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Detection of relativistic fermions in Weyl
semimetal TaAs by magnetostriction
measurements
T. Cichorek 1✉, Ł. Bochenek 1, J. Juraszek 1, Yu. V. Sharlai2 & G. P. Mikitik 2✉

Thus far, a detection of the Dirac or Weyl fermions in topological semimetals remains often

elusive, since in these materials conventional charge carriers exist as well. Here, measuring a

field-induced length change of the prototype Weyl semimetal TaAs at low temperatures, we

find that its c-axis magnetostriction amounts to relatively large values whereas the a-axis

magnetostriction exhibits strong variations with changing the orientation of the applied

magnetic field. It is discovered that at magnetic fields above the ultra-quantum limit, the

magnetostriction of TaAs contains a linear-in-field term, which, as we show, is a hallmark of

the Weyl fermions in a material. Developing a theory for the magnetostriction of non-

centrosymmetric topological semimetals and applying it to TaAs, we additionally find several

parameters characterizing the interaction between the relativistic fermions and elastic

degrees of freedom in this semimetal. Our study shows how dilatometry can be used to

unveil Weyl fermions in candidate topological semimetals.
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Until groundbreaking experiments regarding the two-
dimensional material graphene, a study of relativistic
quasiparticles has been limited to the high-energy

physics1. This single-layer allotrope of carbon is a zero-gap
semiconductor with a linear energy dispersion of conduction and
valence bands connected one with the other at their extremities,
and thus giving rise to the presence of low-energy quasiparticles
governed by the relativistic Dirac equation2. Even more promis-
ing for quantum information processing are certain three-
dimensional semimetals with nontrivial topology that host
massless chiral fermions as quasiparticle excitations described by
the relativistic Weyl equation3,4. Due to the breaking of either the
inversion symmetry or the time reversal symmetry, a Weyl
semimetal is characterized by the band-touching points known as
Weyl nodes around which the nondegenerate-in-spin bands
disperse linearly in all three momentum-space directions5.

Because of the inherent chirality of Weyl quasiparticles and
the emerged monopole-like structure of the Berry curvature,
Weyl semimetals promise the wealth of novel phenomena. In
particular, the surface Fermi arcs, that are directly observed
using momentum-resolved photoemission spectroscopy, are
recognized as a prime characteristic of this class of topological
semimetals5. The negative longitudinal magnetoresistance6–9

caused by the chiral anomaly, and unusual quantum oscillations
produced by a cyclotron motion that weaves together the Fermi
arcs and chiral bulk states10,11 are other inherent properties of
these materials. Recently, a unique type of acoustic collective
mode called chiral zero sound has been theoretically proposed
for Weyl semimetals with multiple pairs of Weyl nodes12, and
giant quantum oscillations of the thermal conductivity dis-
covered in the prototypical Weyl semimetal TaAs have been
explained with this chiral sound13. However, most of these
experimental signatures of the Weyl electrons are often difficult
to track down, in particular because the relativistic fermions
coexist with conventional quasiparticles in topological semi-
metals. For example, although the negative longitudinal mag-
netoresistance in a parallel magnetic field was observed in a
number of Weyl semimetals, its interpretation as the long-
sought manifestation of the chiral anomaly remains con-
troversial due to a possible inhomogeneous current flow in bulk
crystals14,15 as well as in view of alternative explanations of this
effect16. At present, measurements of a quantum-oscillation
phase are widely used to detect the Weyl fermions (see, e.g.,
references in review17) since this phase is noticeably affected by
the Berry curvature. However, such experiments sometimes lead
to ambiguous results. Therefore, and because of a rapidly
growing number of candidate materials, new experimental
methods to detect signatures of relativistic quasiparticles in
topological semimetals are highly desirable. In this context, it
was recently shown that the magnetization and magnetic torque
measurements of Weyl semimetals upon entering the ultra-
quantum limit state in high magnetic fields can be a useful probe
for discerning the relativistic quasiparticles18–20.

In this article, we draw attention to the magnetostriction, i.e., to
the field-induced length change, which results from the interac-
tion between the electron and elastic degrees of freedom in a
crystal. Using TaAs as an example, we show that measuring this
thermodynamic quantity, one can clearly distinguish between the
relativistic and conventional electrons already in the field range
where the Weyl fermions are confined at their zeroth Landau
level, but the trivial quasiparticles are far below their ultra-
quantum limit. Developing a theory of the magnetostriction for
topological semimetals with a noncetrosymmetric crystal struc-
ture, we demonstrate how parameters characterizing not only
Weyl electrons but also their interaction with elastic deformations

can be extracted from the magnetostriction measurements. A firm
evidence for Weyl fermions is found with the measurements
along the [001] direction where the largest length changes are
observed. By contrast, the longitudinal expansion along the [100]
direction is by an order of magnitude smaller in the highest field
applied, but this a-axis magnetostriction experiences immense
changes from large positive to large negative values with minute
deviations of the applied magnetic field from the [001] direction.
We suppose that the observed anisotropic magnetostrictive stress
can be relevant for future high-field Weyltronic devices.

