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A B S T R A C T   

In recent years, coronavirus (Covid-19) has evolved into one of the world’s leading life-threatening severe viral 
illnesses. A self-executing accord system might be a better option to stop Covid-19 from spreading due to its quick 
diagnostic option. Many researches have already investigated various deep learning techniques, which have a 
significant impact on the quick and precise early detection of Covid-19. Most of the existing techniques, though, 
have not been trained and tested using a significant amount of data. In this paper, we purpose a deep learning 
technique enabled Convolutional Neural Network (CNN) to automatically diagnose Covid-19 from chest x-rays. 
To train and test our model, 10,293 x-rays, including 2875 x-rays of Covid-19, were collected as a data set. The 
applied dataset consists of three groups of chest x-rays: Covid-19, pneumonia, and normal patients. The proposed 
approach achieved 98.5% accuracy, 98.9% specificity, 99.2% sensitivity, 99.2% precision, and 98.3% F1-score. 
Distinguishing Covid-19 patients from pneumonia patients using chest x-ray, particularly for human eyes is 
crucial since both diseases have nearly identical characteristics. To address this issue, we have categorized Covid- 
19 and pneumonia using x-rays, achieving a 99.60% accuracy rate. Our findings show that the proposed model 
might aid clinicians and researchers in rapidly detecting Covid-19 patients, hence facilitating the treatment of 
Covid-19 patients.   

1. Introduction 

Wuhan, a business hub in China’s Hubei province, witnessed the 
outbreak of a novel coronavirus in 2019. Chinese researchers termed the 
novel virus the 2019-novel-coronavirus (2019 n-Cov) or the Wuhan 
virus (Singhal, 2020). The global virus-knowledgeable community re-
fers to it as CoronaVirus-2 Severe Acute Respiratory Syndrome (SAR-
S-CoV-2) and even the 2019 epidemic coronavirus infection (Covid-19) 
(Lai et al., 2020; Li et al., 2020; Sharfstein et al., 2020). Coronaviruses 
have caused sickness in humans who have primarily been exposed to 
bats and rats as wild animals (Loey et al., 2020b; Rabi et al., 2020; York, 
2020). 

Covid-19 is a disease caused by an irresistible source that aggravates 
the lungs. Although RT-PCR testing (Wang et al., 2020b) is currently the 
most reliable method for identifying Covid-19 infection, it is a lengthy, 
hard, and complicated manual process, and there is an insufficient 
supply of testing kits. In addition, it involves nasopharyngeal swabs, 
which are uncomfortable for the patients while taking the sample. 

In contrast, x-ray analysis can be an alternative appropriate method 

because it involves low cost, has extensive range of applications, and 
offers rapid speed to detect COVID-19. Consequently, this approach can 
eliminate the problems related to RT-PCR testing. Utilizing x-ray image 
is essential for screening and diagnosing Covid-19 cases as Covid-19 
targets human pulmonary epithelial cells and x-rays are a valuable 
tool for determining the health of a patient’s lungs (Bassi and Attux, 
2022; Ghose et al., 2021; Pham, 2021; Rahman et al., 2021; Wang et al., 
2020a). 

Without human interference, Convolutional Neural Networks (CNN) 
is capable to discover and derive characteristics and depict very complex 
nonlinear operations on its own. After a supervised training process, it 
operates solely based on input data. The ImageNet Large-Scale Visual 
Recognition Challenge (ILSVRC) reported a well-known scenario when a 
model outstripped human-level output in the task of classifying images 
in 2015 (He et al., 2015). Besides this, deep learning is also successfully 
applied in many sectors for it’s superior capability for automatic features 
extraction and outstanding performance, for example, human activity 
recognition (Cheng et al., 2022; Huang et al., 2021, 2022; Tang et al., 
2022), the reconstruction of gene regulatory networks (Biswas et al., 
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2022), temporal forecasting of taxi flow (Lv et al., 2021b), and urban 
traffic visualization techniques (Lv et al., 2021a). 

Many researchers (Biswas et al., 2022; Abdul Salam et al., 2021; 
Akter et al., 2021; Mahbub et al., 2022b) have alredy proposed CNN 
based Covid-19 detection approaches. For example, Akter et al. (2021) 
provided an automated classification approach based on deep learning 
and a Convolutional Neural Network that displays a quick COVID-19 
detection rate. The training dataset includes of 3616 COVID-19 chest 
X-ray images and 10,192 healthy chest X-ray images. Abdul Salam et al. 
(2021) developed two machine learning models where one is a federated 
learning model and another is a standard machine learning model to 
show accuracy comparison to detect COVID-19 using a descriptive 
dataset and chest x-ray (CXR) images from COVID-19 patients. Agrawal 
and Choudhary (2022) proposed a deep convolutional neural 
network-based architecture for detecting COVID-19 utilizing chest ra-
diographs.They used considerably large dataset and got a promising 
accuracy from their model. Biswas et al. (2022) collected a number of 
publicly available, unique COVID-19 x-ray and CT image datasets. They 
evaluated and compared the performance of their suggested 22-layer 
convolutional neural network model with ResNet-18, and VGG16. 

This research aims to develop a paradigm based on deep learning for 
distinguishing Covid-19 patients from healthy and normal individuals 
by analyzing the presence of symptoms or x-ray abnormalities. We 
intend to provide a low-cost approach for radiologists and medical 
professionals to cross-check their interpretations and identify any po-
tential outcomes that could otherwise be missed. 

In addition, we designed a screening method so that it can assists the 
radiologists to easily identify the portions of the x-ray for Covid-19, 
bacterial or viral pneumonia, and normal peoples. We worked on the 
datasets newly generated by the radiological society, several sites such 
as kaggle, gitthub, and other researchers. This dataset gave us the 
labeled data required to train and test our architecture for classification. 
Afterwards, we made two datasets (datset-1 and dataset-2) from the 
collected x-rays. Datset-1 contained three class x-ray images which is 
Covid-19, normal and pneumonia patients images whereas dataset-2 
made up with Covid-19 and pneumonia images. The contributions of 
this paper can be summarised as follows: 

• Collecting and pre-process x-ray data, build a CNN based architec-
ture to recognize Covid-19 patient’s x-ray. 

