseu-
domonas_E, thus concealing the city-specific species composition
shown in the latter. Another approach attempting to circumvent the
compositionality of microbiomes comes from absolute quantification,
where each read-quantified entity is related to some additional mea-
sure like spike-in sequences or bacterial cells28.

Neither CODA, nor attempts to estimate absolute quantities from
sequencing results can however solve Pseudomonas_E–related pro-
blems. As almost all recovered DNA suddenly belongs to an environ-
mental Pesuedomonas_E-rich community, we will get very little data on
pathogens and AMR which are surveillance targets of larger interest.
Ratios between this community and resistance gene hits can in fact

vary more than 1000-fold. Fewer discrete read counts to surveillance
targets of interest mean larger stochastic sampling noise, lower sen-
sitivity, andmore expensive surveillance. IfPseudomonas communities
are from the biofilms and tend to shed in specific daily time slots, it
might be worthwhile to target smaller time windows than that of 24-h
continuous samplers. Prescreening samples for Pseudomonas with
cheap qPCR or culturing could also help informwhich samples should
be subject to shotgun metagenomics.

Even though we surveyed a large number of samples across five
countries, we only included European cities in this study. We know
from previous work that historically undersampled geographic
regions, from a genomic point of view, like Africa and South America,
have a much larger proportion of metagenomic dark matter. Enteric
pathogens and AMR are likewise problems that will impact the
Southern Hemisphere to a higher degree in the future29. Whether our
results are generalizable to all of Europe, or the World should receive
future attention.

In conclusion, there are still thousands of undiscoveredmicrobial
species in European urban sewage, a system that has recently under-
gone extensive studies. The use of more frequent shallower sequen-
cing with co-assembly and co-abundance binning can help us uncover
much of this diversity. The microbial communities frequently get
completely overwhelmed by large multispecies, Pseudomonas_E-
dominated blooms which need to be accounted for in untargeted
surveillance systems on sewage DNA. Finally, we suggest that the
structured microbial time-series communities we observe open up for
possibilities that we can actually identify the physical source of novel
species in e.g., biofilms and other microbiomes.

Methods
Sample collection
Sewage samples were collected as part of a longitudinal study across
European cities (Supplementary Table S1) with three sites in Copen-
hagen (Denmark), being Rensningsanlæg Avedøre (RA), Rensningsan-
læg Damhusåen (RD) and Rensningsanlæg Lynetten (RL). Sites in
Budapest (Hungary), Rotterdam (Netherlands), Bologna (Italy), and
Rome (Italy) were also included. We sampled Copenhagen from 2019,
and the other cities starting in 2020 (Supplementary Fig. S12)30. Each
participating partner was responsible for collecting and shipping 1–2
liters of untreated urban sewage samples to the Technical University of
Denmark (DTU). Collection was performed using 24-h automatic
continuous-flow samplers used everywhere except in Bologna. In
Bologna, three individual grab samples of 300ml were collected
manually 5minutes apart in the 8–10 AM interval and pooled.

We used a weekly sampling frequency, but some time points were
missed due to the COVID-19 lockdown. Sewage samples, collected and
frozen at −80 °C, were transported to DTU under IATA regulation SP
A197 as UN3082, adhering to safety standards with volumes not
exceeding 2 L. At DTU, each sample received a unique identifier, link-
ing it to essential metadata including location and collection date to
ensure traceability. This process ensured compliance with the Danish
Act on the scientific ethical treatment of health research, indicating no
requirement for prior authorization from ethical review boards.

DNA extraction, quantification, and sequencing
In total, 500mL fromeach sewage samplewasdefrosted over 2 days at
4 °C. Once thawed, the samples were centrifuged for 10minutes at
10,000×g, allowing for the collection of sewage pellets. These pellets,
designated for DNA extraction, were stored at −80 °C.

Following the protocol established by Knudsen et al.31 and used
later e.g., by Hendriksen et al.2, DNA was extracted from the sewage
pellets. This validated approach for untreated sewage ensures the
consistent and reliable recovery of metagenomic DNA with high
microbial diversity. The extracted DNA was quantified using the Qubit
2.0 DNAHS Assay (Thermo Fisher Scientific, Waltham,MA, catalog no.
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Q32851), for assessing the quality and concentration of the genetic
material obtained. Extracted and quantified DNA was shipped to
Admera Health (New Jersey, USA).

At Admera Health, library preparation for metagenomic analysis
was conducted using the KAPA Hyper PCR-free library preparation kit
(KapaBiosystems, Roche, Basel, Switzerland, catalogno. 07962339001),
following themanufacturer’s guidelines. The quality and quantity of the
prepared libraries were then assessed using both the Qubit 2.0 DNA HS
Assay (Thermo Fisher Scientific, Waltham, MA, catalog no. Q32851) and
QuantStudio® 5 (Applied Biosystems, Foster City, CA), ensuring they
met the standards required for Illumina sequencing. Sequencing was
then performed on the Illumina NovaSeq6000 platform, targeting at
least 35 million clusters with 2 ×150 cycles (paired-end reads), corre-
sponding to 10.5 Gbp per sample.