Results
Magnetostriction of nonmagnetic semimetals. The magnetos-
triction of nonmagnetic conductive materials is directly related to
changes in the density of charge carriers in a magnetic field.
Specifically, a pocket i of the Fermi surface makes the following
contribution to the field-induced relative length change (Sup-
plementary Note 1):

ΔL
L

¼ Λi niðBÞ � nið0Þ
� �

; ð1Þ

where B= μ0H is the magnetic induction produced in the sample
by the external magnetic field H, ni(B) is the B-dependent density
of the charge carriers in this pocket, and the constant Λi depends
on the direction along which the magnetostriction is measured.
Formula (1) results from a minimization of the energy consisting
of the elastic energy proportional to (ΔL/L)2 and of the energy of
the interaction between the elastic and electron degrees of free-
dom. This formula is written under the assumption that a
deformation of the crystal shifts the appropriate electron band as
a whole and does not change its shape. As a rule, this rigid-band
approximation is quite accurate for real semimetals. Indeed, it
was experimentally shown that the magnetostriction is very small
if all charge carriers belong to a single band21, and this small
value characterizes the precision of the rigid-band approximation.
[In this case, formula (1) predicts that the magnetostriction
vanishes since ni(B)= ni(0) due to the conservation of the car-
riers]. On the other hand, for a multiband material, this ther-
modynamic quantity is greatly enhanced21 due to a band overlap
and an electron redistribution between the bands at the
switching-on of the magnetic field. Below we consider only such
multiband materials since all the known Weyl semimetals contain
several groups of the charge carriers.

Distinctions between the Weyl and trivial electrons. When
several groups of electrons or holes exist in a conductive material,
their Fermi energy EF (or the chemical potential ζ at nonzero
temperature) generally depends on the magnetic field. At first,
however, we will neglect this B dependence of EF since as will be
shown below, this simplified approach can provide a sufficiently
accurate description of the magnetostriction. We start with a
comparison of the magnetostrictions produced by the Weyl
quasiparticles and by the trivial electrons for which the spectrum
has the parabolic form (Supplementary Notes 2 and 3). For trivial
electrons in high magnetic fields, their lowest Landau level rises
above the Fermi energy if the parameter δ characterizing the
electron magnetic moment μe= δ(eℏ/m�) is less than 1/2 where
m� is the cyclotron mass. This moment consists of its spin and
orbital parts, the latter being due to the spin-orbit interaction. For
such fields, the Fermi-surface pocket i of the trivial electrons
empties, and ni(B)= 0 in this ultra-quantum limit. Thus, the
magnetostriction of these electrons becomes constant,

ΔL
L

¼ �Λinið0Þ � ai: ð2Þ
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This saturation of the magnetostriction takes place at B > Fi/
(0.5− δ), see Fig. 1, where

Fi ¼
Smax;i

2πe_
ð3Þ

is the frequency of the quantum oscillations occurring at B < Fi,
and Smax;i is the maximal cross-sectional area of the pocket i. On
the other hand, if δ > 1/2, the orbital B-dependent displacement
(eℏ/2m*)B of the lowest Landau level from the band edge ε0 is less
than the electron Zeeman energy μeB, and at least one Landau
level remains occupied by the charge carriers at any B. In this
case,

ΔL
L

� ai þ γiB
3=2; ð4Þ

for the magnetic fields H≫ Fi/μ0, with the factor γi being
dependent on δ (Fig. 1 and Supplementary Note 3).

In the weak magnetic fields H≪ Fi/μ0, if the quantum
oscillations are suppressed by impurities or a temperature, the
magnetostriction takes the form

ΔL
L

¼ �ai
3B2

8F2
i

δ2 � 1
12

� �
� ciB

2: ð5Þ

If the oscillations are superimposed on a smooth background, this
formula just describes this background.

In the case of the Weyl electrons, the zero Landau level
coincides with the energy of the Weyl point for any B. Therefore,
in the ultra-quantum regime when μ0H > Fi, only this level is
occupied by the electrons, their density ni(B) is proportional to B,
and the magnetostriction is described by the formula

ΔL
L

¼ ai 1� 3B
4Fi

� �
� ai þ biB; ð6Þ

where ai= -Λini(0), the parameter Fi is still defined by formula
(3) and coincides with the frequency of the quantum oscillations.
A comparison of Eq. (6) with formulas (2) and (4) for the

parabolic spectrum shows that in the high-field region, the
magnetostriction produced by Weyl fermions essentially differs
from the magnetostriction of the trivial electrons (see also
Supplementary Note 3).

For H≪ Fi/μ0, the magnetostriction of the Weyl electrons takes
the form coinciding with Eq. (5) at the demarcative value of
δ= 1/2,

ΔL
L

¼ � aiB
2

16F2
i

� ciB
2: ð7Þ

It is clear from formulas (2)–(7) that fits of the quadratic
function cbB2 to the smooth background in the weak-field range
and of a linear polynomial or a power function to the
magnetostriction in the ultra-quantum regime allow one not
only to detect the Weyl electrons but also to determine at least a
part of the parameters ai and Fi from the experimental data. With
these parameters, the magnetostriction, including its subtle details
as the quantum oscillations, can then be calculated in the entire
range of the applied magnetic fields, using formulas of
Supplementary Notes 1–3. A comparison of results of this
calculation with the appropriate experimental data permits one to
verify the existence of the conjectured Weyl electrons and to
refine the values of the parameters for them.