• First, we trained our system to classify three class x-ray image. Uti-
lizing our architecture, we can recognize chest x-ray images with an 
accuracy rate of 98.5% for 3 classes (Covid-19, normal, and 
pneumonia).  

• For two class classification, we trained our model to differentiate 
Covid-19 sufferers from pneumonia patients which is very essential 
and critical. Our stated architecture showed good performance 
obtaining an accuracy of 99.60% on dataset-2.  

• Finally, the Gradient Class Activation Map (Grad-CAM) technique 
was applied to locate typical features from x-rays to assist visually 
interpretive decision-making for detection cases. 

The rest of the part of this paper is outlined as follows: In 2, literature 
review described while briefly discuss our problem statement in 3. Our 
proposed Covid-19 detection system’s method is discussed in 4. Finally, 
showing the outcomes of the research in 5 and in 6, we summarized our 
research with some future research scopes. 

2. Literature review 

Recently many researchers have explored different deep learning 
approaches to identify Covid-19 using clinical data such as CT scans and 
x-rays. For instance, Alqudah et al. (2019) applied machine learning 
methods to construct a tool for classifying Covid-19 from chest x-rays. 
They applied several classification algorithms such as SVM and RF for 
categorizing x-ray images. They claimed 95.2% accuracy, 100% 

specificity, and 93.3% sensitivity. The setback of this approach is that 
machine learning algorithms are not suitable for processing images like 
x-rays. For this reasons, many deep learning approaches have been 
applied in the research to detect COVID-19 from images. To mention 
next, Loey et al. (2020b) suggested a generative adversarial network 
(GAN) to detect Covid-19 using x-ray. For Covid-19 identification pur-
poses, the system explored three pre-trained models: GoogleNet, Rest-
NeT18, and AlexNet. GoogleNet was chosen as the powerful DL 
technique within the four class cases, and the authors gained 80.% test 
accuracy for three-class classification. In contrast, AlexNet achieved an 
84.3% accuracy rate in the three classes case, whereas GoogleNet ach-
ieved 99.4% test accuracy in the two classes scenario. However, their 
models were trained using a limited number of x-rays. Likewise, Horry 
et al. (2020) devised a deep learning model to identify Covid-19 using 
chest x-rays to be fed into pre-trained algorithms. For classifying x-rays, 
the recommended system utilized Inception, ResNet, Xception, VGG16, 
and VGG19. The dataset used by the model is generated by collecting 
322 pictures of pneumonia patients, 115 images of Covid-19 cases, and 
6162 images of ordinary individuals. Both the VGG16 and VGG19 
classifiers have 80% sensitivity and accuracy which is not so promising 
for such sensitive infectious diseases. 

Again, Bhattacharyya et al. (2022) established an approach to 
effectively distinguish Covid-19 patients from healthy persons using 
x-ray images. They performed segmentation on x-rays using deep 
learning based segmentation process before feeding the data into clas-
sification models to enhance outcomes. A conditional generative 
adversarial network (GAN) was applied to segment the lung image and 
trained using available ground truth masks by using a pixel-to-pixel 
approach. Finally, they used several ML algorithms, including soft-
max, RF, SVM, and XG Boost to classify the images. The accuracy of the 
VGG 19 architecture combined with the BRISK key-points mining 
approach with RF as the classification layer was 96.6%. 

Ucar and Korkmaz (2020) introduced a deep CNN based Covid-19 
detection system utilizing x-ray images. The dataset used for training 
the model included 1583 images of normal cases, 4290 images of 
pneumonia cases, and 76 images of Covid-19 cases and for Covid-19 
cases and the model achieved 98.3% accuracy. However, the dataset is 
not significantly large enough to adopt the model in real life. Mean-
while, Apostolopoulos and Mpesiana (2020) also proposed a transfer 
learning technique by employing CNN. This approach might effectively 
recognize Covid-19 patients by analyzing key characteristics from chest 
x-rays. The method used five CNN models to categorize Covid-19 pic-
tures, namely Inception, InceptionResNetV2, VGG19, Xception, and 
MobileNet. VGG19 was selected as the primary model for achieving the 
highest results (94.48% accuracy, 93.85% specificity, and 97.57% 
sensitivity). They used 700 images of pneumonia patients, 224 Covid-19 
patients, and 504 images of ordinary people for the dataset. 

In contrast, Bandyopadhyay and Dutta (2020) offered a completely 
new approach that employed the LSTM-GRU to characterize confirmed, 
discharged, negative cases, and death instances of Covid-19. The orig-
inal system achieved 8% for confirmed cases, 67.8% accuracy for 
negative patients, 62% accuracy for death cases, and 40.5 percent ac-
curacy for discharged cases. Khan et al. (2020) proposed an enhanced 
DL network to automatically detect Covid-19 instances via lung x-rays. 
This study used 1248 images as a dataset combining Covid-19 pneu-
monia viral, pneumonia bacterial, and ordinary individuals’ x-ray im-
ages. The suggested approach achieved 93.5% accuracy, 97% precision, 
and 100% sensitivity in the situation of Covid-19. 