Genome recovery
Metagenomic readswere preprocessed by trimming sequences (Phred
score <20; minimum length of 50bp) and removing adapters using
bbduk2, which is part of the bbtools32 suite (v 36.49).

MEGAHIT33 (v1.2.8) with the “meta-large” preset and a minimum
contig size of 1000 was used to co-assemble the paired-end meta-
genomes in groups stratified by sites. In addition, to the co-assembly,
Lazypipe34 (v2.1) was run on each of the sample sequence runs indivi-
dually to acquire single-sample assemblies. Lazypipe is a virus-focused
pipeline but initially runs the MEGAHIT metagenomic assembler
(v1.2.9 with default parameters) as part of its workflow34.

Minimap235 (v2.24) was used to align reads back to both the single-
sample assemblies and co-assemblies, so that all sequence runs used to
produce the initial assemblywere also used for alignment. The resulting
BAM files were processed with jgi_summarize_bam_contig_depths to
generate single-library depth files for the single-sample assemblies and
multi-library depth files for the co-assemblies.

MetaBAT236 (v2.15) was then used to produce bins from each
assembly, using its corresponding contigs and depth file. Only genome
bins of at least 200,000bp were retained as is the default and is
enough for almost all bacterial genomes.

We aimed to construct a comprehensive, non-redundant, and
environmentally representative reference genome dataset covering all
the sewage samples. CheckM220 (v1.0.1) was used on all 34,725 Meta-
BAT bins, originating from the two approaches: 23,082 single-sample
assemblybins, and 11,643 co-assemblybins.BasedonCheckM2 results,
we retained genome bins with contamination ≤10% and completeness
≥50%, corresponding to the MIMAGMedium quality threshold21. In all,
12,687 genomes fulfilled the criteria and were compared with the
dRep37 (v3.4.2) dereplicate workflow to find the highest-scoring
representative of each species cluster. Briefly, the dRep dereplication
process first clustered the genomes based on their MASH38 distances,
with a threshold set at 0.9 and a sketch size of 1000 and subsequently
did secondary clustering with an average nucleotide identity (ANI) of
0.95. The process yielded 2332 representative species-level MAGs.

GTDB-tk39 (v2.4.0 with GTDB r220 as reference) was used to
classify the dereplicated MAGs and place them into the archaeal phy-
logenetic trees, using the default values of min_perc_ac=10 (percent
amino acids covered by a MAG) and min_af=0.5 (proportion genome
coverage for species assignment).

For a visual summary of the main steps involved in this pipeline,
see the flowchart in Supplementary Fig. S13 in the Supplementary
Information.

Species quantification
All the trimmed, individual sequence runs were aligned to the dere-
plicated genome collection using minimap235 with paired-end align-
ment, N = 3 and otherwise default settings. Only the paired-end reads
with both reads successfully passing the preprocessing step were
aligned. The resulting BAM files were processed with the

jgi_summarize_bam_contig_depths (v2.15) script and supplied to
MetaBAT2 with default settings. We then multiplied the contig length
out of each depth value to obtain the number of nucleotides aligned to
contigs that could then be summed to its parent MAG in each sample.
The depth was then recomputed for each sample-MAG combination.

We employed centered log-ratio (CLR) transformed abundances to
handle the inherent compositional natureof thedata40. To address cases
where CLR is undefined due to zeros, we used a pseudo-count equal to
65% of the sample detection limit as previously recommended41,42.

Beta-diversity and metagenome ordination
We performed Principal Coordinates Analysis (PCoA) by utilizing the
cmdscale function from the stats (v4.2.1) package in R43(v4.2.1). PCoA is
a dimensionality reduction technique that transforms a matrix of dis-
similarities into a new coordinate space where axes, termed principal
coordinates, represent the most substantial variance in the data. This
transformation facilitates the visualization and subsequent analysis of
complex datasets in lower-dimensional scatter plots.

To determine the structure embedded without the complex
microbiomes, we applied two distinct dissimilarity measures. The first
measure employed was the Bray–Curtis dissimilarity, calculated using
the vegan (v2.6) package44. This metric is frequently used in quanti-
fying ecological variation across samples, making it useful for identi-
fying general patterns of diversity and distribution.

However, to address the unique challenges presented by com-
positional data, such as those inherent in metagenomic datasets, we
also utilized the Aitchison distance. This metric is specifically tailored
for compositional data analysis. By applying it to CLR-transformed
data, as outlined in the preceding section, we could effectively capture
the nuances of compositional variability. The Aitchison distance, fun-
damentally a Euclidean distance computed on CLR-transformed data,
can uncover subtle yet critical compositional disparities between
samples45.

To determine if sampling site and city have significant effect on
beta-diversity, we performed a permutational multivariate analysis of
variance (PERMANOVA) using the adonis2 function from the vegan44

(v2.6) package. This analysis was conducted on Aitchison distances.