Advantages of the magnetostriction. Consider a dependence of
the magnetostriction on the volume of the Fermi-surface pockets
(Supplementary Notes 2 and 3). In the case of the trivial electrons,
one has ni(0)∝ ∣EF− ε0∣3/2, Fi / Smax;i / jEF � ε0j, and Eq. (5)
yields for the weak magnetic fields,

ci / jEF � ε0j�1=2 / n�1=3
i ; EF > ε0;

ci ¼ 0; EF < ε0;
ð8Þ

where ε0 is the edge of the energy band. (For the trivial holes the
same formulas hold true but at the opposite relations between EF
and ε0). A similar increase of the coefficient ci with decreasing the
charge-carrier density ni is obtained for the Weyl electrons from
Eq. (7) since nið0Þ / ðEF � εdÞ3, Fi / Smax;i / ðEF � εdÞ2 in this
case, and hence

ci / ± jEF � εdj�1 / n�1=3
i ; ð9Þ

where εd is the energy of the Weyl point, and the signs ±
correspond to the electrons (EF > εd) and holes (EF < εd), respec-
tively. The obvious difference between the Weyl and trivial charge
carriers is that the function ci(EF) changes its sign at the energy of
the Weyl point εd, whereas this change does not occur for the

trivial fermions. More importantly, however, the relation ci /
n�1=3
i reveals that the magnetostriction is substantially larger for

small electron pockets than for large electron groups. That is why
this quantity for elemental bismuth (ΔL/L≳ 10−6 at 10 T21,22),
the Fermi surface of which consists of small pockets, considerably
exceeds the magnetostriction of metals (ΔL/L ~ 10−8 at 10 T23).
This feature of the magnetostriction simply reflects the fact that
the change of charge-carrier density in the weak magnetic fields
(and at constant EF) is less for a large Fermi-surface pocket than
for a small one. In the ultra-quantum regime, when the change in
the density becomes of the order of the density itself, the con-
tribution to the magnetostriction generated by the large electron
group can eventually exceeds the appropriate contribution of the
small one, but such extreme fields are not currently available for
dilatometric experiments.

Compare now the magnetostriction with those physical
quantities that are proportional to the density of charge-carrier
states at B= 0, νi= dni(EF)/dEF (e.g., with the non-oscillating part
of the electrical conductivity24). This νi increases with ni both for

Fig. 1 The magnetostriction of the Weyl electrons (red) and of the
trivial electrons with parabolic spectrum (black) versus magnetic
induction B= μ0H at zero temperature. Here Fi is defined by Eq. (3), the
magnetostrictionΔL/L is calculated with equations of Supplementary Notes 2
and 3. For the trivial electrons, the parameter δ is assumed to be equal to zero.
Note the relative phase shift of the oscillations shown by the red and black
curves. Inset: The similar plot, but when δ= 0.75 for the trivial electrons
(black line). In this case ΔL=L ¼ Λinið0Þð0:75u�3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uþ δ � 0:5

p � 1Þ for
B > Fi/(1.5− δ) where u≡ Fi/B (Supplementary Note 3).
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the trivial electrons (νi / n1=3i ) and for the Weyl quasiparticles

(νi / n2=3i ). Hence, in measurements of those quantities, experi-
mental signatures for small Fermi-surface pockets are extensively
masked by the contribution of a large pocket when it exists in the
material. Therefore, the above ni dependence of the magnetos-
triction makes it a useful tool for studying topological semimetals
in which the Weyl points are in the vicinity of EF.

In Supplementary Note 4 we also compare the magnetostric-
tion with the magnetization M, the orbital part of which is not
determined by the density of electron states as well, and which is
considered as another thermodynamic probe of the Weyl
electrons18–20. This comparison reveals the following distinctions
between these quantities: i) Completely filled electron bands and,
as clear from the above considerations, large Fermi pockets
practically do not contribute to the magnetostriction. However,
such pockets and even filled energy bands produce most of the
magnetization, and this part of M remains proportional to B for
the magnetic fields at which the Weyl electrons are in the ultra-
quantum regime. Therefore, it is necessary to carry out a
subtraction of extrapolated low-field magnetization from the
high-field experimental data in order to extract the Weyl-electron
contribution to M17,25. ii) If only small charge-carrier pockets
exist in a semimetal, all these pockets can make large
contributions to the magnetostriction. On the other hand, an
attractive feature of the magnetization is that only its part
produced by Weyl points is relatively large, whereas the part
generated by small trivial-electron groups is insignificant. iii)
Although the magnetostriction and the magnetization are similar
in many respects, these quantities are associated with the different
parts of the free energy of the conductive materials. The
magnetization characterizes the electron energy in a magnetic
field, whereas the magnetostriction results from the sum of the
elastic energy and the energy of the interaction between the
electron and elastic degrees of freedom in a crystal. For this
reason, the detailed analysis of the magnetization and the
magnetostriction can provide complementary information on
the parameters of the Weyl points. In particular, the magnetos-
triction depends not only on the electron characteristics Fi, ni(0),
but also on the constants Λi which are determined by the elastic
moduli of the crystal and by the constants of the deformation
potential (Supplementary Note 1). These constants specify shifts
of the energy bands under deformations in the conductive
materials.

A measurement of the magnetic torque is the effective way of
determining the transverse component of the magnetization18–20.
However, this component and the magnetic torque vanish when
the magnetic fields is aligned with a symmetry axis of a crystal. At
magnetic fields tilted away from the symmetry axis, even
equivalent pockets in a Weyl semimetal produce different
contributions to the magnetization and to the magnetostriction,
and a theoretical analysis of these quantities becomes complicated
for the semimetals with multiple Weyl nodes. However, the
magnetostriction as well as the longitudinal magnetization and
the magnetotropic coefficient26 remain nonzero at the magnetic
field aligned with the symmetry axis, and such measurements of
these quantities seem to be most convenient for an initial analysis
of the Weyl fermions.