To distinguish Covid-19 cases from normal cases using CT scans, 
Singh et al. (2020) applied a deep transfer learning model, VGG. In this 
approach, features are extracted using principal component analysis 
(PCA) for classification with four different classifiers. With a bagging 
ensemble approach and SVM classifier, the following performances 
metrics were found: 95.6% accuracy, 94.8% precision, and 96.3% 
F1-score. Similarly, Ahuja et al. (2021) suggested a transfer learning 
technique employing a three-phase approach. Several pre-trained 

P. Ghose et al.                                                                                                                                                                                                                                   



Intelligent Systems with Applications 16 (2022) 200130

3

methods were fitted with an augmented image utilizing the ResNet18 
model to indicate the irregularity of the image, resulting in 99.4% test 
case accuracy. Alshazly et al. (2021) exhibited a deep learning model 
trained using chest CT-scans to make this process more faster and 
automated. Several researchers have attempted to detect covid19 more 
reliable by combining multiple models. For example, Aslan et al. (2021) 
effectively merged two pre-trained Alexnet architectures (transfer 
learning and BiLSTM layer) for detecting Covid-19. They claimed that 
the proposed hybrid system shows higher Covid-19 detection accuracy 
than any single model. Furthermore, Ter-Sarkisov (2022) presented a 
COVID-CT-MaskNeT model to forecast Covid-19 using chest CT-scan 
images, and they obtained 90.80% sensitivity for Covid-19 cases, 
91.62% sensitivity for Pneumonia cases, and a mean accuracy of 91.66% 
and an F1-score of 91.50% by training only a tiny proportion of the 
model’s parameters. 

Further, Karthik et al. (2021) implemented a customized CNN-based 
system to distinguish Covid-19 instances, and it can adopt distinct 
convolutional filter patterns for each type of pneumonia. To prevent 
epidemics and increase production in the Lv et al. (2021a) introduced a 
deep learning model. To predict the urban traffic revitalization index for 
the influential cities in China, they built DeepTRI using deep learning. 
Traveling is a big issue during pandemic. As a result, prediction of 
traveling demand considering environmental factors is a important 
factor and bare in mind this (Xu et al., 2022) presented a deep learning 
based traveling demand prediction system. Deep learning also is being 
successfully applied in many medical sectors. For example, PreRBP-TL is 
used for the reconstruction of gene regulatory networks and prediction 
of genomic properties such as accessible regions, chromatin connec-
tions, and TFBSs  (Biswas et al., 2022) Researchers also have explored 
diverse kinds of system that can effectively detect Covid-19 individuals 
from chest x-rays. The above discussion reveals that deep learning, 
mainly Convolution Neural Network (CNN), plays a crucial role in 
recognizing and characterizing Covid-19 infection in medical imaging. 
Therefore, this study aims to explore deep learning to detect Covid-19 
from the x-ray images. Several state-of-the-art works are briefly pre-
sented in Table 1. 

3. Problem statement 

The Covid-19 virus, just like all the other bacteria or viruses, has 
been shown to cause pneumonia in some patients. However, the care of 
these cases is entirely different. If an individual is found sick, certain 
precautionary steps are taken in conjunction with the diagnosis. Pre-
cautionary step like keeping the patient under isolation for some days is 
required to underrate the risk of infecting someone in the case of the 
Covid-19 virus. It is also important to work out the distribution of the 
Covid-19 in different parts of the globe and take necessary measures to 
minimize the spread. Accurate and prompt detection of pneumonia 
caused by the Covid-19 virus is thus the greatest problem. 

The WHO-approved coronavirus testing tool is the reverse trans-
mission Polymerase chain reaction (RT-PCR) method, where the short 
DNA or RNA sequences are analyzed and replicated or intensified 
(Corman et al., 2020). To find out the possibility of the coronavirus, 
specific individuals need over one test. The WHO laboratory researchers 
establish that the negative findings in RT-PCR tests do not ignore the 
chance that the previously infected individuals may bare the virus with 
them (Liu et al., 2020). So, in this case, a quick test is required, which is 
possible by using an x-ray. Apart from this, the insufficient supply of 
Covid-19 scanning workstations and research kits poses a significant 
burden on medical practitioners and personnel to cope up with the 
problem. Rapid and effective identification of suspicious Covid-19 cases 
may be a big problem for physicians in this situation. The need for 
several checks using kits to ensure the proper infection status of patients 
and thus make acceptable decisions often occurs an exponential growth 
in situations. 

Additionally, early identification of potential cases of Covid-19 is a 
concern as it includes public health protection and pandemic preven-
tion. Any inability to detect the disease caused by the Covid-19 virus 
results in a rise in the risk of death. The amount of time that means the 
time between contracting the virus and starting to get disease signs is 
1–14 days. This makes it really difficult to diagnose Covid-19 illness, 
accompanied by the individual’s health conditions at a very preliminary 
phase. To overcome all these dificulties, diagnosis using x-ray could be a 
good alternative. The specific objectives are as follows:  

• Helping radiologists and medical experts to identify the slit and slow 
changes among multiple x-rays, that otherwise could be overlooked. 

• Due to the high expense of radiologist, many people in underdevel-
oped nations are unable to visit them. This tool might assist in the 
interpretation of chest x-ray as Covid-19, pneumonia, or normal.  

• As Covid-19 and pneumonia is very similar disease in nature, so it 
could be difficult to distinguish them by human eyes. For this reason, 
we built and trained our model to classify covid-19 and pneumonia 
patients using x-ray as well. 

4. Research methodology 

This section presents the main contribution of the paper: the archi-
tectural design and development of proposed methodology. The main 
idea of the method proposed in this paper is to increase the accuracy of 
Covid-19 patient detection from the chest x-rays dataset. 

4.1. Methods and material 

The artwork of the overall system for Covid-19 detection mainly 
consists of a number of phases as illustrated in Fig. 1. 

At fast, raw x-ray images are given in the pre-processing pipeline for 
performing pre-processing tasks like resizing, normalization, flipping, 
zooming, and rotation. After pre-processing phase, the data set was 
broken into training and test set. Then the train data is used for training 
the proposed architecture. After every epoch, the accuracy and loss of 
training and validation are determined. Subsequently, effectiveness was 
evaluated utilizing assessment metrics: confusion matrix, accuracy, 

Table 1 
Studies evaluating DL methods for Covid-19 identification.  