Network community reconstruction and analyses
Initially, we filtered out genomes with amean depth of coverage of 0.5
or lower. Genome depths in each sample were CLR-transformed.
Genome abundances were then correlated to each other using Pear-
son’s correlation and we retained genome-genome links with P values
=<0.1 after correcting for the false discovery rate.

We defined our networks as undirected, weighted, and signed
graphs, where genomes are vertices, and significant correlations are
links. To extract communities, we used a signed version of the mod-
ularity able to manage also the negative weights associated with the
links46. Therefore, a community is the subset of bacteria densely con-
nected from only positive correlation, minimizing the negative ones.

All network analyses were conducted using R (v4.2.1)43,47 through
the package mgnet (v0.2.1-alpha), available at https://github.com/
Fuschi/mgnet, with key dependencies being the igraph48 (v2.0.3),
ggraph49 (v2.2.1), qualpalr50 (v0.4.4) and psych51 (v2.4.3) packages.

Metabolic potential of communities
The metabolic potential of distinct communities was measured using
METABOLIC-G (v4.0) with the default options for MAGs and aggre-
gated to the community level. In addition, we analyzed shuffled com-
munities, where the same number of bacteria from the same site was
randomly shuffled and reorganized into new communities. From the
resulting table, we utilized ‘KEGGModuleHit’ data. KEGG (Kyoto
Encyclopedia of Genes and Genomes) modules were grouped into
categories, and thenumber ofmodules present in eachcommunity per
category was calculated. Subsequently, we determined the ratio of
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modules present out of the total modules in each category. KEGG
module categories with at least one community with 0 completeness
and KEGG modules with at least one community with minimum 0.7
completeness were visualized in Supplementary Fig. S7.

Antimicrobial resistance gene quantification. Trimmed reads of all
libraries were mapped using kma52 (v1.2.8) with the -cge and −1t1 flags
using both paired-end and singleton reads as input against the
ResFinder database53 (commit=3eedbde). The ResFinder database
consists of a manually curated collection of antimicrobial resistance
sequences54. Settings of kma allowed mapping only one query
sequence per template and with default penalty values.

The aligned sequence fragments were summed to representative
sequences in groups of similar ResFinder alleles. This clustering was
accomplished using 90% identity and 90% coverage thresholds with
usearch (v11.0.667) cluster_fast on ResFinder genes55.

Associations to environmental and human fecal indicators
To identify the overlap of humanmicrobiota and our classified species,
we downloaded the genome collection from Unified Human Gastro-
intestinal Genome (UHGG) collection56 (v2.0.2) representing species
derived from the human gut.We then determined the number of those
species in our classified communities by their clustered name alone.

To calculate the abundance of the human mitochondrial genome,
trimmed reads were aligned by minimap235 (v2.24) to the human mito-
chondrial sequence (hs_ref_GRCh38.p7). The average alignment depth
per sample was determined using the jgi_summerize_contig_depth
function from MetaBAT236 (v2.15).

To calculate the relative abundance of Pseudomonas_E in each
sample, we summed the mean depth of each MAG within the Pseudo-
monas_E genus, and then divided this sum by the total mean depth of
all MAGs.

The reference genome of Carjivirus communis BK010471 was
downloaded from the NCBI nucleotide database using the Entrez
Direct utility. Paired-end reads were aligned to this reference genome
using BBMap (v39.06), with aminimum identity threshold of 90%. The
depth of coverage of the aligned reads was retrieved using
Samtools57 (v1.19.2).

Periodicity analysis of bacterial communities. For periodicity ana-
lysis in urban sewage bacterial communities, we applied a sine wave
fitting method post-CLR transformation. Our model, f(t) = A*sin(ωt +
ϕ), optimized amplitude (A), angular frequency (ω), and phase shift
(ϕ) using the SciPy (v1.12.0)58 library’s curve_fit function. Instances of
curve_fit non-convergence were flagged as non-periodical. In addition,
we visually inspected fits for biological relevance, especially for
communities with solar year-aligned periods. This approach
ensured our findings were both statistically sound and ecologi-
cally meaningful.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing reads, metagenomic assemblies, and MAGs generated in
this study have been deposited in the European Nucleotide Archive
(ENA) under accession code PRJEB68319. Supplementary tables are
provided in the Supplementary Data file. Metadata and accession
numbers for all the samples and sequencing runs generated in this
study are provided in the Supplementary Data 1 tab. Taxonomic clas-
sifications, quality metrics, accessions, and relevant statistics for the
2332MAGs generated in this study are provided in the Supplementary
Data 2 tab. The number of ResFinder gene counts by sample generated
in this study are provided in the Supplementary Data 3 tab.

Information on community membership for the MAGs generated in
this study are provided in the Supplementary Data 4 tab. The
description of column names in the other supplementary data tabs is
provided in the Supplementary Data 5 tab. Source data are provided
with this paper.
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