Magnetostriction of TaAs along the [001] direction. Let us
exemplify the above considerations by an investigation of the
field-induced length change of the Weyl semimetal TaAs. Like
other transition-metal monopnictides NbP, NbAs, and TaP27–30,
tantalum arsenide crystallizes in a body-centered tetragonal
structure that lacks a horizontal mirror plane and thus the
inversion symmetry. This noncentrosymmetric structure is

essential to the existence of multiple pairs of the Weyl nodes
divided into four pairs of the W1 points and eight pairs of the W2
points3. Among these materials, TaAs exhibits the largest
separation of the Weyl nodes in momentum space, and the Fermi
energy is sufficiently close to the Weyl points to produce a
separate Fermi pocket encompassing each of these points. In
addition to this, the cross-sectional areas of both the W1 (banana
shaped) and W2 (nearly isotropic sphere) pockets are so small
that the ultra-quantum limit for the Weyl electrons can be easily
reached in experiments15,31. These electron pockets coexist with
trivial hole pockets aligned along the nodal rings which would
occur in TaAs if the spin-orbit interaction were absent31. When
the magnetic field is parallel to the c axis of TaAs, all the pockets
in each of the W1 and W2 electron groups or in the group of the
holes have equal densities ni(B) and extremal cross-sectional areas
Smax;i. Let FW1, FW2, and Fh denote the frequencies of quantum
oscillations produced by the W1 and W2 electrons and by the
holes, respectively. As discussed above, these Fi also correspond to
the magnetic inductions at which the W1 and W2 electrons and
the holes enter the ultra-quantum regime. According to ref. 31,
one has FW1≃ 7 T, FW2≃ 5 T, and Fh≃ 19 T, with FW2 being
calculated but not measured for the [001] direction of the mag-
netic field. We emphasize that for B∥c, the entire field range up to
16 T, which is available in our experiments, may be considered as
the low-field region for the holes.

Figure 2a shows the magnetostriction of TaAs measured along
the [001] direction at 25 mK. The field-induced expansion is large
and the relative length change ΔL/L amounts to about 5.5 × 10−6

at B= 16 T. With the magnetic field aligned along the c axis, the
quantum oscillations reaching large amplitudes (~30% of the
background signal at 3 T) are observable in the raw ΔL/L data
(top panel) and even more sharply discernible in the derived
coefficient λ ¼ 1

L
dL
dB (bottom panel) that represents the derivative

of the charge-carrier density with respect to B. The sharp change
observed in λ at ~7.5 T and the linearly increasing signal at higher
fields clearly show that the W1 and W2 electron groups enter the
ultra-quantum regime, and the magnetostriction above 8 T is well
approximated by the square polynomial a+ bB+ chB2. The fit
gives the values of a, b, and ch presented in Table 1. The presence
of the linear-in-B term in the magnetostriction clearly indicates
the existence of the Weyl electrons, whereas the term chB2 may be
associated with the holes that are in the low-field range at
B ≤ 16 T. Thus, the presented experimental data do demonstrate
the possibility of detecting the relativistic fermions with the
magnetostriction.

Finally, we note that except for the oscillatory features, the
overall B-dependence of the c-axis magnetostriction remains
essentially unaltered up to the temperature 4.2 K [cf. Fig. 2b].
However, the log-log graph seems to reveal a deviation from the
B2 law expected in the low-field region (dashed black line). This
finding might point to a very small value of FW2 for B∥ [001].
However, the deviation of the B-dependence from the quadratic
behavior is less than or of the order of 10−8, and hence a detailed
insight into the low-field region requires larger TaAs crystals.

Analysis of the magnetostriction for TaAs. The theory of the
magnetostriction presented in Supplementary Notes 1–3, permits
us to describe quantitatively the experimental data for TaAs. We
find that at FW1= 7.2 T, the frequency of the calculated oscilla-
tions in the magnetostriction coincides with that observed
experimentally. Since this frequency agrees with FW1= 7 ± 0.5 T
reported by Arnold et al.31, we may be guided by that work in our
analysis. As in all previous experiments with TaAs13,19,31,32, the
oscillations with the frequency FW2 do not manifest themselves in
our data on the magnetostriction, and we take FW2= 5 T to
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maintain agreement with the results of the band-structure
calculations31. Then, using formula (6) and the values of the

constants a and b found above from the approximation of ΔL/L at
B > 8 T, we arrive at the two linear equations in the parameters
aW1 and aW2 characterizing the W1 and W2 electrons,

aW1 þ aW2 ¼ a;

�0:75
aW1

FW1
þ aW2

FW2

� �
¼ b:

ð10Þ

These equations give aW1 ≈− 1.58 × 10−6, aW2 ≈− 0.60 × 10−6

(set 1 in Table 1). Note that at given FW1 and FW2, we have been
able to determine all the unknown parameters for TaAs since
there are only two nonequivalent groups of the Weyl electrons in
this semimetal. Interestingly, the obtained aW1 and aW2 predict
the value of the coefficient cb determining the low-field behavior
cbB2 of the magnetostriction,

cb ¼ ch �
aW1

16F2
W1

� aW2

16F2
W2

� 1:83´ 10�8 T�2;

and this coefficient is close to that found experimentally (cf. the
dashed line in Fig. 2a, top). With these parameters and with
formulas of Supplementary Notes 1–3 at zero temperature, we
calculate the magnetostriction of the Weyl electrons for all
B ≤ 16 T. To fit the magnitude of calculated oscillations to the
experimental data, we use the dimensionless parameter specifying
the scattering of the W1 electrons by impurities, γW1= πTD,W1/
(EF− εd,W1), and find from the fit that γW1= 0.025 where εd,W1 is
the energy of the Weyl points W1, and TD,W1 is the Dingle
temperatures for the W1 electrons. The similar ratio γW2=
πTD,W2/(EF− εd,W2) for the W2 electrons is assumed to be equal
to 0.1 in order to suppress the appropriate oscillations. Adding
the hole contribution chB2 to the calculated magnetostriction of
the Weyl electrons, we find that the theoretical curve sufficiently
well reproduces the experimental data in entire field range up to
16 T (compare the dashed green and solid red lines in Fig. 3)
except for the 6–7.5 T interval where the last oscillation sets in
(see the zoom in Fig. 3).