Study Population Models used Accuracy 
(in %) 

Loey et al. 
(2020a) 

760 CT-scans CGAN, AlexNet, GoogleNet, 
VGGNet16, VGGNet19, ResNet50 

82.9 

Alshazly 
et al. 
(2021) 

2482 CT-scans SqueezeNet, ResNet50, 
InceptionV3, ResNet101, 
ResNeXt50, ResNeXt101, 
Xception, DenseNet169, 
DenseNet201 

93.7 

Maghded 
et al. 
(2020) 

Real-time CT- 
Scan images 

Smartphone, onboard sensors, 
ML models 

N/A 

Lahsaini 
et al. 
(2021) 

4986 CT-scans DenseNet121, DenseNet201, 
VGG16, VGG19 

97.8 

Panwar et al. 
(2020) 

337 x-rays nCOVnet 97.97 

Aslan et al. 
(2021) 

2905 x-rays mAlexNet BiLSTM (Hybrid) 
architecture 

97.70 

Purohit et al. 
(2022) 

5220 CT-scans Deep Learning 96.47 

Bassi and 
Attux 
(2022) 

2064 x-rays Deep CNN 99.02 

Mahbub 
et al. 
(2022a) 

1200 x-rays Customized DNN 97.87 

Gaur et al. 
(2021) 

3106 x-rays EfficientNetB0, VGG16, 
InceptionV3 

92.93  
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sensitivity, specificity, F1-score, precision, and AUC using ROC. 

4.1.1. Data collection and description 
As Covid-19 very recently emerged, hardly any of the enormous ar-

chives include any Covid-19 tag data. As a result, we must rely on 
various imaging sources, including normal, pneumonia, and Covid-19 
instances. For Covid-19 cases, 2875 x-ray pictures were gathered from 
the subsequent sites: GitHub (Cohen et al., 2020) and kaggle (Patel, 
2020). For pneumonia and normal cases 4200 and 3218 x-ray images are 
taken from the Kaggle repository (Mooney, 2017; Patel, 2020). We 
gathered 10,293 x-ray pictures in total. After that, the images are 
reshaped to 224x224 pixel resolution. The depiction of some x-ray pic-
tures of each class is depicted in Fig. 2. 

We intended to make our model robust. With that intention, we make 
two dataset from the collected data and trained our staed model using 
both dataset. One (dataset-1) for three class combining Covid-19, 
normal and pneumonia patients x-ray images shown in Table 2 and 
other (dataset-2) for two class combining all the Covid-19 and pneu-
monia x-rays as mention in Table 3. 

4.1.2. Image pre-processing 
Often pre-processing of the image is performed to enhance the effi-

ciency of the model. In our job, we have also carried out certain pre- 
processing activities to produce better performance. The pre- 
processing techniques used in this research are listed in this section. 

A.1  Resize Picture to Capture the Central Portion and Removing Black bars 
Typically, CNN uses square images as details. Our chest x-ray data 

collection is obtained from various source data sets of different sizes. So, 
to feed the network, we’d have to change the scale of the photos to a 
square format. But as seen in the Fig. 3, it causes an asymmetry of the 
images. 

In order to avoid removing the available data from the images, we 
wanted to avoid distortion of the input images. As a consequence, we 
used a technique introduced by Pasa et al. (2019) to remove the central 
area and delete black bars. The Fig. 4 depicted a pre-processed image 

that carries out the following operations:  

1. If at the margins of the image, any black band arises, then they are 
discarded.  

2. Until about the minimum boundary counts 224 pixels, the dimension 
of the image is morphed.  

3. Retrieve the 224x224 pixel core area. 

A.2  Normalization 
The photos were then standardized and transformed to the proper 

data format in the final stage. Individual pixels in the original images are 
stored as Unit8 type with values ranging from 0 to 255. Data in the 
float32 type must be given for the Keras model. As a result, the photos 
that were pre-processed must be transformed. It had also been scaled to 
a range of 0 to 1. To normalize the images, each pixel was divided by the 
maximum value of uint8, which is 255. 

A.3  Data Augmentation 
Deep-learning methods, such as CNN, also deliver favorable solu-

tions if large number of images is used. As a consequence, data 

Fig. 1. The work flow of the introduced Covid-19 detection system includes: 
Data collection, data pre-processing, CNN model designed,and evaluation. 

Fig. 2. Some x-ray images of the datasets.  

Table 2 
Dataset-1: Data set for three classes (Covid-19, normal and pneumonia patients).  

Dataset Normal Covid Pneumonia Total 

Train Set 2606 2300 3402 8308 
Validation Set 290 288 378 956 
Test Set 322 287 420 1029 
Total 3218 2875 4200 10,293  

Table 3 
Dataset-2: Data set for two classes (Covid-19 and pneumonia patients x-rays).  

Dataset Covid-19 Pneumonia Total 

Train Set 2300 3402 5702 
Validation Set 288 378 666 
Test Set 287 420 707 
Total 2875 4200 7075  

Fig. 3. Distortion due to the images being resized to a square shape. (a) Dis-
plays the original x-ray form of a COVID patient; (b) Displays the resampled 
image in a square shape. 

Fig. 4. Preprocessing is applied on all dataset files. (a) Displays the original x- 
ray of an individual with Covid-19 (b) Displays a square shape of the pre- 
processed image. 
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augmentation is valuable in developing CNN based system. For this 
reason, at training time, we carried out the corresponding data 
augmentation operations:  

• 5 to 10 degrees of spontaneous rotation.  
• Zooming on an range about +10% and -10%.  
• Flipping Horizontaly. 

4.1.3. Proposed CNN model development 
A system has been built in this paper to diagnose Covid-19 incidents 

systematically using three types of x-ray images. The suggested CNN 
model’s architecture for Covid-19 detection is shown in the Fig. 5. 

The proposed CNN model has five convolutional blocks. Each con-
volutional block has multiple layers and each layer has one activation 
function named Rectified linear unit (ReLU). The third block and fourth 
block has a dropout layer to reduce the over-fitting problem. Two fully 
connected layers (FCN) have been used, the first FCN is used with the 
dropout layer and last FCN layer is connected with the softmax classifier. 

A.1  Convolution Layer 
Every convolution block of this model has multiple convolution 

layers. The name of the first convolution block consists of conv1-layer1, 
conv1-layer2. Similarly second convolution block conv2-layer1, conv2- 
layer2, third convolution block conv3-layer1, conv3-layer2, fourth 
convolution block conv4-layer1, conv4-layer2, and final fifth block 
conv5-layer1, conv5-layer2. The fourth block and fifth block have an 
extra dropout layer to reduce the overfitting problem. Conv1 block has 
used a total of 32 filters where every filter size is 5 x 5. Conv2 block has 
used a total of 64 filters where every filter size is 3 x 3. Conv3 block has 
used a total of 128 filters where every filter size is 3 x 3. Conv4 block has 
used a total of 256 filters where every filter size is 3 x 3 and similarly, 
Conv5 block has used a total of 512 filters where every filter size is 3 x 3. 
The functional process performed by the convolutional layer is as: 

ϕ
(

x, y
)
=

(
I × β

)(
x, y

)
=

∑∑
I
(

x+m, y+ n
)

β
(

m, n
)

(1)  

where, the input matrix is represented with I, a 2D filter of size m ×n is 
denoted by β and ϕ depict a 2D feature map’s output. I ×β describes the 
operation of the convolutional layer. 

A.2  Rectified Linear Unit 
Each convolution layer has an activation function. Here this model 

used Rectified linear unit (ReLU) activation function. The ReLU layer is 
used in feature maps to increase nonlinearity. By maintaining the 
threshold value at zero, ReLU does the activation of the neurons. It is 
stated mathematically as follows: 

ψ(α) = max(0, α) (2)  

A.3  Zero Padding Layer 
The application of this layer is to zeros to the left, right, top and 

bottom edges of an image. We have applied 1 x 1 zero padding during 
our work. 

A.4  Pooling Layers 
After the ReLU layer, we decide to apply a pooling layer. It is utilized 

to dynamically decrease the spatial size of the representation and 
furthermore, used to reduce the number of parameters and computation 
in the network. So, it ultimately helps to minimize the over fitting 
problem. Among different pooling system, the most common one, MAX 
pooling with filter size of 2 × 2 is used in this research. 

A.5  Dropout Layer 
There are lots of ways of controlling the capacity of convolutional 

neural networks to prevent overfitting. Dropout layer (Srivastava et al., 
2014) is one of the major regularization methods to prevent overfitting 
problems. During training time, the dropout layer randomly sets some 
neurons activation to zero and that neurons will not update their 
weights. While training, dropout is set neuron active with some proba-
bilities, otherwise set it to zero. Due to dropout, some neuron doesnt 
learn all features. In the testing time, there is no dropout layer applied. 
Most of the time, the value of dropout ratio, p =0.5 is a comfortable 
default. Although this value also can be tuned during data validation. 

A.6  Fully Connected Layer 
Fully connected layers create a connection between every neuron in 

one layer to each other neuron in another layer. The layer basically takes 
an input image or objects and outputs an N-dimensional vector against 
this, where N is the number of given classes that the model or program 
has to choose from Chang et al. (2018). The working procedure of it is, 
like, it aspects at the output of the previous layer and determines which 
features mostly associate to a particular class. Fundamentally, a fully 
connected layer looks at what high-level features most strongly correlate 
to a specific class and has specific weights so that when we compute the 
products between the weights and the previous layer output, we get the 
classification value. 

A.7  Softmax 
The softmax function with loss (Chen et al., 2014) is a used which 

crushes a N-dimensional vector x of random real values to an 
N-dimensional vector (x) of real values in the range from 0 to 1 that will 
sum upto 1. The function is as following equation 3: 

Fig. 5. Proposed CNN architecture with details layered view.  
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σ(x)j =
ez

j
∑k

k=1ez
j

(3)  

Here, j=1,2,...,k. For this model, the output feature map, will be for 3 
classes. In the output feature map the pixels belonging to the predicted 
class will be 1 and for that same pixel, other classes will contain zero. 

4.1.4. Cost sensitive learning 
Our proposed method focuses on learning features automatically 

from x-ray images based on CNN. Cost-sensitive learning (CSL) (López 
et al., 2012) is a mechanism in which the method that ranks each class in 
a classification problem can be penalized. When using CNNs, CSL helps 
to prevent prejudice in classification. CSL then assists one as a tool to 
overcome the issue of imbalance. We have chosen it as our data set is 
imbalanced. In this analysis, the strategy of class weight is applied as one 
conceivable way while preparing to reduce the future effects of data 
imbalance. We change weights in the class weight system inversely 
related to class occurrences in the raw data. We have used a Sci-Kit Learn 
feature for all this, which acquires numbers to match the number of 
cases centered on logistic regression concepts. The weight Wk in class k 
is determined by the following Eq. (4). 

Wk =
Total number of cases

Number of classes × Number of cases in class(k)
(4)  

When matching the standard, the weights of the groups are used. 
Therefore, we allocate greater values to the cases of smaller groups in 
the loss function. The estimated loss would then be a weighted average, 
in which Wk is defined for the weights within each sample relating to 
each class during the loss calculation. 

4.1.5. Loss Function 
The goal of network training is to maximize the probability of the 

actual class. This is gained by declining the cross-entropy loss for each 
training sample. The loss function used in our work is the categorical 
cross-entropy loss. In the following Eq. (5) categorical cross-entropy is 
specified. 

ζ(p, q) =−
∑

Wkpklog(qk) (5)  

where, k is the number of class used for training the model, and q is the 
Softmax function or predicted probability of class k and Wk is weight for 
class k. 

4.1.6. Screening and localizing pathogens 
In order to better understand the stimulation of the last convolu-

tionary layer of the developed model, we applied the Gradient-Weighted 
classes Activation Mapping (Grad-CAM) algorithm. The last convolu-
tionary layer is the only one that delivers the parameters for the logistic 
layer of the final parameters to determine a probability distribution 
output. For constructing the Grad-CAM of an input file, the gradients of 
this layer have been used. Grad-CAM thus gives a coarse localization 
map that shows the most significant areas in the picture (radiological 
features). 