The above theoretical analysis of the magnetostriction is based
on formulas obtained under the assumption of independence of
the Fermi energy on the magnetic induction. This situation does
can occur in a conductive material when it contains a large
charge-carrier group that maintains the constancy of EF.
However, in TaAs all the electron and hole pockets are relatively
small. In this case, a consideration must be given to the B
dependence of EF (i.e., of the chemical potential ζ if the
temperature is nonzero) in analyzing the magnetostriction. This
dependence ζ(B) can be found from the conservation condition of
the total charge-carrier density,

∑
i
ni ζ ;Bð Þ � niðζ0; 0Þ
� � ¼ 0; ð11Þ

where i runs all the electron and hole pockets, and ζ0 is the value
of the chemical potential at B= 0. Since the dispersion law for the
holes need not be well described by a simple parabolic
dependence, we use the expression for nh ζ ;Bð Þ � nhðζ0; 0Þ that

Fig. 2 Magnetostriction in the Weyl semimetal TaAs. a Top: Magnetic-
field dependence of the relative length change ΔL/L of TaAs (sample 1)
measured along the [001] direction at 25 mK in the parallel configuration
(B∥ΔL). Inset: FFT spectrum at T= 25mK over a magnetic field range of
1–8 T. The oscillatory magnetostriction was obtained by subtracting the
background cbB2 with cb= 1.79 × 10−8 T−2 (dashed line in the main panel)
from the experimental data. Bottom: Corresponding magnetostriction
coefficient λ≡ (1/L)dL/dB. The straight dashed line approximating λ(B)
gives the intercept (2.28 × 10−7 T−1) and has the slope (2.95 × 10−8 T−2)
which are close to the parameters b and 2ch in the quadratic polynomial
a+ bB+ chB2 (see the text and Table 1). b A log-log graph of the c-axis
magnetostriction measured at different temperatures up to 4.2 K. Curves
are offset for clarity. Note the slopes clearly distinct from the quadratic
(m= 2) behavior expected for B≪ Fi. The dashed and solid black straight
lines correspond to ΔL/L∝ Bm.

Table 1 The values of the parameters for the calculation of the magnetostriction ΔL/L along the c axis at B∥c in neglect of the B
dependence of ζ.

a b ch FW1 set FW2 aW1 aW2 γW1 γW2

10−6 10−7T−1 10−8T−2 T # T 10−6 10−6

−2.18 2.55 1.49 7.2 1 5 −1.58 −0.60 0.025 0.1
2 1.35 −2.12 −0.062

Values of aW1 and aW2 are found with Eqs. (10) from the coefficients of the polynomial a+ bB+ chB2 that approximates the experimental data on the magnetostriction at B > 8 T.
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is valid at B < Fh for any dispersion of these charge carriers,

nhðζ ;BÞ � nh ζ0; 0
� � ¼ nhðζ;BÞ � nhðζ; 0Þ þ nhðζ; 0Þ � nh ζ0; 0

� �

� B2 β ζ0
� �þ dβ ζ0

� �
dζ0

ζ � ζ0
� �� �

þ νh ζ0
� �

ζ � ζ0
� �

;

where νh ¼ ∂nh ζ ; 0ð Þ=∂ζ is the density of states for the holes in
zero magnetic field, whereas the function β(ζ) defines the
variation of the hole density in the low magnetic fields, nh ζ;Bð Þ �
nhðζ ; 0Þ ¼ βðζÞB2 [i.e., β= ch/Λh where ch has been introduced
above].

Equation (11) and the general formula for the magnetostriction
are explicitly written in Supplementary Note 5 for the case of B∥c,
and with these expressions, one can calculate the magnetostric-
tion in the entire range of the applied magnetic fields. As in the
case of the simplified approach when ζ(B)= ζ0, we set
FW1= 7.2 T, FW2= 5 T, and take the same values of the constants
γWi. Apart from these parameters, the chemical potential ζ(B)
depends also on the ratios nW2(ζ0, 0)/nW1(ζ0, 0), (ζ0− εd,W1)/
(ζ0− εd,W2)≡ v, and on the above-mentioned β, dβ/dζ, νh
normalized to nW1(ζ0, 0) where εd,W1 and εd,W2 are the energies
of the Weyl points W1 and W2. Applying formulas of ref. 33 to
the data of ref. 31, we may estimate a part of these parameters,
viz., the density nW1 ≈ 2.5 × 1018 cm−3, the ratio nW2(ζ0, 0)/
nW1(ζ0, 0) ~ 0.15, and the position of the chemical potential ζ0
relative to the energies εW1, εW2: ζ0− εd,W1 ≈ 28.4 ± 3.5 meV and
ζ0− εd,W2 ≈ 11.9 ± 1 meV (Supplementary Note 6). These values
of the parameters permit us to set nW2(ζ0, 0)/nW1(ζ0, 0)= 0.15
and v= 2.5 in our calculations of the magnetostriction. At these
fixed ratios, the values of the other parameters are chosen so that
the magnetostriction calculated at T= 0 matches the experi-
mental data at T= 25 mK (Fig. 3 and Supplementary Note 7).
Note that with the dependence ζ(B), the theoretical curve much
better reproduces the plateau above about 6 T than in the case of
the constant ζ. The derived dependence of the chemical potential

on the applied magnetic field is presented in Fig. 4. It is seen that
due to condition (11), the largest electron group W1 induces the
oscillation with the same frequency 7.2 T for the other charge
carriers. The analysis of the obtained parameters in Supplemen-
tary Note 7 enables us to find the constants Λi � Λc

i , which
determine contributions of the W1 and W2 electrons and of the
holes to the c-axis magnetostriction of TaAs (Table 2). This
analysis also reveals that the obtained values of β, dβ/dζ, and νh
can be understood from simple estimates, assuming the
simplest parabolic dispersion of the holes in TaAs. We also
obtain a good fit of the magnetostriction calculated at a finite
dimensionless temperature t= T/(ζ0− εW1)= 0.015 to the mag-
netostriction measured at the temperature T= 4.2 K (Supple-
mentary Fig. 8) and therefore find the independent estimate
of ζ0− εW1 ≈ 24 meV, which is only a little less than the
value 28.4 ± 3.5 meV derived above. With this ζ0− εW1 and
γW1= 0.025, we arrive at the Dingle temperature
TD,W1= (ζ0− εW1)γW1/π ≈ 2.2 K, the value of which is compar-
able with TD,W1 ≈ 3.2 K obtained for the W1 electrons in ref. 31.
(As to TD,W2, we tentatively find TD,W2 ~ 3.6 K; Supplementary
Note 7.)

Interestingly, if one decreases the value of the parameter FW2,
even better fits of the calculated magnetostriction to the
experimental data can be obtained, and the best fit is reached at
FW2 ≈ 1.35 T (the dashed black line in Fig. 5). Thus, we conclude
that the two sets of the parameters are worth considering
(Table 1). The first set (FW2= 5 T) is completely consistent with
the Fermi-surface calculations of ref. 31, whereas the second set
with FW2= 1.35 T provides the best fit of the theoretical curve to
our experimental data on the magnetostriction. The appropriate
Λc
i for the second set are presented in Table 2, and in contrast to

set 1, the analysis of β, dβ/dζ, and νh obtained for set 2 reveals that
the dispersion of the holes should essentially deviate from the
parabolic law. However, apart from the problem of choosing the
value of FW2, a comparison of all the data presented in Figs. 3 and
5 lead to the conclusion that in the first approximation, one can
neglect the dependence of the chemical potential on the magnetic
field (see also Supplementary Note 7). In other words, the
simplified approach, within which ζ is independent of B, is
sufficiently well justified for describing the magnetostriction.

Fig. 4 The field-induced shift of the chemical potential relative to its
value ζ0≡ ζ(0) at zero magnetic field in TaAs. Shown is the normalized
shift δ~ζ � ðζðBÞ � ζ0Þ=ðζ0 � εW1Þ that is calculated together with the
dashed black line in Fig. 3. Inset: Dependences of (nW1(B)− nW1(0))/
nW1(0), (nW2(B)− nW2(0))/nW1(0), and (nh(B)− nh(0))/nW1(0) on B. Note
that although δ~ζ decreases with increasing field above 8.5 T, nw1(B)
simultaneously increases due to the growing capacity of the Landau levels.
According to the definition (Supplementary Note 2), nhð0Þ<0.

Fig. 3 Comparison of the calculated magnetostriction for the case of
FW2= 5 T with the experimental data for TaAs. The solid red line shows
the c-axis magnetostriction ΔL/L of TaAs measured at T= 25mK and B∥c.
The dashed green line depicts this magnetostriction calculated at T= 0
with formulas of Supplementary Notes 1–3 (assuming the constancy of the
chemical potential ζ) for the values of the parameters presented in Table 1
(set 1). The dashed black line shows the magnetostriction calculated in
Supplementary Note 7 for T= 0 and for the same values of Fi and γi, taking
into account the dependence ζ(B). The inset is a zoom into the last
oscillations of the magnetostriction. Note the absence of a local minimum
in the experimental curve above 6 T.
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In numerous experiments (see review17 and references
therein), the phase of quantum oscillations in topological
semimetals was measured to distinguish between the Weyl
(Dirac) fermions and trivial quasiparticles. Such investigations are
based on the fact that in the case of the Weyl fermions, the
nonzero Berry phase of the electron orbits in a magnetic field
leads to a shift of the phase of the oscillations by π as compared to
the phase corresponding to the trivial electrons17,34. Obviously, in
agreement with formulas of Supplementary Notes 2 and 3, this
nontrivial phase shift should also occur for the oscillations in the
magnetostriction. For the case of TaAs (ΔL∥B∥c), the insets in
Figs. 3 and 5 clearly demonstrate that the phase of the oscillations
calculated with formulas for the Weyl electrons really coincides
with the experimental one. We emphasize that if the nontrivial
phase shift were absent in the measured oscillatory magnetostric-
tions, the theoretical and experimental curves would be mutually
displaced in phase like the red and black lines in Fig. 1. Therefore,
the coincidence of the phases, among other manifestations of the
Weyl electrons in our magnetostriction measurements, also
proves their existence in TaAs.