5. Experimental results and discussion 

In this section, we discussed the exploratory phase and assessment of 
the efficiency of the classification by the proposed architecture. The 
performances and the characteristics of our proposed system is also 
compared with existing works for Covid-19 detection. 

5.1. Experimental process 

The experimental details performed in this research are described in 
this section. 

5.1.1. Experimental environment 
The proposed method is based on a learning rate of 0.001 with a 25 

epoch number. The proposed CNN was introduced using Python along 
with the Keras package with the TensorFlow2 backend on the 1.80 GHz 
Intel(R) Core i5-8265U processor. Additionally, the tests were carried 
out using the GPU provided by google colab. We apply open CV for 
image pre-processing, matplotlib and seaborn for visualization graphs, 
sklearn for classification matrics, numpy and pandas. 

5.1.2. Split data into training set and testing set 
We break the data into 90% for training images and 10% for testing 

which is 1029 images. We further break the training data by 10% for 
validation. We did this procedure for both dataset as mentioned in Ta-
bles 3 and 2. It was assured that the photographs were randomly divided 
between the test dataset and the train dataset, such that the two datasets 
were divided nearly evenly between the groups. It is also important that 
the model is educated in alternating categories. In other words, it would 
be over fitted, which is not desirable. Moreover, we perform five fold 
cross-validation to check the robustness of our model. 

5.1.3. Model training methodology 
Adam optimizer was used to train every layer of the improvement 

parcel with the normal performance parameters (β1 = 0.9 and β2 =

0.999) using batches of size 32 and running throughout every epoch 
through the whole dataset. Eventually, adding an effective learning rate 
scheduler called ”ReduceLROnPlateau” defines a lookup to control the 
relevance of the loss of reliability, starting with a learning rate of 0.001 
on demand. After 5 epochs, we decreased the hyperparameter learning 
rate by a factor of 0.5, where improvement was not recorded by the 
detector. In the regularization section, in order to mitigate the conse-
quences of over-learning, we have also put an early stop to discourage 
the over-learning of the network. Hyper parameters used in the pro-
posed model are shown in the Table 4. We kept the parameters same for 
the binary classification(Covid-19 and pneumonia). For binary classifi-
cation, we only changed the last dense layer to two instead of three. 

5.2. Performance evaluation metrics 

The results evaluation measures, including accuracy, precision, 
sensitivity, specificity, and F1-score, are used to assess the proposed 
system’s performance. The performance evaluation metrics can be 
calculated as: 

Accuracy =
(τρ + τη)

(τρ + τη + f ρ + f η) (6)  

Sensitivity =
τρ

(τρ + f η) (7)  

Specificity =
τη

(τη + f ρ) (8)  

Precision =
τρ

(τρ + f ρ) (9)  

Table 4 
Hyper parameters of the network.  

Hyper Parameter Weight 

Batch size 32 
Cost function Categorical Cross Entropy 
Learning Rate (LR) 0.001 
Learning Rate Multiplying factor 0.5 
LR Decay 5 times after a plateau 
Epochs 25 
Optimizer Adam  
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F1 − Score =
2τρ

(2τρ + f ρ + f η) (10)  

where, τρ = true positive; fρ = false positive :τη = true negative and fη =
false negative. 

It is common to assess categorization results through schematic ap-
proaches such as the receiver operating characteristic curve (ROC curve) 
and its overall ranking, the area under the curve (AUC). As a result, we 
calculated the AUC ROC as well. 

5.3. Results analysis 

The details results of our stated model were discussed in this section. 
First, we trained our model applying dataset-1 (given in Table 2) to see 
how the stated model performs. Afterwards, we trained our model on 
dataset-2 (shown in Table 3) to check if our model was able to differ-
entiate the Covid-19 and pneumonia cases correctly or not. 

5.3.1. Results for three class classification (Covid-19, normal, pneumonia): 
The confusion matrix enables us to quantify metrics of our catego-

rization task’s results. The confusion matrix of the proposed CNN ar-
chitecture for the test cases is shown in the Fig. 6. 

Among the 1029 test images, our suggested approach misinterpreted 
only 44 images which indicate better and more consistent true positive 
and valid negative values. Therefore, the suggested CNN architecture 
can be used to correctly categorize Covid-19 instances. 

In addition, the CNN classifier’s performance is visually displayed in 
Figs. 7 and 8 in terms of accuracy and loss during the training and 
validation phases. For example, the training and validation accuracies at 
epoch number 25 are 98.6% and 97.8%, respectively. Furthermore, the 
suggested approach secures training and validation losses of 0.102 and 
0.205, respectively. 

The general accuracy, specificity, sensitivity, precision, and F1-score 
for every case of the proposed system are summarized in Table 5. The 
proposed CNN network has achieved 99.3% accuracy, 99.4% specificity, 
99.0% sensitivity, 99.6% F1 score, and 98.0% precision for the Covid-19 
cases. For normal patients, it had been recorded 99.2% accuracy, 99.6% 
specificity, 99.0% sensitivity, 99.0% precision, and 98.4% F1 score. The 
pneumonia cases have obtained 96.9% accuracy, 97.9% specificity, 
99.0% sensitivity, 99.0% F1 score, and 98.2% precision. The best ac-
curacy, specificity, and sensitivity were obtained within the normal 
cases. The best F1-Score and precision were detected within the pneu-
monia patients, along with the simplest specificity value. 

Furthermore, ROC curves between the true positive and false- 
positive rates were generated to verify the overall performance, as 
illustrated in Fig. 9. For the recommended CNN architecture, the area 
under the ROC curve (AUC) was reported to be 96.6%. 

Experimental findings show that the proposed architecture achieved 
the average AUC of 96%, 98.5% accuracy, 98.9% specificity, 99.0% 
sensitivity, 98.3% F1-score, and 99.2% precision for three cases 
classification. 