Discussion
Above we found the two sets of the parameters for which the
magnetostriction measured along the c axis can be well described
theoretically. To choose between these two set, we have measured
ΔL/L along the a axis with the magnetic field still aligned with the
[001] direction. In this case, only the values of aW1, aW2, and ch
can change due to a change of the constants ΛW1, ΛW2, and Λh.
All the other parameters determining this relative length change
should remain the same as in the case of the c-axis

magnetostriction. Note that the knowledge of the constants Λi for
the magnetostriction measured not only along the c axis but also
along the a direction makes it possible to find the constants of the
deformation potential that describe effects of strains on the band
structure of TaAs (Supplementary Notes 1 and 8).

Figure 6 shows the magnetostriction measured along the a axis
at T= 25 mK. We note that a field-induced length change is small
(~0.5 × 10−6 at B= 16 T) in magnetic fields applied along the
dilatation direction (black curve). In addition, there is a complex
B dependence of ΔL/L in the entire field range. However, when
the dilatometer is rotated by the angle Θ= 90∘ to the desired
sample orientation B∥c, the a-axis magnetostriction exhibits a
substantial enhancement with a behavior close to the B2 law
between 0.5 and 5 T. This behavior is followed by a tendency to
the saturation at about 9 × 10−6 above 12 T (red curve). Another
remarkable feature of the a-axis magnetostriction is its high
sensitivity to small deviations of the applied field from the [001]
direction. Such deviations cause immense changes in the mag-
netostriction from large positive to large negative values. For
example, the violet curve at Θ= 87∘ illustrates the field-induced
contraction of TaAs that is about −1.0 × 10−6 at B= 16 T.
Moreover, a drastic change of the negative magnetostriction
occurs when the magnetic field is just marginally tilted further
from the [001] direction (Θ= 86∘, green curve). At Θ= 81∘ (blue
curve), we again observe a large expansion of TaAs. In contrast
with this a-axis magnetostriction, the B-induced length changes
along the c axis do not exhibit any sensitivity to small deviations
of B from the c axis. In Fig. 7, we present the angle-dependent
magnetostriction of TaAs measured along the [001] direction at
4.2 K. It is seen that there are no qualitative changes in this

Table 2 The values of Λc
i and Λ?

i obtained from the c-axis and a-axis magnetostrictions, respectively.

set FW2 1024Λc
W1 1024Λc

W2 1024Λc
h 1024Λ?

W1 1024Λ?
W2 1024Λ?

h

# T cm3 cm3 cm3 cm3 cm3 cm3

1 5 0.71 1.47 −3.7
2 1.35 0.89 1.42 −1.0 −2.1 11.2 4.2

Fig. 5 Comparison of the calculated magnetostriction for the case of
FW2= 1.35 T with the experimental data for TaAs. The solid red line
shows the c-axis magnetostriction ΔL/L of TaAs measured at T= 25 mK
and B∥c. The dashed green and black lines have the same meaning as in
Fig. 3, but they are calculated for set 2 in Table 1. The upper inset is a zoom
into the low-field region, and the lower inset compares the appropriate
relative residuals, showing a very good agreement in the entire field range
when ζ(B) is considered (dashed black line).

Fig. 6 Angle-dependent magnetostriction of TaAs measured along the a
axis.Magnetic-field dependence of the relative length change ΔL/L of TaAs
(sample 2) is measured along the [100] direction at 25 mK for various
angles Θ between the direction of B and the a axis. The magnetic field lies in
the plane (010). Note the exceptional changes of ΔL/L over the small-angle
range near Θ= 90∘. (The corresponding results for Θ≤ 45∘ are shown in
Supplementary Fig. 3). The dashed red line shows the a-axis
magnetostriction that is calculated at T= 0 for the field aligned with the c
direction, using FW1= 7.2 T, FW1= 1.35 T, γW1= 0.1 and γW2= 0.2
(Supplementary Note 8).
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magnetostriction even at large deviation angles. (Now the tilt
angle θ of B is measured from the c axis.)

Varying only the constants Λi, we have calculated the a-axis
magnetostriction at B∥c for both sets of the parameters with
FW2= 5 T and 1.35 T (Supplementary Note 8). A modification of
the values of γW1 and γW2 is also admitted since Figs. 2 and 6
show the magnetostrictions for the different samples. For the set
with FW2= 5 T, we have not been able to match well the theo-
retical curve with the experimental data (cf. Supplementary
Fig. 9). For the second set, the theoretical curve can approxi-
mately reproduce these data (the dashed red line in Fig. 6) for
certain values of Λi � Λ?

i (Table 2) and for the increased γi
(γW1= 0.1 and γW2= 0.2). Thus, the obtained results seem to
argue in favor of set 2 with FW2= 1.35 T. However, due to the
extreme sensitivity of the a-axis magnetostriction to the field
orientation relative to the [001] direction, its true B dependence at
B∥ [001] may essentially differ from the experimental curve
(Θ= 90∘) presented in Fig. 6. Thus, a more elaborate approach to
achieve a perfect magnetic-field orientation is required in order to
reliably exclude the possibility of set 1. In Supplementary Note 8,
we discuss a possible cause of the unusual high sensitivity of the
a-axis magnetostriction to a small tilting of B about the c axis.

The field-induced shift of the chemical potential presented in
Fig. 4 clearly demonstrates the essential redistribution of the
charge carriers between the bands of the holes and the W1
electrons. Although we found above that this effect can be of
minor significance for the magnetostriction of TaAs, it can be
relevant to understanding some other field-dependent properties
of Weyl-semimetal-candidate materials. In particular, the charge-
carrier redistribution leads to a nonzero longitudinal magne-
toresistance of a semimetal if the quasiparticles in its different
bands have dissimilar mobilities, and this magnetoresistance can
be negative even for trivial charge carriers. Indeed, if with
increasing B, the trivial electrons of a lower mobility are trans-
ferred to another band with higher mobility, the longitudinal
conductivity of this material increases (see, e.g., Supplementary

Fig. S10 in Supplemental Material to ref. 35). Therefore, the
redistribution should be considered before giving any arguments
in favor of the chiral anomaly in strong magnetic fields. In the
case of TaAs, our study reveals that for B∥c, i.e., the most pro-
mising configuration for the chiral anomaly15, both the absolute
value ∣nh(B)∣ of the negative hole density and the density of the
W1 electrons increase in high magnetic fields (Fig. 4, inset). In
this situation, one may expect that the longitudinal conductivity
along the [001] axis will increase above about 8 T for any relation
between mobilities of the electrons and holes. Interestingly, the
negative longitudinal magnetoresistance for B∥c was really
observed in TaAs at 7.5 T < B < 25 T in careful measurements that
used the focused-ion-beam lithography to eliminate experimental
artifacts due to electrical current inhomogeneities15.

In summary, our study of the magnetostriction along the main
crystallographic directions of TaAs shows that this quantity can
be an effective probe of the massless quasiparticles in Weyl
semimetals, if the Weyl points lie near the Fermi level. This
statement holds even though conventional charge carriers exist in
a semimetal. In this situation, even in moderate magnetic fields,
which are too weak to confine large groups of massive quasi-
particles at their zeroth Landau levels, the magnetostriction
contains a linear-in-field term that identifies the presence of
relativistic fermions. Moreover, in this case, the experimental
magnetic-field and temperature dependences of the magnetos-
triction, including their subtle details, can be reproduced theo-
retically. Comprehensive dilatometric investigations of
topological semimetals also shed light on dependences of the
Weyl points on an applied stress and hence predict how the
appropriate quantum-oscillation frequencies will change under a
uniform compression of the material. It is also worth noting that
our theory is applicable to Dirac semimetals. Therefore, in a
broader perspective, detection of relativistic fermions in candidate
topological materials with the magnetostriction can set the stage
for their further investigations, including electronic applications.

Methods
Crystal synthesis. TaAs single crystals were synthesized with the chemical vapor
transport method following the procedure described elsewhere36–38. The chemical
composition of the crystals was examined by electron-probe microanalysis with
energy-dispersive x-ray spectroscopy. The ratio of 1:0.99 between Ta and As was
found, indicating the correct stoichiometric chemical composition. The body-
centered tetragonal structure (space group I41md, No. 109) of TaAs single crystals
was confirmed by room-temperature x-ray diffraction. No other phases were
detected, and the lattice parameters a= 3.4348Å and c= 11.6412Å are in good
agreement with the literature values36–38. The crystal orientation was determined
by Laue diffraction (cf. Supplementary Fig. 1, right).

Sample characterization. All samples used in this study were obtained from the
same growth batch. The residual-resistivity ratio of typical sample RRR= ρ300 K/
ρ2 K≃ 12 was determined from a zero-field resistance measurement along the c axis.
The transverse magnetoresistance MR of about 39 600% was measured at 9 T and
2 K (Supplementary Fig. 2). These parameters are in good agreement with the
published literature values, and hence point at good quality of our TaAs single
crystals.

Magnetostriction measurements. The angle-dependent field-induced length
change was measured with a commercial capacitance dilatometer which enables a
length resolution of 0.02Å39. The magnetostriction of the three rectangular TaAs
samples having a length of ~1.7 mm was studied along the [100] and [001]
directions. We performed the magnetostriction measurements down to 25 mK in a
dilution refrigerator (Kelvinox 400 HA, Oxford Instruments) inserted into a
superconducting magnet for fields up to 16 T. A field-sweep rate as small as
0.5 mTs−1 was used, and the highest temperature of our experiments was 4.2 K.

The capacitive dilatometer cell is compact enough to be mounted on an
attocube rotator, and thus enables the study of the field-induced length changes as
a function of the tilted angle. However, since TaAs single crystals with a typical
cross-section of about 0.7 × 0.9 mm2 were mounted between two capacitor plates
with the diameter of 20 mm, the samples cannot be oriented perfectly. The limited
accuracy of orientation of the sample surfaces with respect to the dilatometer setup
can cause the maximum error of 5∘.

Fig. 7 Angle-dependent magnetostriction of TaAs measured along the c
axis. Field-induced relative length change of TaAs (sample 3) along the
[001] direction is measured at T= 4.2 K and at various angles θ between
the direction of B and the c axis. The magnetic field lies in the plane (010).
For clarity, the different ΔL/L curves at θ > 0 were shifted subsequently by
0.2 × 10−6.
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Numerical calculations. The B-dependences of the magnetostriction for TaAs
have been numerically calculated, using our own code elaborated with formulas of
Supplementary Notes 1–3, 5 and results of refs. 40–42.

Data availability
The data that support the plots within the main manuscript or the supplement and other
findings of this study are available from the corresponding authors upon reasonable
request.
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