In this study, our stated model had been compared to five different 
architectures. We kept the parameter same to train VGG16, VGG19, 

Fig. 6. Confusion Matrix for the proposed system for three class classification.  

Fig. 7. Graph for Accuracy of the proposed system.  

Fig. 8. Graph for Loss curve generated by the proposed system.  

Table 5 
Performance of the proposed network for classifying Covid-19, normal and 
pneumonia patient’s x-ray images (in %).  

Class Accuracy Specificity Sensitivity F1-Score Precision 

Covid19 99.3 99.4 99.0 99.6 98.0 
Pneumonia 96.9 97.9 99.0 99.0 98.2 
Normal 99.2 99.6 99.0 99.0 98.4 
Average 98.5 98.9 99.0 98.3 99.2  
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Xception, MobileNet and Inception-V2-Resnet on this dataset for valid 
comparison with our system. 

Table 6 depicted the comparative performances of these model with 
our developed model taking the evaluation criteria accuracy, precision, 
specificity, sensitivity, and F1-Score. As demonstrated in Table 6, the 
suggested model also produced good performance in all the evaluation 
metrics with an accuracy of 98.5% on chest x-ray images. 

5.3.2. Results for two class classification (Covid-19 and pneumonia cases): 
The confusion matrix of the proposed CNN architecture for the 

dataset-2 is shown in the Fig. 10. 
The confusion matrix indicates that our introduced deep learning 

model performed very well in precisely classifying Covid-19 patients 
from the pneumonia patients. 

The accuracy, specificity, sensitivity, precision, and F1 score for 
Covid-19 and pneumonia case are summarized in Table 7. The proposed 
CNN network has achieved 99.8% accuracy, 99.9% specificity, 99.3% 
sensitivity, 99.7% F1 score, and 99.4% precision for the Covid-19 cases. 
Within the pneumonia cases, it has been found 99.2% accuracy, 99.9% 
specificity, 99.5% sensitivity, 99.9% precision and 99.2% F1 score. 

Additionally, the ROC curves are generated between actual-positive- 
rate and the false-positive-rate with a view to determining the general 
performance shown in Fig. 11. For dataset-2, we obtained the region 
under the ROC curve (AUC) 99% for the proposed CNN architecture. 

Again, to compare our introduced CNN model’s performances, we 
have considered the VGG16, VGG19, Xception, MobileNet and 
Inception-V2-Resnet deep learning models and trained these using 
dataset-2. Table 8 depicted the comparative performances of these 
model with our developed model taking the evaluation criteria. As 
demonstrated in Table 8, the stated model again showed good 

performance in all the evaluation metrics with an accuracy of 99.6% for 
categorizing Covid-19 and pneumonia patients. 

5.3.3. Results for 5-fold cross-validation: 
We also have performed k-fold cross-validation to verify our pro-

posed method’s robustness and select k=5 in our experiment. The fold- 
wise results for 5-fold cross-validation are shown in Fig. 12 and Table 9. 
The confusion matrix and ROC curve depicted in Figs. 13 and 14 show 
our proposed model’s robustness. Figure 3 shows that our proposed 
model achieves an average accuracy of around 97%, which is excellent 
for three classes. Again the ROC curve represents the outstanding 

Fig. 9. ROC analysis of the developed work for dataset-1(covid, normal and pneumonia cases).  

Table 6 
Comparative analysis for three class classification results of the proposed and re- 
implemented deep CNN architectures in terms of performance metrics for 
dataset-1 (in %).  

Class Accuracy Specificity Sensitivity F1- 
Score 

Precision 

VGG-16 95.2 100 93.3 92.0 90.0 
VGG-19 95.0 96.0 95.0 95.0 95.0 
MobileNet 95 97.5 96.9 95.6 95.0 
Xception 90.0 93.5 90.7 90.4 91.2 
Inception-V2- 

Resnet 
94.72 96.46 98.66 91 91.5 

Proposed 
System 

98.5 98.9 99.0 98.3 99.3  

Fig. 10. Confusion Matrix of the stated system for covid and pneu-
monia classes. 

Table 7 
Performance of the proposed network to classify Covod-19 and pneumonia cases 
using Dataset-2(in %).  

Class Accuracy Specificity Sensitivity F1-Score Precision 

Covid19 99.8 99.9 99.3 99.7 98.4 
Pneumonia 96.2 99.9 99.5 99.2 98.2 
Average 99.6 99.9 99.4 99.4 98.3  
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performance of our introduced system, obtaining an average AUC of 
99.45% and above 99% for Covid-19, pneumonia, and normal cases on 
five-fold cross-validation. 

5.3.4. Screening for pathogens 
Gradient-weighted Class Activation Mapping (Grad-CAM) is often 

referred to as a heat map that is used the gradients of an identifying and 
mapping to dynamically view our test. In order to focus the significant 
portions within the image for forecasting, a rough localization map is 
generated after passing into the last layer. Of most important region 
(processed attributes) from which the classification decision has been 
made by the network reflects the deep blue colour. Fig. 15 shows the 
heat map for Covid-19, pneumonia, and normal cases of classified test 
samples. 

The analysis of the results demonstrates that a CNN architecture 
plays an important effect on the detection of Covid-19 by supporting 
automated feature extraction from x-ray images. Our proposed system 
can extricate Covid-19 from pneumonia and normal cases with signifi-
cant accuracy. Though it is tough to separate Covid-19 individuals from 
pneumonia patients, yet our proposed model is able to recognize Covid- 
19 showing good performances. 

5.4. Discussion and comparison with state-of-the-arts 

As demonstrated in Tables 10 and 11, we assessed our model to other 
state-of-the-art Deep CNN techniques for recognizing Covid-19 on chest 
x-ray pictures. For the categorization of Covid-19 and other individuals 
pictures in our dataset, all of the algorithms in Tables 10 and 11 was re- 
implemented. 

To identify Covid-19, paper (Bhattacharyya et al., 2022) employed 
VGG19 to extract semantic features with BRISK and used RF as a clas-
sifier in the output layer and discovered that the average accuracy, 
sensitivity, precision, and F1-Score was 96.6%, 95%, 95.0%, 95.0%, 
correspondingly. In Hussain et al. (2021), the researchers employed a 
transfer learning technique adopting MobileNet-v2 as a base modeland 
obtained average classification accuracy, positive predictive value, and 
sensitivity of 99.12%, 99.27%, and 97.36%, respectively. Applying the 
transfer learning technique-based ResNet-34 model (Nayak et al., 2021), 
the authors obtained the accuracy, sensitivity, and precision of 95.29%, 
92.97%, and 96.46%. 

Correspondingly, the average classification accuracy, sensitivity, and 

Fig. 11. ROC analysis for classifying covid and pneumonia patients applying 
dataset-2. 

Table 8 
Comparative analysis for two class classification results of the proposed and re- 
implemented deep CNN architectures in terms of performance metrics using 
dataset-2 (in %).  

Class Accuracy Specificity Sensitivity F1- 
Score 

Precision 

VGG-16 97.2 98.3 96.3 96.0 5.0 
VGG-19 97.0 97.0 96.0 97.0 95.0 
MobileNet 98.1 97.8 97.9 96.5 97.3 
Xception 96.0 92.0 95.0 96.0 91.0 
Inception-V2- 

Resnet 
90.0 89.0 90.0 90.0 83.0 

Proposed 
System 

99.6 99.9 99.4 98.4 99.3  

Fig. 12. Fold wise and average accuracy, precision, sensitivity and F-1 score.  

Table 9 
Performance of the proposed network on five-fold cross-validation(in %).  

Class Accuracy Sensitivity F1-Score Precision 

Fold1 62.15 62.10 56.48 78.15 
Fold2 74.31 74.31 74.40 82.15 
Fold3 93.41 93.51 93.63 94.84 
Fold4 94.69 97.29 97.08 96.62 
Fold5 96.38 96.38 96.40 97.63 
Average 96.25 96.53 96.34 96.63  

Fig. 13. Confusion Matrix for the proposed system on five-fold 
cross-validation. 
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F1-score of a tuned AlexNet model (Pham, 2021) were 95.72%, 93.59%, 
and 96.78%. The researchers of Apostolopoulos and Mpesiana (2020), 
Khan et al. (2020), Ozturk et al. (2020), and Wang et al. (2020a) also 
tried to detect Covid-19 patients from x-rays using three types of x-ray: 
Covid-19, pneumonia and healthy individual’s x-ray and they achieved 
more than 85% accuracy. In Rahman et al. (2021), the authors has 
proposed a novel DL model and obtained 97.65% accuracy, 100% pre-
cision, 95.59% recall, and 94.56% F1-Score. Table 10 proved that our 
suggested technique outstrips the recently developed Covid-19 identi-
fication techniques on chest x-rays. 

At the same time, some researchers (Alqudah et al., 2019; Bhatta-
charyya et al., 2022; Mukherjee et al., 2021; Nayak et al., 2021; Pham, 
2021) did their researches on identifying Covid-19 by applying two class 

types images: Covid-19 versus pneumonia or Covid-19 versus normal as 
shown in Table 11. As per the tabel depicts, most of them did a 
tremendous job for classifying Covid-19 patients from others with a 
good accuracy scores. From the Table 11, it is clears that our stated 
model is absolutely comparable with the state-of-the-arts models for 
detecting Covid-19. 

6. Conclusion 

We built a deep CNN-based system to classify Covid-19, pneumonia, 
and healthy persons from x-ray pictures. CNN was used as a pattern 
identifier from the images for Covid-19 virus detection. The stated 
model can effectively differentiate other people from Covid-19 patients 
utilizing x-rays. The suggested framework achieved 98.5% accuracy, 
98.9% specificity, 99.0% sensitivity, 99.2% precision, and 98.3% F1 
score for three-class classification results. Furthermore, for two-class 
classification results, our stated architecture gained 99.6% accuracy, 
99.60% specificity, 99.90% sensitivity, and 99.30% F1 score, which 
indicates that our model can effectively classify Covid-19 patients from 
pneumonia as well. Thus observing the results, it is clear that our 
designed architecture might be a better alternative for swiftly recog-
nizing Covid-19 infection status and thereby halting the disease’s 
development. 

The proposed architecture’s concept does have certain drawbacks. 
The use of limited data sets is the main shortcoming. As a result, in the 
future, we plan to perform additional tests with larger data sets and 
analyze the findings to improve our model’s suitability and stability. We 
also intend to identify covid-19 patients suffers from other diseases. 
Furthermore, we want to train our model with other datasets like 
different cancerous datasets.We even want to associate the proposed 
model with radiologists who will be involved in future efforts. 

Fig. 14. ROC curve for the proposed system on five-fold cross-validation.  

Fig. 15. Heat map image created by proposed CNN.  

Table 10 
Comparison of the three class classification results of the introduced Covid-19 identification deep CNN model with others researches(in %).  

Authors Dataset Accuracy Specificity Sensitivity F1-Score Precision 

Pham (2021) 3314 x-rays 96.5 95.3 97.4 96.0 97.7 
Bassi and Attux (2022) 2064 x-rays 98.02 - 98.82 - 99.92 
Hussain et al. (2021) 400 x-rays 94.2 94.56 92.76 94.04 91.32 
Sethy and Behera (2020) 381 x-rays 95.33 - 95.33 - 95.34 
Khan et al. (2020) 924 x-rays 95.00 97.50 96.90 95.60 95.00 
Apostolopoulos et al. (2020) 2855 x-rays 96.78 96.46 98.66 - - 
Sethy and Behera (2020) 381 x-rays 95.33 - 95.33 - 95.34 
Wang et al. (2020a) 13,962 x-rays 93.3 - - -  
Ozturk et al. (2020) 1127 x-rays 87.02 92.18 85.35 89.96 87.37 
Proposed System 10,293x-ray 98.5 98.9 99.0 99.2 98.3  
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